CHAPTER FIVE
MANIFOLDS

5.1 DIFFERENTIABLE MANIFOLDS

Definition. A locally Euclidean space X of dimension n is a Hausdorff topologi-
cal space such that, for each x € X, there exists a homeomorphism ¢, mapping
some open set containing x onto an open set in R”,

Remark. We may, if we wish, choose each ¢, so that ¢,(x) = 0 and so that the
image of ¢, is a ball By(¢). Given any ¢, homeomorphically mapping an open set
U about x onto an open set in R”, let &€ > 0 be such that B, (,)(e) C ¢,(U). Let

p: By (x)(€) — Byle)

be translation by —@(x). Then

Py =Y © Goxlcpx'l(g(p(x)(g))

maps ¢,* (B(p(x)(e)) homeomorphically onto B(€).

Example 1. R" is locally Euclidean. For each x € R”, take ¢, to be the identity
map.

Example 2, S" is locally Euclidean. Given x € §* let vy € S*, y # x. Then
¢, = stereographic projection from y maps S” — {y} homeomorphically onto R".

Example 3. Projective space P”, that is, the space of all lines through 0 in R"*?,
is locally Euclidean. For since P” is covered by $”, each x € P" is contained in an
open set homeomorphic to an open set in S” that itself contains, about each of its
points, an open set homeomorphic to an open set in R”,

Example 4. Each open subset U of a locally Euclidean space X is locally
Euclidean. For if x € U, let ¢, be a homeomorphism mapping an open set about
% in X onto an open set in R”, Take ¢, = ¥x| U N domain Dy »

Example 5. The set of all non-singular £ X & matrices forms a locally Euclidean
space of dimension k%, Each k X k matrix may be identified with a k2-tuple by
strmgmg out the rows in a line, The non- smgular matrices then form an open set

of R® , namely A"*(R*—{0}) where A: R¥ — Rt is the determinant function,
Definition. A Ck-differentiable manifold of dimension » is a pair (X, & where
X i8 a Hausdorff topological space, and & is a collection of maps such that the fol-
lowmg conditions hold. (See Fig. 5.1.)
(1) {domain (p} ¢& 18 an open covering of X,
(2) each ¢ € & maps its domain homeomorph1ca11y pnto an open set in R?,
32 for each ¢, ¢ €  with (domain ¢) N (domain y) # @, the mapy o ¢ tisa
C®-map from @(domain ¢ Nl domain §) € R” into R”,
(4) & is maximal relative to (2) and (3); that is, 1£ Y is any homeomorphism
mappmg an open set in X onto an open set in R” such that, for each ¢ € & with
domain ¢ l domainy # @, o ¢ *and ¢ » pare C”-maps from

¢ (domain ¢ N domain ¥) and y(domain ¢ N domain y)
into R” —then y € &,
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domain ¢

domain ¥

Fig. 5.1

Here # may be 0,1,2,...,«, w. C° means continuous. C% for % finite means all
partial derivatives of order less than or equal to k2 exist and are continuous., C*
means all partial derivatives of all orders exist and are continuous, C¥ means real
analytic; that is, the function may be expressed as a convergent Taylor series in a
neighborhood of each point,

Note that a C*-manifold is a locally Euclidean space and a locally Euclidean
space gives rise to a C%°-manifold.

If » = 2 and, in Condition (3), ¢<C®’’ \s replaced by ‘‘complex analytic’’ (where
R? is identified with the complex numbers C1Y), (X, ®) is called a complex analytic
manifold of complex dimension 1 or a Riemann surface. ® is then called a complex
structure or conformal structure on X,

The maps ¢ € & are called coordinate systems. More precisely, the map ¢ € &
is called a coordinate system on the open set (domain ¢) C X, For x € X, a coor-
dinate system about x is a coordinate system ¢ € ® such that x € domain ¢.

Remark. Each of the above Examples 1, 2, 3, and 5 of locally Euclidean spaces
form the underlying space of a C*-manifold. You need only check that the maps
@, satisfy Condition (3) for a manifold, and then take ¢ to be a maximal set contain-
ing {qox} yvex. Example 4 above also carries over to manifolds. Namely, if (X, ®) is
a Ck -mamfold and U is an open set in X, then (U, &|y) is a C*-manifold, where
By = {olut ge

Defzmtzons Let (X, ) be a C*-manifold. A real-valued function f X —Rl'isa
CS-function (s < k), denoted f € C5(X, RY), if, for each ¢ € ®, f » ¢~!is a CS-func-
tion mapping the 1ma€ e of ¢ C R" into R?,

Let (X, ® bea C -manifold, and let x € X, A real-valued function f is said to
be of class C® (s < k) ina nezghborhood of x, denoted f € CS(X, x, RY), if

= (domain f)

‘s an open set in X containing x, and f € CS(U, RY, where U has the C¥-manifold
tructure as an open set in X.

