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VALUES OF T, AND THE CHRISTOFFEL SYMBOLS FOR A LINE
ELEMENT OF CONSIDERABLE GENERALITY

By HERBERT DINGLE

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, AND IMPERIAL COLLEGE
OF SCIENCE AND TECHNOLOGY, ENGLAND

Communitated March 20, 1933

In the general theory of relativity the mechanical properties of any re-
gion of the universe are expressed by the energy-momentum tensor, 7,
which is itself calculable from the form of the line element, ds? = g, dx"dx’,
applicable to that region. The expressions for T, in the most general
case, in which all the g, are arbitrary functions of the four coérdinates,
x!, x?, x%, x4, are exceedingly complicated, but considerable simplification
is introduced if it is assumed that g,,(u & ») = 0. The resulting line
element still possesses a large amount of generality, and in the applications
of the theory particular forms of it have, in fact, usually been employed.
It therefore seems desirable to publish the general expressions for the
energy-momentum tensor corresponding to this line element, and it is
the purpose of this paper to give them, together with the associated values
of the Christoffel symbols of the second kind, in the form best suited for
application. The calculations, which are somewhat long, have kindly
been checked by Mr. C. C. Steffens of the California Institute of Tech-
nology, and the proofs have been carefully read, so that the results may be
used with considerable confidence. It is hoped that their publication
will save labor for those working in this field.

The expression for the line element is taken as

ds?* = —A(dx")? — B(dx?)? — C(dx¥)? + D(dx*?,

where 4, B, C and D are any functions of x!, x%, x® and x*. Mathematically
these functions may be positive or negative, real or imaginary,* but in
ordinary applications, in which x* is the time-like codrdinate, they will
clearly always be positive and real. The non-vanishing components of the
metric tensor and its contravariant associate are obviously as follows:
gn=—4; gn=—B, gn=—C; gu=+D
1 1 1 1
11 — = 522 — _ =. 33 — __ —. 44 — —.
g 1 8 B & c 8 ="17p
and the determinant, g, is —ABCD.
Christoffel Symbols.—These are defined by the expression

=1 F2 bgn\ agvX aguv).
tw,o} =3¢ (bx" T a2

* 1t is assumed that they possess first and second differential coefficients with respect
to each of the coérdinates.
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Energy-Momentum Tensor, T’.—This tensor is defined by the expres-

sion .
—81T}, = G, — ; 2,G + g

where G}, is the contracted Riemann-Christoffel tensor, G is the invariant,
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g”G,,, and \ is the cosmological constant. The values of —8zT, are
as follows:

e _1[1 (@B  2c\ 1 (B o0
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The Flatter Regions of Newman, Unti, and
Tamburino’s Generalized Schwarzschild Space*

CHaBLES W. MIsNER

Paolmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received 17 December 1962)

The “‘generalized Schwarzschild” metric discovered by Newman, Unti, and Tamburino, which
is stationary and spherically symmetric, is investigated. We find that the orbit of a point under
the group of time translations is a circle, rather than a line as in the Schwarzschild case. The time-
like hypersurfaces » = const which are left invariant by the group of motions are topologically
three-spheres S3, in contrast to the topology 8% X R (or 8% X 81) for the » = const surfaces in the
Schwarzachild case. In the Schwarzschild case, the intersection of a spacelike surface ¢ = const
and an r = const surface is a sphere §2. If # is any spacelike hypersurface in the generalized metric,
then its (two-dimensjonal) intersection with an r = const surface i8 not any closed two-dimensional
manifold, that is, the generalized metric admits no reasonable spacelike surfaces. Thus, even though all
curvature invariants vanish as r — o, in fact B . = O(1/r*) a8 in the Schwarzschild case, this
metric is not asymptotically flat in the sense that coordinates can be introduced for which g,, —
74» = O{1/r). An apparent singularity in the metric at small values of , which appears to be similar
to the spurious Schwarzschild singularity at r = 2m, has not been studied. If this singularity should
again be spurious, then the “‘generalized Schwarzschild’”’ space would represent a terminal phase
in the evolution of an entirely nonsingular cosmological model which, in other phases, contains
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closed spacelike hypersurfaces but no matter.

