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The Flatter Regions of Newman, Unti, and
Tamburino’s Generalized Schwarzschild Space*
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(Received 17 December 1962)

The “‘generalized Schwarzschild” metric discovered by Newman, Unti, and Tamburino, which
is stationary and spherically symmetric, is investigated. We find that the orbit of a point under
the group of time translations is a circle, rather than a line as in the Schwarzschild case. The time-
like hypersurfaces r = const which are left invariant by the group of motions are topologically
three-spheres S?, in contrast to the topology S X R (or 82 X 81) for the » = const surfaces in the
Schwarzachild case. In the Schwarzschild case, the intersection of a spacelike surface ¢ = const
and an r = const surface is a sphere S2. If ¢ is any spacelike hypersurface in the generalized metrie,
then its (two-dimensional) intersection with an r = const surface i8 not any closed two-dimensionsal
manifold, that is, the generalized metric admits no reasonable spacelike surfaces. Thus, even though all
curvature invariants vanish as r — o, in fact R,,.p = O(1/r%) as in the Schwarzschild case, this
metric is not asymptotically flat in the sense that coordinates can be introduced for which g,, —
n.» = O(1/r). An apparent singularity in the metric at small values of r, which appears to be similar
to the spurious Schwarzschild singularity at r = 2m, has not been studied. If this singularity should
again be spurious, then the “generalized Schwarzachild’’ space would represent a terminal phase
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in the evolution of an entirely nonsingular cosmological model which, in other phases, contains

closed spacelike hypersurfaces but no matter.

1. INTRODUCTION

HE primary purpose of this paper is to study
and describe geometrically the stationary,
spherically symmetric solution of the Einstein
equations recently discovered by Newman, Unti,
and Tamburino’ which I shall refer to as NUT
space. A second important purpose of this work
is to provide an example of the recognition and
elimination of a spurious singularity in a Riemannian
line element with the Lorentz —---+ signature.
No general method is known for eliminating coor-
dinate singularities In a metric, nor are there
adequate criteria to determine that a singularity is
not merely a coordinate singularity, and I expect that
further examples beyond the Kruskal-Fronsdal®’
elimination of the Schwarzschild singularity will
be helpful in leading to an understanding of these
problems. A third, minor, aim of this paper is fo
provide an example of the use of orthonormal
frames (tetrads) in a style more economical with
indices than is usual in the literature of physics,
and in particular 2 method of computing the
curvature tensor very rapidly (cf. Appendix A).
The question of singularities in metrics is broader
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Scientcifﬁ: Research, Air Research and Development Com-
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and more important than the study of one particular
metric to which most of this paper is devoted,
so I will briefly summarize the present state of the
art.* The first step is to find some clearly stated
problems, and the clue to clarity is to refuse ever
to speak of a singularity but instead to phrase
everything in terms of the properties of differentiable
metric fields on manifolds. If one is given a manifold,
and on it a metric which does not at all points
satisfy the necessary differentiability requirements,
one simply throws away all the points of singularity.
The starting point for any further discussion is
then the largest submanifold on which the metric s
differentiable. This is done because there is not
known any useful way of describing the singularities
of a function except by describing its behavior at
regular points near the singularity. The first problem
then is to select a criteria which will identify in an
intuitively acceptable way a “nonsingular space.”
Evidently, differentiability is only a minimum
prerequisite, since everything becomes differentiable
when the singular points are discarded. The problem
is rather to recognize the holes left in the space
where singular (or even regular) points have been
omitted. For a connected Riemsannian manifold