Remarks. Note that we are able to define CS-functions on X because (1) X looks
locally (via the coordinate systems ¢ € ®) like R”, and we know what it means for a

function on R”" to be CS; and (2) if U = domain ¢ and V = domain y for ¢, y € &, with

Cn
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U NV # ¢, the concept of a C5-function in a neighborhood of x in U N V is the

same relative to the coordinate system ¢ as to the coordinate system i, because
P o g)'l is a Ck-hnmnnmn‘r'nh1nm and k= g,

Sasa o aaasa AALiFadr KRia

Note also that if f and g are C® -functmns in a neighborhood of x, then f + & and
f& (product) are CS-functions in a neighborhood of x, where

domain (f + g) = domain (fg) = (domain f) N (domain g).

Definition. Let (X, ®)

be a C*-man nifold, and let ¢ € ® be a coordinate syst

U = domain ¢. Let 7y R"™ — R*® be the j-th coordmate function on R"; that is,
7@y, @y ..., ay) = a; for @, a,) € R” The j-th coordinate function of the co-
ordmate system @ is the functmn xj U — R! defined by Xj=7%5°¢.

Remark. x5 U — — R! is a C*-function. The n- tuple of functlons (x4, ..., Xp) is
sometimes also referred to as a coordinate system

Definition. Let (X,, &) and (X,, ®,) be C¥-manifolds (not necessarily of the same
dimension). A mapping ¥: X, — X, is of class CS (s < k), denoted ¥ € C5(X,, X,),
if, whenever f € C5(X,, RY), thenf ¥ € C5(X,, RY.

Exercise 1. Show that, if ¥: X, — X, is of class CS (s = n\ then ¥ ig

continuot
182 that, nen 18 coniinuo
in

Remavrks. We shall confine our attentlon to C” -manifolds. This will include, in
particular, C¥-manifolds and complex analytic manifolds of dimension 1. We shall
use the word ‘‘smooth’’ to denote C™.

We now proceed to define the concept of tangent vector on a manifold. Recall
that, in Euclidean space, a vector at a point defines a map which sends each smooth
function into a real number, namely, the directional derivative with respect to the
given vector, Moreover, the vector is determined by its values on all smooth func-
tions. We shall use this property to define tangent vectors on a manifold.

Definition. Let (X, ®) be a smooth manifold and let x € X. A tangent vector at
x is amap v: C¥(X, x, RY) — R?® such that, if ¢ is a (fixed) coordinate system with
x € U = domain ¢, then there exists an n-tuple (@,, a,, ..., a,) of real numbers with
the following property. For each f € C*(X, x, RY),

tem on

U(f) = é a; BT (f °c @ 1)L:p(x)

(Note that if W = domain f, then ¢ and f areboth defined onthe open set U N W con-
taining x, so that f ° ¢! isa smooth function with domain ¢ (U N W) C R” containing
@(x).)

Remark. If v: C*(X, x, RY) — R! has the property required above of a tangent
vector with respect to one coordinate system ¢ about x, then it also has this prop-
erty with respect to any other coordinate system about x. For, if y is another such
coordinate system, then, using the chain rule,

.M:
=
Q;Im

v(f) = (2 2 p(x)
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where J;(¥ o ¢7) is the Jacobian matrix of the function 3 ° ¢, Hence
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v(f) = 20 (El a; @ o w‘l)fq:(x)) % (f ° ¥y ()

Setting
bj = § 275 © @) (),
we obtain
o) = 3 by (F o 4 iy

Thus, to check if v is a tangent vector at X, it suffices to check the required prop-
erty in any one coordinate system at x.

Notation. Given a coordinate system ¢ about x, let Xj =7; o ¢ denote the j-th

coordinate function of ¢. By a/axj (j =1, ..., n) is meant the tangent vector at x
defined by
9 0
= (f) = == (f > ™| (s
UJ:]‘ Urj YA J

for f € C*(X, x, RY, Thus a/axj corresponds, relative to the coordinate system ¢,

to the n-tuple (0,0,...,1,...,0), where the 1 is in the j-th spot.