1. INTRODUCTION

HE primary purpose of this paper is to study
and describe geometrically the stationary,
spherically symmetric solution of the Einstein
equations recently discovered by Newman, Unti,
and Tamburino' which I shall refer to as NUT
space. A second important purpose of this work
is to provide an example of the recognition and
elimination of a spurious singularity in a Riemannian
line element with the Lorentz — -+ signature.
No general method is known for eliminating coor-
dinate singularities In a metrie, nor are there
adequate criteria to determine that a singularity is
not merely a coordinate singularity, and I expect that
further examples beyond the Kruskal-Fronsdal®*®
elimination of the Schwarzschild singularity will
be helpful in leading to an understanding of these
problems. A third, minor, aim of this paper is to
provide an example of the use of orthonormal
frames (tetrads) in a style more economical with
indices than is usual in the literature of physics,
and in particular a method of computing the
curvature tensor very rapidly (cf. Appendix A).
The question of singularities in metrics is broader

* Qunnartad in nart bv the U. 8. Air Forece Office of

and more important than the study of one particular
metric to which most of this paper is devoted,
so I will briefly summarize the present state of the
art. The first step is to find some clearly stated
problems, and the clue to clarity is to refuse ever
to speak of a singularity but instead to phrase
everything in terms of the properties of differentiable
metric fields on manifolds, If one is given a manifold,
and on it a metric which does not at all points
satisfy the necessary differentiability requirements,
one simply throws away all the points of singularity.
The starting point for any further discussion is
then the largest submanifold on which the metrie is
differentiable. This is done because there is not
known any useful way of describing the singularities
of a function except by describing its behavior at
regular points near the singularity. The first problem
then is to select a criteria which will identify in an
intuitively acceptable way a “nonsingular space.”
Evidently, differentiability is only a minimum
prerequisite, since everything becomes differentiable
when the singular points are discarded. The problem
is rather to recognize the holes left in the space
where singular (or even regular) points have been
omitted. For a connected Riemannian manifold

11/29/2022, 6:20 PM
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free space-time. As yet, no example is known of a
nonflat singularity-free cosmological solution with
vanishing cosmological constant. The behavior we
are led to conjecture for an extended NUT space
would also be quite remarkable. The unequal
expansion rates in different directions of the closed
spacelike hypersurface » = 0 would smoothly
develop into a situation where closed spacelike
hypersurfaces no longer could exist, while the
evolution in time would smoothly resolve itself
into a state of affairs which was periodic in time.
A difficulty which will arise in attempting to
eliminate the Schwarzschild-like singularities at
f* = 0 using Kruskal’s methods is the time perio-
dicity of NUT space. For instance, in the Schwarzs-
child solution for r > 2m (or for 0 < r < 2m),
we can easily identify points to give a periodic
time, t = ¢ 4+ 7. In Kruskal’s extended Schwarzs-
child solution,” we may then attempt to make
this same identification. The singularity in the
coordinate ¢ causes no difficulty, since it is not
the ¢ coordinate, but motions along the Killing
vector field 9/dt which define the identifications
we wish to make, and 9/d¢ is an analytic vector
field, everywhere free from singularities, as is
evident from its expression in terms of Kruskal’s
nonsingular coordinates u, v:

J 1 d d

5 m ) 57)
What happens, then, when we identify points
which differ by a motion of amount 7, i.e. when
we identify points P and exp{T 4/4¢{}P? In fact,
this introduces a singularity, not everywhere along
the null 3-surfaces r = 2m (or v = =v), but only
at the single 2-surface v = » = 0 where, by Eq.
(57), 8/t = 0 so the Killing motion has fixed points.

APPENDIX A. COMPUTATION OF THE CURVATURE

We shall compute the Riemann tensor by
methods due to Cartan® which, at least for metrics
with a considerable amount of symmetry, are much
more efficient than the methods usually employed
by physicists. If o', »®, - -+ «" are a set of covariant
basis vectors, then the metric tensor is written

ds* = g, (A1)

Covariant derivatives are formed with the aid of
the connection forms w*,, or their components I'*,4:

W' = I (A2)
20 E. Cartan [cf. reference 10, Chap. VII]; T. J. Willmore

[ef. reference 5, Secs. VII-16 and VII-19]; H. Flanders,
Trans. Am. Math. Soe. 75, 311 (1953).

The following two sets of equations determine the
w*, uniquely:

dg, = wn + 0, (A3)
do” = —w) A . (Ad)

In the more familiar case of a coordinate frame
«* = dz*, the second equation here gives T, = T4,
(using the property d° = 0 of the exterior derivative,
and the antisymmetry of the exterior product A),
while the first is a standard relation between the
metric derivatives and the TI,., which is solved
to show that I'*,; is a Christoffel symbol. We will
use these equations in a different case, that of an
orthonormal frame, where, since g,, = 73,, = const,
Eq. (A3) states that the forms w,, are anti-symmetric

Wy + @, = 0. (A5)

With the aid of this antisymmetry, Eqs. (A4) can
now be solved for w", when " is given. Although
s formula like the Christoffel relation exists also
in this case, the compuiation is most efficient when
Egs. (A ) can be solved by inspection, as we shall
shortly illustrate. Once the connection forms have
been computed, the curvature forms ¢*, are obtained
from the formula