¢ I wish to thank Mr. L. Shepley for preparing this review
and for correcting numerous errors in an earlier draft. We
have borrowed heavily from I. Marcus’ lectures on this
topic at the American Mathematical Society’s 1962 Summer
Institute at the University of California at Santa Barbara.
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free space-time. As yet, no example is known of a
nonflat singularity-free cosmological solution with
vanishing cosmological constant. The behavior we
are led to conjecture for an extended NUT space
would also be quite remarkable. The unequal
expansion rates in different directions of the closed
spacelike hypersurface » = 0 would smoothly
develop into a situation where closed spacelike
hypersurfaces no longer could exist, while the
evolution in time would smoothly resolve itself
into a state of affairs which was periodic in time.
A difficulty which will arise in attempting to
eliminate the Schwarzschild-like singularities at
f° = 0 using Kruskal’s methods is the time perio-
dicity of NUT space. For instance, in the Schwarzs-
child solution for r > 2m (or for 0 < r < 2m),
we can easily identify points to give a periodic
time, ¢ = ¢ 4+ 7. In Kruskal’s extended Schwarzs-
child solution,” we may then attempt to make
this same identification. The singularity in the
coordinate ¢ causes no difficulty, since it is not
the ¢ coordinate, but motions along the XKilling
vector field 9/0t which define the identifications
we wish to make, and 3/d¢ is an analytic vector
field, everywhere free from singularities, as is
evident from its expression in terms of Kruskal’s
nonsingular coordinates u, v:

J 1 d a

at  4m (v wt av)’ (57)
What happens, then, when we identify points
which differ by a motion of amount 7, i.e. when

we identify points P and exp{T 48/4{}P? In fact,
this introduces a singularity, not everywhere along

the null 3-surfaces r = 2m (or v = =), but only .

at the single 2-surface ¥ = » = 0 where, by Eq.
(57), /8t = 0 so the Killing motion has fixed points.

APPENDIX A, COMPUTATION OF THE CURVATURE

We shall compute the Riemann tensor by
methods due to Cartan® which, at least for metrics
with a considerable amount of symmetry, are much
more efficient than the methods usually employed
by physicists. If »', w’, - -+ «" are a set of covariant
basis vectors, then the metric tensor is written

ds* = g,"%". (A1)

Covariant derivatives are formed with the aid of
the connection forms «*,, or their components I'*,4:

W'y = [ dl. (A2)
20 E. Cartan [cf. reference 10, Chap. VII]; T. J. Willmore

[ef. reference 5, Secs. VII-16 and VII-19]; H. Flanders,
Trans. Am. Math. Soc. 75, 311 (1953).

The following two sets of equations determine the
w*, uniquely:

dgw = Wy + Wyp (A?’)
do” = —wh A o', (A4)

In the more familiar case of a coordinate frame
«* = dz*, the second equation here gives T',5 = I',
(using the property d° = 0 of the exterior derivative,
and the antisymmetry of the exterior product A),
while the first is a standard relation between the
metric derivatives and the T,.., which is solved
to show that I'*,, is a Christoffel symbol. We will
use these equations in a different case, that of an
orthonormal frame, where, since g,, = 7., = const,
Eq. (A3) states that the forms w,, are anti-symmetric

Wy + 0,, = 0. (Ab)

With the aid of this antisymmetry, Eqs. (A4) can
now be solved for w*, when " is given. Although
3 formula like the Christoffel relation exists also
in this case, the compuiation is most efficient when
Eqs. (A ) can be solved by inspection, as we shall
shortly illustrate. Once the connection forms have
been computed, the curvature forms ¢*, are obtained
from the formula

¢, = do*, + "2 A 0%, (A6)

The components of the Riemann tensor R*,.; are
then read out of these curvature froms:

', = IR*,.p0" A &, (A7)
and the Ricei tensor is formed by contraction
R, = R%... (AS8)

Note that in 4-space, with an orthonormal basis
there are only six connection forms «, in contrast
to forty Christoffel symbols, and only six curvature
forms ¢*, in contrast to twenty components R,,.,
of the Riemann tensor or ten for the Ricei tensor.
In simple cases, such as NUT space, a savings of
labor on a scale suggested by these numbers is
actually attained, and the Ricei tensor can be
computed much more rapidly by these methods
(which provide the Riemann tensor as a bonus
along the way) than from the usual formula in
terms of Christoffel symbols.