Remark 1. I x,, ..., x, are the coordinate functions of a coordinate system ¢
about x, and y,, ..., ¥, are those of a coordinate system ¥ about x, then the above
computation shows that

—
9 L8 3
axj B i1 BXj (yz) By,;'

Remark 2. A tangent vector v at x € X has the following properties. For any
f, & € C*(X, x, RY) and for X € R?,

(1) o(f + &) = v(f) + v(g)

(2) oA f) = xv(f)

(3) v(fg) = v(f)glx) + f(x)o(g).
These three properties say that the map v: C*(X, x, R!) —R! is a derivation. More-
over, these properties characterize tangent vectors; that is, we could have defined
a tangent vector to be a map v: C*(X, x, RY) — R! satisfying (1)-(3) above, and then

proved that, relative to any coordinate system ¢ about x, v = z a;(8/8x;) for some

n-tuple (a,, ..., a,) of real numbers, where x; is the i-th coordinate function of ¢.
Remark 3. The set X, of tangent vectors at x form a vector space under the fol-
lowing rules of addition and scalar multiplication:

W, +v)(f) = 0,(f) +u,(f) (v, v, € X),
Qv )(f) = A, (f)) (v, € X,, A € RY).
To see that v, + v, and Av, are tangent vectors at x, let ¢ be a coordinate system
about x, with coordinate functions (x,, ..., x,). Then

v, =2, a;(8/8x;) and v, = . b;(8/ax;)
i=1 i=1
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for some (@,, ..., a,) and (b, ..., b,). It is then easy to check that
vl+vz=§(az Bx’
Av, = é (Aa) 0
i1 0x;"
The map (@, ..., a,) — Z a;(8/9x;) gives a vector space isomorphism R” —~X,,
so X, has dimension n. Moreover, it is clear that {8/0x; }; e{l,... n} i abasis

for X,. The space X, is called the fangent space to X at x. It is also denoted by
T(X)x or by T(X, x).

For ¢ and ¢ two coordinate systems at x, with coordinate functions (x,, ..., x,)
and (y,, ..., ¥,) respectively, the formula
) o )
5%, = & By, Vi) 5y
7 i=1 j Vi
merelv exnresses the vector 8/8x; in terms of the basi; {3 /owv.} f4 1. Thns
LR \.f‘ A o l!ld. Nt Bt B U B AR, IUUI—UJ. I e ddd Add LA A AAdWS WSA P LA S A L / e J 1 nI - e AR LA B

S _}' ' [
the change of basis matrix from the basis {a/ay,} of X, tot h asis {a/ax }is
precisely the Jacobian matrix ((3/8x;)(y;)).
Remark 4. The tangent space T(R”, a) to R” at a point ¢ € R” is naturally iso-
morphic with R” itself. The isomorphism R” — T'(R", a) is given by

Ay oiiyAy) — E Ai oo 81’

Notaiion. We shall henceforth omit the ¢ from our notation for a differentiable
manifold (X, §). To be sure, a locally Euclidean space X may have two or more
distinct differentiable structures on it {(or it may have none), but we shall denote a
manifold (X, ¥ merely by X and shall assume that a definite differentiable struc-
ture is given on it.

Definition. Let X and Y be smooth manifolds. Let ¥: X — Y be a smooth map.

The differential of ¥ at x € X is the map d¥: X, — Y\Ir(x) defined as follows. For
veX,and ge C°(Y, ¥(x), RY), (d¥())(g) = v(g o ¥).

Remark. It is easily checked that d¥(v) is indeed a tangent vector at ¥(x). For,
if ¢ is a coordinate system about x with coordinate functions (x,, ..., x,), and 7 is

a coordinate system about ¥{x) with coordinate functions (y,, ..., v,,), then

v = f; a; (8/9x;) for some real numbers a;; and if g € C*(Y, ¥(x), R?), then
i=1

v(go‘l'): iai—i-(go‘lf)

[a¥()(g)

il

Eaz (g°7-1°7°‘1’°‘r01)|¢(x

2 D> —~(g TN W) G sy o T ¥ < 9Dl ()

j=1 1

[(sy, ..., Sy) coordinates on R"]
n m a a
- 0= (@) 2 (y,; o ¥
2z i5y; @505 W
- 0
= v o W) —
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Since this holds for all g € C(Y, ¥(x), RY),

m

W) = D ol w)ﬁ;

and, in particular, d¥(v) is a tangent vector, Furthermore, it is clear that d¥ is a
linear transformation X, — Y\I:(x)- Since

d\I'(ax) xS Fyl 672 ¥) -

90Xy 8y;’
this linear transformation d¥ has matrix
(d¥),; = (_3_( o 11:))
i = \ax, Vi
Vg /
relative to the bases {8/8x;} , ef1,... n} 2nd {B/ay]}]e{l m}-

Remark. Let X, Y, and Z be smooth manifolds. Let ¥: X —*Y and & Y — Z be
smooth maps. Then d(<1> V) = dP © d¥.
Proof. Suppose v € X, and ke C”(Z,& o ¥(x), RY). Then

[d(® > ¥)@)](R) = vk o (@) = v((ho@ °¥)
ad¥(v)(h o &)
[d®(d¥ ()] (R)

[@® - a¥)@)](h). O

1]

rr

Remark. Let X be a smooth manifold, and let U be open in X. Then U is itself
a smooth manifold. Moreover, the inclusion map i: U — X is a smooth map. Indeed,
f e C*(X, RY) implies f |y € C°° (U, RY). Furthermore, the differential

di: TWU,ue) = T(X, u,) (uy € U)

is an isomorphism; we shall identify these two linear spaces.