¢, = do*, + o' A 0%, (A6)

The components of the Riemann tensor R*,.s are
then read out of these curvature froms:

¢, = 3R, 50" A, (A7)
and the Ricci tensor is formed by contraction
R, = R".,. (A8)

Note that in 4-space, with an orthonormal basis «*,
there are only six connection forms «*, in contrast
to forty Christoffel symbols, and only six curvature
forms ¢*, in contrast to twenty components R,,.,
of the Riemann tensor or ten for the Ricei tensor.
In simple cases, such as NUT space, a savings of
labor on a scale suggested by these numbers is
actually attained, and the Ricei tensor can be
computed much more rapidly by these methods
(which provide the Riemann tensor as a bonus
along the way) than from the usual formula in
terms of Christoffel symbols.

The computation begins by writing the metrie
in terms of an orthonormal frame, as has been done
in Egs. (7) and (8). Next the curl, dw”, of each
base vector «* must be computed. Let us compute,
for example, dw’ where

o’ = f(r)[dt + 4lsin’ 36 do). (A9)

about:blank
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Tirst note that d(f{ 1) = df A [ 1 + Jd[ ], and
df = f'dr = f'fo' since &' = f'dr. Thus du’ =
fo' A «° <+ fd[ 1. Using & = O we then find

df ] = 4lsin 10 cos 30 d6 A dp = 2lsin 8d0 A dé
= 20" + )7’ A o',
Proceeding in this manner we obtain
do’ = f' A+ 2507 + 7 A &
do' = 0,
do® = rf(* + P e' A o,
de® = 1 + ) 7e' A o
+ 0 4+ D)7 ot 8e® A &

Now we must compare this set of equations with
Eqs. (A4) and pick out the «",. The first equation
of (A10), for instance, must take the form

(A10)

0 0 1 8 2 0 3
de = —w; Aw —w: Aw —ws Aw,

so we guess that o’y = -+f'w’. By antisymmetry we
have 0’ = —wy = @y = 'y, and can verify that
this choice is consistent with 0 = do' = ~w'y A ” +

- since &’ A «' = 0. The remaining term in d’
of Egs. (A10) could arise either from »’, or w’s, and
this choice ean most conveniently be settled later,
so we proceed to the dw’ equation. From do' =
—wa A @ — &' A @' — o'y A o we guess that
@’y = 7f(r* + )&%, so that o*; and «°; terms must
eancel here. In this manner, one proceeds to fill out
the list below. As the solution o, of Fqs. (A4) and
(A5) is known to be unique, the proof that a guess for
a set of w”, is correct is simply that it satisfies these
equations. We have then

wol = +"’]0 = f""n:
W’ = 4o’y = HO* + P,
w03 — +w30 __lj(rz + 52)—1‘02]

It
It

i

(A11)
wh = —w’ = I + 7’ — * + B eot 04,
W = =o'y = 1f0" + O,
wh = = = —rf(* + 7

Of a possible 24 connection components I'*,5, only
the seven nonvanishing ones which appear via
Eq. (A2) in Eqs. (A1l) caused us any labor. That
the others vanish we discovered by finding no need
for additional terms in Egs. (A11), not by explicitly
evaluating a formula for I'*,s and obtaining a zero
result. The curvature computation is now purely
mechanical. The first of Egs. (A6), for instance, reads

601 = d“’oz + woz A wzx + woz A wai' (A12)

Only two terms appear in the sum because of the
antisymmetry of w,,. Substituting in this and similar
formulas from Eq. (A11) yields

831 = —ZAC!)O A w! — 21)0)2 /l\ wz,
002 = +C(I)0 A (-02 + Dw3 A (JJI,
003 = +Cwo A (03 + Dwi /\ wz,

(A13)
s = +2B’ Ao — 2D0" A &',
fy = —Co® Ao + D® A’
bio = —Co' A&+ D’ AW,
where
A =1,
B = 3[=f + 1+ 4P/ + DI+ gy
C = By + PP/6 + DY+ D)7

D = BUFY —rif/6° + DI + O)7

The first line of Egs. (Al13), for example, tells us,
by comparison with Eq. (A6), that Ry = —24,
Rous = —2D, Roros = 0, Roiay = 0, ete. The contrac-
tions necessary to form K., for instance

Ru = RLOIO + R1?12 + R1313
= —'Rm]o + Rz'zm + Rmu
= 24 — 2C,

are readily performed by scanning Egs. (A13).
Thus we find

R=Ri=R",, = 44+ B — 20), (A15)
while for
G = Ry — 3g.R,
the only nonvanishing components are
Gy = —Gy = 2(C — B),
Gy = G = 2(C — A4).