The computation begins by writing the metrie
in terms of an orthonormal frame, as has been done
in Egs. (7) and (8). Next the curl, dw", of each
base vector «* must be computed. Let us compute,
for example, dw’ where

@’ = fr){dt + 41sin® 16 do). (A9)
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First note that d(f{ 1) = df A [ ] + Jd[ }, and Only two terms appear in the sum because of the

df = f'dr = f'fo' since ' = f~'dr. Thus do’ =
fo' A & + fd[ ]. Using & = 0 we then find

dl ] = 4lsin 26 cos $6 d6 A dp = 2lsin 6d8 A dé
= 2l0° + )7 Aw'.
Proceeding in this manner we obtain
do® = fo' Ao+ 20 + 7 A &,
do' = 0,
do’ = rf(" + ) o' A o,
do® = rf(* + )70’ A&’
+ @+ P eot 8® A &

Now we must compare this set of equations with
Eqs. (A4) and pick out the «",. The first equation
of (A10), for instance, must take the form

(A10)

0 il 1 5 2 0 3
de = —w; Aw —w: Aw —wsz Ao,

so we guess that oy = -+f'»’. By antisymmetry we
have ’, = —wy = @y = &'y, and can verify that
this choice is consistent with 0 = do' = —w'y A &* +

- gince &’ A @' = 0. The remaining term in dw’
of Egs. (A10) could arise either from «’, or «’s, and
this choice can most conveniently be settled later,
so we proceed to the dw’ equation. From do* =
—wls A @® — &'y A '~ o'y A o we guess that
w'y = rf{r® 4+ ') ', so that o and «°; terms must
cancel here. In this manner, one proceeds to fill out
the list below. As the solution «*, of Egs. (A4) and
(A5) is known to be unique, the proof that a guess for
a set of «*, is correct is simply that it satisfies these
equations. We have then

wol . +wlo = f,w01

w'y = +o¥y = 0 + )7,
wﬂs — +w30 - __Zf(rz + l2)~]w2’ (All)
Wy =~ = U0 + 1) — ¢ + F)7F ot 6,
waz — -—-wl;; - Tf(7‘2 + 12)--1(”3’

wh = —af, = —-?‘[(72 + P

Of a possible 24 connection components I'*,;, only
the seven nonvanishing ones which appear via
Eq. (A2) in Eqgs. (A1l) caused us any labor. That
the others vanish we discovered by finding no need
for additional terms in Eqgs. (A11), not by explicitly
evaluating a formula for T,; and obtaining a zero
result. The curvature computation is now purely
mechanical. The first of Eqs. (A6), for instance, reads

6° = do’; + 0" A W' + w3 A w's. (A12)

antisymmetry of w,,. Substituting in this and similar
formulas from Eq. (A11) yields

By = —240" A w' — 2Du® A wz,
902 = +Cw0 A (&32 + Z)(‘\’3 /\ Ml,
Bos = +C0° Ao+ Dot A&,

(A13)
s = +2Bs” Ao’ — 2D A o',
by = —Co® Ao + D’ Ao,
bp = —Co' A + Do® A &°,
where
A=,
B = L[~ + 1+417/6¢° + D + 1Y, (A1)

C = [ + Ff/0° + Dl + 57,
D = BUF) — v’ /67 + DI + D)7

The first line of Eqgs. (Al13), for example, tells us,
by comparison with Eq. (A6), that R0 = —24,
Boes = —2D, Roio: = 0, Royay = 0, ete. The contrac-
tions necessary to form .., for instance

Ru = RIOIO + R1212 + Rxsxs
= —Rioe + Rz + Rias
= 2A — 2C,

i

are readily performed by scanning Egs. (A13).
Thus we find

R=R,=R",, =44+ B — 20), (A15)
while for
Gw = R,uﬂ - %%wlg,
the only nonvanishing components are
Gu = —lrgy & Z(C h B)y
ng = G33 = 2(0 - A).
The empty-space Einstein equations thus require
A=B=2C.
Each of the quantities 4, B, C, and D is effectively

an invariant since the basis veciors o’ and o' we
used can be characterized geometrically, while the