Exercise 2. Xf u, € U an open set in X, construct a function % € C*(X, RY) such
that

h(x) = 1 (x € W an open set containing ),
10 (x £ U).

(Hint: Make use of the smooth function g: R! — R! defined by

J’ -1/t (¢ > 0)
(0 (¢=0).)

ol —
SH\&J

I f, e C°(U, u, RY, use Exercise 1 to show that there exists a smaller open set
Wand f € C°(X, R ) such that fly = f,lw.




DIFFERENTIABLE MANIFOLDS 103

Remark. Let X be a smooth manifold, and let f € C*(X, R?). Let us compute
df. For v € T(X, x), df (v) € T(R!, f(x)). Since T(R!, f(x)) is 1-dimensional,
df(v) = x(d/dr) for some X € R', To determine A, it suffices to evaluate df(v) on the
coordinate function »; R! — R*! as follows.

A = [)\d%](r) - [df@)]@) = vl = f) = v(f).

Thus df{v) = v(f)(d/dv). Now T(RY f(x)) is naturally isomorphic with R® via the
isomorphism A(d/dr) — x. Let us identify these two spaces through this isomorph-
ism. Then df: T(X, x) — R! is a linear functional on T(X, x); that is, df is a
member of the dual space T*(X, x) and is, as such, given by

aflv) = v(f) (v e T(X,x)).

T*(X, x) is called the colangent space at x.

Definition. Let X be a smooth manifold. A smooth curve in X is a smooth map
@ from some (open or closed) interval € R! into X. If the domain of a is a closed
interval [a, b], smoothness of @ means that a admits a smooth extension

a: @ —¢, b+e)—X,

(Note that open intervals are open sets in R! and hence are smooth manifolds.)

A broken C*°-curve in X is a continuous map a: [a, b] — X together with a sub-
division of [a, b] on whose closed subintervals « is a C* curve.

Example.

(¢, ¢ sin1/) (¢t € (0,1])
od) ={(o, 0) (t=0)

is not a smooth curve in R? because it admits no smooth extension past 0.
Definition. Let a: I — X (I an interval C R') be a smooth curve in X. The langent
pector to @ at time ¢ (¢ € I), denoted by &(¢), is defined by

alt) = dd ((d%)t)

Note that &(#) is well defined, even at the endpoints of 7.

Remark. Given a tangent vector v € X,, let a: I — X be a smooth curve whose
tangent vector at time ¢ = 0 is v. (Such a curve may be obtained by taking a coor-
dinate system ¢ about x, finding a curve (for example, the straight line) in R”
whose tangent vector at time 0 is de(v), and pulling this curve back to X by @ L.)
Then, for f e C¥(X, x, RY),

o) = &) = a3 () ) = 50 - Dle

Thus v(f) is the derivative of the ‘‘restriction’ of f to the curve a. Moreover, two
curves a, and @, have the same tangent vector v at time 0 if and only if a,(0) = a,(0)
and

~ d e

ar ) a‘)|o S dr o!2”0
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for all / € C(X, x, R). (See Fig. 5.2.) We may use this equation to define an
equivalence relation on the set of all curves a with @(0) = x. Then we get a one-to-
one correspondence between equivalence classes of curves through x and tangent

vectors at x. Thus, we could have defined a tangent vector at x to be such an
equivalence class of curves through x.

/———\
\ |

5.2 DIFFERENTIAL FORMS
Definitions. Let X be a smooth manifold. Define

T(X) = U T(X,x) and T*(X) = U T*(X, x).

xeX xeX

T(X) is called the tangent bundle of X. T*(X) is called the cotangent bundle of X.

T(X,xl) T(X):c?)

Fig. 5.3

A projection map n: T(X) —X isdefined as follows. If v € T(X),thenv € T(X, x)
for some (unique) x € X; set 7(v) = x, Similarly, there is a projection may from
T*(X) onto X that we shall also denote by 7.
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A vector field on X is amap V: X — T(X) such that 7 o V = {x. A vector field
V is smooth if for each f € C*(X, RY), Vf € C*(X, RY). Here Vf is defined by

(VA(x) = V(x)f.

A differential 1-formon X is a map w: X — T*(X) such that 7 o w =iy. A dif-
ferential 1-form w is smooth if for each smooth vector field ¥ on X,

w(V) € C°(X, RY).

Here (V) is defined by (w(V))(x) = w(x)(V(x)). We shall denote the set of all
smooth vector fields on X by C¥(X, T(X)) and the set of all smooth 1-forms by
C™(X, T*X)).