The empty-space Einstein equations thus require
4 =B=C. :

Each of the quantities 4, B, C, and D is effectively
an invariant since the basis vectors o’ and ' we
used can be characterized geometrically, while the

(A16)

form (A13) of the curvature tensor is invariant.

under rotations in the 23 plane. We can characterize
the vector w' as the unit normal to the orbits r =
const of the group of motions; similarly, the con-
travariant vector e, from the dual basis can be
characterized as the unit vector parallel to that
unique Killing vector which commutes with all
the Killing vectors. These four invariants reduce
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Tirst note that d(f{ 1) = df A [ 1 + Jd[ ], and Only two terms appear in the sum because of the

df = fdr = f'fo' since &' = §'dr. Thus do’ =
fo' A &° -+ fd[ 1. Using & = 0 we then find

df ] = 4lsin 16 cos 30 d8 A dp = 2lsin 8d6 A do
= 20 + P A .
Proceeding in this manner we obtain
do’ = f' A&+ 250 + 7 A
do' =0,
do® = rf(* + P e' A o°,
de® = rf(® + ) 70" A o°
+ @+ P cot 8® A &

Now we must compare this set of equations with
Eqs. (A4) and pick out the «,. The first equation
of (A10), for instance, must take the form

(A10)

i QU 1 a4 2 0 3
dw = —w; Aw —@: Aw —ws Ao,

so we guess that ’; = -+f'w”. By antisymmetry we
have o’; = —wyn = @y = @', and can verify that
this choice is consistent with 0 = do' = ~w'y A "+

.- since @’ A @ = 0. The remaining term in de’
of Eqgs. (A10) could arise either from «°; or «’, and
this choice can most conveniently be settled later,
so we proceed to the dw’ equation. From do’ =
—wla A @ — &' A @' — o'y A o we guess that
w = rf(r® + I")7'&%, so that o°; and «°; terms must
eancel here. In this manner, one proceeds to fill out
the list below. As the solution o, of Eqs. (A4) and
(A5) is known to be unique, the proof that a guess for
a set of ", is correct is simply that it satisfies these
equations. We have then

OJOI = +w10 - f’w",
Wl = 4o’y = i’ + P

w03 — +w30 __lj(r'z + lz}—lw2}

i

(A11)
o'y = =’ = 10" + 7’ — (¢ + )7 eot 04°,
W = —aly = rf0° + B,
w'hy = =t = —rf(* + 7

Of a possible 24 connection components I'*,;, only
the seven nonvanishing ones which appear via
Eq. (A2) in Egs. (A11) caused us any labor. That
the others vanish we discovered by finding no need
for additional terms in Egs. (A11), not by explicitly
evaluating a formula for T',s and obtaining a zero
result. The curvature computation is now purely
mechanical. The first of Egs. (A6), for instance, reads

801 = d&’ol + (t-’oz /\ wB. + 6003 A wa;. (A12)

antisymmetry of w,,. Substituting in this and similar

formulas from Eq. (A11) yields
B = =240 A o' — 2Du® A ws,
for = +Co" A’ + Do® Ao,
bos = +C0" A’ + Do’ A,

(A13)
ps = +2Bs” A&’ — 200" A &',
by = —Co® Ao + D® Ao,
i = —Co' A&+ Do° AW,
where
A=3",
B = [~ + 1+ 487/¢° + DI + Y, (A14)
C = i + Ur/e + Dt + 57,

D = BIFY — /07 + D) + D).

The first line of Egs. (Al13), for example, tells us,
by comparison with Eq. (A6), that Ro, = —24,
Rous = —2D, Rgi0z = 0, Royay = 0, ete. The contrac-
tions necessary to form R,,, for instance

Ry = Rlow + R1212 + Rxsns
= _‘Rmm + Rmm + Rm:x
= 24 — 20,

are readily performed by scanning Egs. (Al3).
Thus we find

R=Ri=R", =44+ B - 20), (A15)
while for
Gw = Ry — 39.R,
the only nonvanishing components are
Gy = —lh = 2(C — B}’
Gy = Gz = 2(C — A).

The empty-space Einstein equations thus require
4=B=0C :

Each of the quantities 4, B, C, and D is effectively
an invariant since the basis vectors o’ and o' we
used can be characterized geometrically, while the

(A16)

form (A13) of the curvature tensor is invariant.

under rotations in the 23 plane. We can characterize
the vector w' as the unit normal to the orbits r =
const of the group of motions; similarly, the con-
travariant vector e, from the dual basis can be
characterized as the unit vector parallel to that
unique Killing vector which commutes with all
the Killing vectors. These four invariants reduce
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