(A16)

form (Al3) of the curvature tensor is invariant.

under rotations in the 23 plane. We can characterize
the vector w' as the unit normal to the orbits r =
const of the group of motions; similarly, the con-
travariant vector e, from the dual basis can be
characterized as the unit vector parallel to that
unique Killing vector which commutes with all
the Killing vectors. These four invariants reduce
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to two when the Einstein equations are satisfied,
and for the Schwarzschild solution, where I = 0,
evidently D = 0 s0 there remains only one invariant,
A = m/r*. For NUT space we have

A=B=C=@+0D"
X (mr® + 3% — 3mlr — 19,
D= =1+ )¢ — 3m® — 30r + ml).

(A17)

APPENDIX B, VECTOR FIELDS ON S3

We collect here some well known properties of S°,
including a computation of the commutation rela-
tions in Eq. (35). As coordinates for a quaternion
g, we take w(g), x(q), y(q), 2(¢), defined by

g=w+ i+ jy+ ke (B1)
The unit quaternions satisfying
lff =g =vw"+2"+ "+ =1 (B2

constitute S*. They form a group under muitiplica-
tion since |gp| = |g|-|p|. This group S* can be
related to the rotation group SO(3) as follows:
Identify the imaginary quaternions r which satisfy
r -+ r* = 0 [ie. w(r) = 0] with Euclidean 3-space
R®. Then the transformations

r— qrg* (B3)

map R° into itself [check grg* + (gr¢*)* = 0 using
the rule (pg)* = ¢*p*] and, when |g| = 1, preserve
I7| which is just the Euclidean norm since w(r) = 0.
Both ¢ and —¢ give the same transformation (B3),
so S covers SO(3) twice.

Both the transformations

q—pq (B4f)

and
q = ¥, (B4m)
where [p| = 1 preserve the quaternion norm |g]

and therefore map S° into itself. The infinitesimal
generators of these transformations are respectively
the vector fields &, and n, defined in Table I. For
instance &, generates the one-parameter subgroup

of (B4f) transformations obtained by taking p =
¢**’*. We now want to represent ¥, in terms of its
components along the base vectors 8, = 8/dw, etc.
associated with the coordinate system we are using.
Differentiation of f(¢) along &, is defined by

Elf] = [(@d/da)f(e’ " @)l a-o. (B5)

Tasie I. The vector fields £, and n, on S* are defined as
the infinitesimal generators 9/da of certain one-parameter
groups of motions of S° as shown.

One-parameter subgroup

Group of motions p = eicl? p = eiol p = egkal?
left translations
. q—Ppq & &y L
right translations
g — qp* oz ny n.

To compute the components of £, namely £.[w] ete.,
we note that d(e’*’¢)/da = (3)ig; so, upon taking
the various real and imaginary parts of this relation
we find &[w] = &[Re g = Re [(3)ig] = —13z, ete.
The results of this and similar computations are
summarized as follows:

2§, = —xd, + wd, — 20, + yd.,
2§, = —yd, + 29, + wad, — 4.,
2§, = —29, — yd. + 29, + wd.,
2n, = +24, — wd, — 29, + y9,,
20, = +yd, + 20, — wd, — 9.,
2n, = +20, — Y9, + %8, — wa..

(B6)

The commutators of these differential operators
are now straightforwardly computed with the result
given in Eq. (35). For these computations, we have
regarded &, and =, as defined over the entire space
R* of all quaternions, which permitted the con-
venience of using rectangular coordinates. Since the
results [Egs. (35)], do not refer to any coordinate
system, and since all the vectors involved are
tangent to S°, the method of extending the definition
of the vector fields beyond S* was irrelevant.
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