Exercise. Define a manifold structure on 7'(X) so that 7 is a smooth map and so
that a vector field V is smooth if and only if it is a smooth map from X - 7(X).

(Hint: for ¢: U —*R" a local coordinate system on X, with coordinate functions
(X4 ..., X,), define @: 77(U) — R2" by

Pw)y=(penlw),b, ..., b,

where b, ..., b, € R! are such that v = Zn)l by 8/8x;.)

Remark 1. Let f € C*(X, RY), Then df € C*(X, T*(X)). For if V € C*(X, T(X)),
then df(V) = Vf € C*(X, RY).

Remark 2. C*(X, T(X)) and C*(X, T*(X)) are both vector spaces over the reals
under the operations of pointwise addition and scalar multiplication. For example,
if Vyand V, € C*(X, T(X)), then V, + V, is defined by (V, + V,)(x) = V (x) + V,(x);
and if A € R?, then AV, is defined by (AV )(x) = A(V (x)).

Remark 3. Let ¢ be a coordinate system on X with domain U and coordinate
functions (x ,, x,, ..., x,). Then the following hold.

(1) (8/8x;) e C™(U, TW)) forie{l, ..., n}. 8/8x; is smooth because if

feC”U, RY), then f < ¢ te C%e(U), RY,

and, for each x e U,
[axz (f)}( ) = [a—,"ff(f ° qo-*ﬂ (¢ ()

(o] oo

) = [ (207 =0 e 0, RY.

that is,

2) ¥ V € C®(U, T(U)), then there exist functions a; € C*(U,RY) for i €{1,...,n}

such that V = _Z a; (8/8x;). These functions a; exist because

{(a/8x)(x)} iefl, ..., n}

is a basis for T(X, x). They are smooth because (a/ax,,;)(xj) = 044, SO that
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Z a;0; = 121) asz x;) = V(x;) € C™(U, RY).
(3) I Ve CX, T(X)), then V|y € C°(U, T(U)) by a previous exercise, and
Vig = f a; (8/8x;) as in (2) with a; € C*(U, RY).

(4)  dxje C°°(U T*(U)) for j € {1, ..., n} because x; € C*(U, RY). Furthermore,
{dx } is at each point the dual basis to {6/ax } because

(5) I we C(U, T*(U)), then there exist a; € C*(U, RY) such that w = 5 a; dx;.

i=1
These functions a; exist because {dxi} is at each point a basis for the co-
tangent space. They are smooth because

- 3 a;dx ( V- o2 ) e cmw, RY
\GX;/ \GA g/
(6) I fe C™U,RY, then
if = 35 (/) dx
j=1 Bx] J

because df = Z a; dx for some a;, and
=1

Z)ajdx( ) df( ) sz(f)

We have just seen that if f € C¥(X, RY), then df is a smooth differential 1-form.
We now introduce differential 2-forms.
REVIEW OF EXTERIOR ALGEBRAS. Let V be an n-dimensional vector space

nvar {‘l’\o ch](‘.‘ ’r‘han fho fr\]]r\uhr\ﬂ' hn]r‘

(1) The vector space Ak(V*) 1s the space of all skew-symmetric k-linear func-
tions on V; thatis, each 7 € A (V*) is a map T: V @@ VJ—'I‘Z1 such that for all

vl,...,vk,vjeV,AeRl, k}xrr:es
(1) Ty oy Uiy Vf + V§, Vjeyy o ooy VR)
=7, ..., Vi v]f,vjﬂ, ceUp) +T(0y, ... Vit vjf,ujﬂ, e, UR);
(2) T@Wr(1)s -+« Vn(R)) = 1T 7(v,,...,ve); and
(3) Ty v ey Uity MVjy Vjygy e oo Up) = AT, 000 05,000, vp),

where 7 is any element of the permutation group Sp on & letters, and (—1)" is +1 if
# is an even permutation or —1 if 7 is an odd permutation This second condition is

equlvalent o requiring that if two vectors in the a'rgumem. of 7 are uuex Ludug,l—:u
then the value of 7 on these vectors changes sign. The dimension of A k(v*) is equal

to the binomial coefficient (k) for k = n; it is zero for k& > n,
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(2) If we set g(V*) = g) @ Ak(V*) where A%V *) = R a product is defined on

G(V*) as follows. If 7 € Ak(V*) and ;€ AL(V*), their product 7 A  is the element
of A#+L(V *) defined by

T A p,, .o, 0p)

= (E—j—ﬁ (- l)WT(vﬂ(l), cen, v,,(k)) H(Uﬂ(ku), ooy Un(keg)).

T€S k.

Since §(V*) is generated by such y and 7, this multiplication extends to g(V*)
by linearity, that is, by requiring that exterior multiplication A be distributive with
respect to vector addmon This multiplication is associative and g(V*) 1s an alge-
bra, with unit 1. However, multiplication is not commutative: if y € A k(v *) and
T € Aﬂ(V*), then

paT = (CDH T A,
(3) If ¢,,..., ¢, is a basis for V*, then

[g;iln__./\cpik; 1=i,<i,<...<fp= n ]

is a basis for A*(V *). Hence the union of these sets over 2 € {1,... ,n}, together
with 1 € A°(V*), is a basis for g(V *). It follows that the dimension of g(V*) is 2%,
Ifv,...,0p € V, the value of ¢; A...%¢;, on these vectors is given by

(902'1 A, A (pik)(t_),, cea,Up) = —. 2. = 1)"%1( (1) - ‘Pik(ufr(k))'

n€Sy

(4) g(V*) has the following properties:

(1) 1 € g(V™), V*C g(V*);

(2) g(V*) is generated by 1 and V *;
(3) @ A @ = 0 whenever ¢ € V*; and
(4) dimension g(V *) = 27,

These properties in fact characterize g(V*); that is, if G(V*) is any algebra over
the reals satisfying properties (1)-(4), then g(V*) and g(V*) are isomorphic (as
algebras).

(Note that Condition (3) is equivalent to the condition that ¢, A ¢, = —¢@, A ¢, for
all ¢,, ¢, € V*)

() If L: V* = V* is a linear transformation, then L induces a unique algebra
homomorph1sm L: g(V*) — g(V*) which extends the map L. L preserves degrees;
that is, £: A¥(v*) — A*¥(V*). In particular, L: A(V*) — A"(V*). Hence, since
dim An(V*) = 1, there exists a scalar A such thatL|An(V*) A - 1. This scalar A s

precisely A(L), the determinant of L,
(8 Tho o]rrahv-g D{V*\ ig rallad the (Cor assmann nIrrnbnfn

AV F ¥ Lw) Tl =L\ F ELAALC WA LILIL NFF WO DI RILIL (B C

or , of
V*, Elements of g(V*) are called forms on V. Forms in A¥(V*) are said to be of
degree k.

Review of Exterior Algebras ends heve.
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Now let X be a smooth manifold. Let

AR(X) = U AR(TH(X, x)),

xeX

and let
g(X)

U g(T*(X, ).

As usual, we shall denote the projection maps from these spaces onto X by 1. These
spaces can each be given the structure of a smooth manifold such that 7 is a smooth
map.

Definition. A k-form on X is a mapping p: X — A*(X) such that 7 o g = ix. A

k-form p on X is smooth if whenever V,, ..., Vip are smooth vector fields on X,
then
M(V,, e, Vi) e Cw(X, RY),
where
BV, e, VM) = p)(Vy(x), ..., Ve(x).

A differential form on X is a mapping w: X — g(X) such that 7 o w = ix; it is
smooth if its component in Ak(X) is smooth for each k. The set of smooth E-forms
on X is denoted by C™(X, Ak(X)). The set of all smooth differential forms is de-
noted by C*(X, g(X)). Note that C*(X, Ak(X)) is a vector space under pointwise
addition and scalar multiplication, and that C*(X, g(X)) is an algebra under the ad-
ditional operation of pointwise exterior multiplication.

Remark 1. A 0-form on X is just a real-valued function on X; it is a smooth
0-form if and only if it is a smooth function.

Remark 2. Let ¢ be a local coordinate system on X, with domain U and coor-
dinate functions (x,, ..., *¥,). Then {dx,, ..., dx,} is a basis for T*(X, x) for
each x € U, Hence

[dx;, A...n dxi,; 6, <. .. <ig]

is a basis for A*(7*(X, x)) for each x € U. Thus, the restriction to U of each
k-form u on X can be expressed as

g = Z: ail,__,-kdxz-l'\...’\dx,-k,

i<, .. <ip

where each a; ...;, is a real-valued function on U. Furthermore, p is smooth if
and only if, for each (¢, U), a,,... ip € C*(U, RY). This is because

a = k! 0 0
zl...zk_ -p' axilj""axik'

THEOREM 1. Let X be a smooth manifold. There exists a unique linear map
d: C¥(X, §(X)) — C™(X, g(X)), called the exterior differential, such that the fol-
lowing properties hold. ‘

(1) d: C*(X, AR(X)) — C™(X, AR*1(X)); —

(2) d(f) = df (ordinary differential) for f ¢ C*(X, A°(X));
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(3) if e C(X, A*(X)) and T € C(X, g(X)), then
Al A~ 1) = dp)» 7+ (—1)k g A dT; and

4)d2=0

Remark. For the proof we need the following lemma, which asserts that for any
exterior differentiation operator d, (dw)(x) depends only on the behavior of w ina
small neighborhood of x.

LEMMA, Let d: C™(X, g(X )) —-C°°(X g(X )) be linear and satisfy the conditions
of the theorem, Duppo.be weC \A, b\A H is such that w|W = 0 for some open set
W C X. Then (dw)|y = 0. Hence, if w, 7 € C*(X, G(X)) are such that w|y = 7|y for
some open set W, then dw)|w = (dT)Iw.

Proof. Suppose w|y =0. Let x, € W. Let f € C™(X, R?) be such that f (x,) = 1
and f(x) = 0 for all x ¢ W, Then fw is identically zero on X, so that

0 =d(fw) = @) » w +fdw.

Evaluating at x,, (do.:)(xo) = 0. Since this holds for all x, € W, dw|y =0. If
wlw = Tlw, then ( = 7)lw =0, so that

=[dlw -7y = [dw —d7]lw and dwly =d7ly. O

Proof of Theovem 1.

Uniqueness. Suppose d: C*(X, g(X)) — C*(X, g(X)) satisfies the conditions of
the theorem. Let x € X, and let ¢ be a local coordinate system about x with domain
U and coordinate funct1ons (x,, ...,%,). Let w € C°(X, A (X)) Then the restric-
tion of w to U can be expressed as

w|y =Zai1...ikdxi1'\"'l\ dxik

for some a; ... € C°(U, RY). Now the right-hand side of this equation is not a

differential form on X so we cannot apply d to it. However, let U, be an open ball

containing x with U, compact and CU, and let g € C°°£ R‘) be such that g(x) = 1
(x) =0for x £ I ’T"hon e C°X A (Y“ where

frw o £ I and
i LY § >~ . 4 iar WO W (L, LN ¥

LUL A4 L U 1 all
@ =2 (8a;,...4,) d(gxz) A...° d(gxz-k).
Here, by gh, for h € C™(U, RY), is meant the smooth function on X defined by

(gh)(x) = ) (2 e D)

Furthermore, 5|U1 = wlyl. By the lemma, (d’w)IU1 = (dEJ)lUl. Now
do =2 dlga; ...;,d(gx;) *..." dlgxy,)]  (by linearity)
= Z d(gazl, R 'ik) A d(gxil) AL, A d(gxzk)
) 8. .. dd(gx;) ... A d(gx;,)) (by Property (3))
= E d(gail' . 'ik) A d(gxil) A .o A d(gxik)1

since each term of the second sum is zero by Properties (3) and (4). In particular,
since g is identically 1 on U,, and since (dw)|y, = (da)lUI,
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n

a

= _ . . . A . A A .
(dw)lUI z'1<.E..<ik JZ=]? 9x; (azl' o Zk) dxj dx,’l e dxzk.

J

Thus if d exists, its value at x on k-forms must be given by this formula. Since
x was arbitrary in X, and since every differential form is a sum of k-forms,
ke{0,1,...,n}, uniqueness is established.

Existence. We first define d locally. Let ¢ be a local coordinate system on X
with domain U and coordinate functions (x,, ..., x,). (Note that U/ is itself a smooth

17 7

manifold.) Define dy: C*(U, g(U)) — C™(U, g(U)) as follows. For

w=28; .. .p dx; M. .M dx;, € c=(U, ARy,

define

n a
_ 2 (. , : . A .
dyw —EEE 5%; (a“...zk)dx]/\dxh’\... dx;,.

Extend dy to C”(U, G(U)) by linearity. Then Properties (1) and (2) are clearly
satisfied. To verify (3) and (4), note first that each form in C*(7, g(U/)) is a sum of
forms of the type Qi g dxg Ao A dx,-k. By linearity of d, together with distri-
butivity of exterior multiplication with respect to addition, it suffices to check (3)
and (4) on forms of this type.

Property (3). Suppose
B=a; . . .dx;, M. Ndxy;
Then

dlu A7)

]
8
===
Q
o
ST
R
o~
>
&
®
-~
o
>
8
®
Sae
s
>
>
Q,
R
.
e

£
n a R R
- el ax,,(ah zk)dx'r dx; dx,k
(95,0 gy d%j, M. A dxyy)
k
+(-1) (ail"'ik dxz-lf\._./\dxik)
9
" (2 ax'r(bjl"°jﬂ)dxyAdleA'--Adij)

H

du) A7+ (-1)% p Adr,

Property (4), For p =@y g @XM N dXy,

d*u :dré“q—(a' vog,) Xy Mdx; l\.__l\dx.-l
SR 2 zk_l
n a 8
- & E[m(ai,...ik)] dxg ndxy Ndx A...6dx,.
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But certainly the terms in this expression with 7 = s are zero, since dx, A dx, = 0.
Moreover, for » # s, the equality of mixed partial derivatives on R” implies that

i) = e @iy
8xg 8%, ~t1tcctk 80X, 8xg  tattclRY

so that

a 0 a 8
—_ . . A o ——
8xg 8%, (all‘ "t ’k) dxg N diy X, 0%

(@ )dx, rdxg;

il"'ik

thus the remaining terms match up in pairs which cancel each other.

Thus the operator dyy has Properties (1)-(4). By uniqueness, every linear opera-
tor on C™(U, g(U)) having these properties must be given by the above boxed
formula, In particular, if U, is any open subset of U, then ¢ |y, is a coordinate sys-
tem, and dy : C°(U,, gU,) — C*(U,, g(U,)) is given in the coordinate system ¢[y,
by the same Tormula. Thus, if w € C*(X, §(X)), then

dy (wiy) = dylelv)iy,
This relation enables us to define d globally by (dw)|y = dy(w|y) for all
w € C7(X, g(X))

and any coordinate neighborhood U. This d is well defined because if U and V are
overlapping coordinate neighborhoods, then

dy@lplvnv = duvnviwlpny) = @yleiy)lvnv.

Clearly, d has the required properties, since dyy has them for each U. O

DIGRESSION ON VECTOR ANALYSIS. The multilinear algebra developed above
is particularly simple in the case » = 3. We want to show how the classical ap-
proach of vector analysis fits into the scheme of differential forms.

In order to develop the connection, we consider first the general situation in an
n-dimensional vector space T.

Definition. A volume element of T is a choice of basis in A"(T*); since A"(T*)
is 1-dimensional, a volume element is a choice of a non-zero element in A"(7T%*),

Example. If T is the tangent space to a manifold and {dx,, ..., dxn} is a basis
for T*, thendx, A...A dx, is a volume element of 7. (Note that a volume element
@ determines an isomorphism A*(T*) =R}, where 7w corresponds to . Conversely,
such an isomorphism defines a volume element w corresponding to 1.)

Rewmark. Given a volume element w of 7, there exists a natural isomorphism
m: A"} T'*) — T defined as follows., Recall that T is naturally isomorphic to its
double dual T**, Identifying T** with 7 through this isomorphism, m will have
values in T**. For ¢ € A" YT*), m(p) is then defined by [m(¢)](y) = A, where
% € T*, X is the real number such that ¢ 4 = Aw. To show that m is an isomorph-
ism, let {¢,, ..., cpn} be a basis for T* such that w = ¢, A...4 @,. Then the set
{@ A h @i ® @ a...p ¢n} is a basis for A”-T*), The value of m on these
basis vectors is then given by

m(, r...A @i D ‘Pju"---A @) = (—1)"*jej,
where {e,, ..., e,} is the basis for T dual to{¢,,..., ¢n}.
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Remark. Given an inner product {,) on a finite dimensional vector space T,
there exists a natural isomorphism g: 7 — T7* defined by

le@)]w) = @, w)y (@, we T).

If {e,, ..., e,} is a basis for 7, let gij = (ej, e, (i, j € {1, ..., n}). Then in
terms of the dual basis {¢,, ..., ¢, } for T*,

n

gle;) = 25

. U Y
T
=1

.. . 7 | -
&ij¥j \‘tlly'--”‘f}-

S

In particular, if{e,, ..., e,} is orthonormal, then & = 6;;, and

ijs
g(ez-) = @y

Applications. Take T = R", Then T has an inner product and a natural volume
element w = ¢,*...» ¢,, where{¢;} is the dual basis to the natural basis {e;} for
R™, Thus the isomorphisms m and g are defined. Also, we have natural identifica-
tions T(R", x) «~— R" for each x ¢ R",

1. Let f € C*(R", R'), Then the gradient of f is the vector field on R” given by

grad f = g=1 o (df).

Relative to the usual coordinates (¥, ..., x,) = (»,, ..., 7,) on R",

gradf=g"°(df)=g“(zn) —aidxj>= Z": of o <aaf N _a.L).

j=1 axj j=1 axj axj xl’- ,axn

2. Let V be a vector field on R®. Then g o V is a 1-form and d(g ° V) is a
2-form. Now for dimension T =3, A%(T*) = A" }(T*), so the isomorphism m maps
A*(T*) — T. Thus m(d(g  V)) is a vector field on R® It is called the curl of V,

curl V = (mo d o g)(V).

Exercise. Compute the coordinate expression for curl V.

3. Let v, and v, be vectors in R®. Then g(v,) and g(v,) are 1-forms. Their ex-
terior product is a 2-form; its image under m is a vector, called the cross product
of v, and v,.

v, X v, = m(gv,) » glv,)).

4. Let V be a vector field on R?. Then m V) is an (n-1)-form on R”, Its dif-
ferential is an n-form, that is, a multiple of the volume element w. This multiple
is (up to sign) the divergence of V:

(—1)"d o mY(V) = (div V) w.

Remark. Using these formulas, certain important formulas of vector analysis
become trivial consequences of d? = Q.




