
Lecture 24

(Purpose: Attain mastery of using modern multivariable calculus
methods for mathematizing a constellation of key concepts from

electrostatics to be exteded to gravitation physics)

I.) EINSTEIN’S EQUATIONS: WHAT THEY MATHEMATIZE
The Einstein field equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1)

mathematizes two facts:

(i) geometry controls the motion of matter (via T ν
µ ;ν = 0), and

(ii) matter controls the geometry of spacetime.

Einstein’s line of reasoning for arriving at his tensorial equation was guided
primarily by the physical and geometrical properties of the right hand side.
The l.h.s. came out as a deductive consequence of his inductive line of reasoning
applied to the right hand side. Although the l.h.s was a tensorial consequence,
Einstein never identified its physical or its geometrical meaning and origin. This
gap was filled later by Cartan and Wheeler. They filled it with the geometrical
concept of “moment of rotation”. Among other things, this resulted in the
conservation of momenergy principle to be mathematized by them in terms of
the topological principle that “the boundary of a boundary is zero”.

The concept “moment of rotation” is an extension of the one familiar from
mechanics in 3-d Euclidean space: torque, the moment of force. Both force and
torque cause motion of bodies, translation and rotation. But in order to bring
out its relevance to the Einstein field equations, both force and the moment of
force need to be geometrized in the form surface and volume densities.

II.) DIELECTRIC IN A STATIC FORCE FIELD)
To this end consider a rigid parallelopiped (which for shorthand we
will call a “cube”, a “3-cube”, or a “3-d cube”) composed of an ar-
ray of uniformly distributed and rigidly aligned permanent molecular
dipole moments,

"p = q "d = q "emdm

Figure 1: A dielectric parallelopiped of volume ∆x1∆x2δx3 subjected to an
external electrostatic field.
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The volume of this cube is spanned by the triad of vectors

"u = ∆x1 ∂

∂x1
≡ ∆x1 "e1, (2)

"v = ∆x2 ∂

∂x1
≡ ∆x2 "e3, (3)

"t = ∆x3 ∂

∂x1
≡ ∆x2 "e3. (4)

The electrostatic polarization in this 3-d cube is

→
P = N "p = qN "d

(

=
(dipole moment)

(volume)

)

(5)

≡ "emdm qN (6)

Here

N =
(# of molecules)

(volume)
(7)

is the density of molecules in this cube. The total polarization is

→
P ×(volume) =





total
dipole

moment



 (8)

The molecular dipoles in their uniform alignment yield surface charge
densities on each of the six oriented faces of the cube, namely

q





surface density
of molecules



≡ σ3

︷︸︸︷

Nd3 ε312 ∆x1∆x2|x3+∆x3 = qNdmεm|ij|dx
i ∧ dxj("u,"v)|x3+∆x3 ,

q Nd3 ε312 ∆x1∆x2|x3 = qNdmεm|ij|dx
i ∧ dxj("u,"v)|x3 ,

and similarly for the other two pairs of faces.
III.) THE FORCE FIELD

Upon subjecting the cube to an electrostatic field

→
E= "ekE

k, (9)

the force field acting on the charged surfaces is mathematized by

→
F = "ekE

k q















surface density
of molecules on an
as-yet-unspecified

area















︷ ︸︸ ︷

σmεm|ij|dx
i ∧ dxj (10)

= "ekE
k q Ndmεm|ij|dx

i ∧ dxj

︸ ︷︷ ︸














surface charge
density on an

as-yet-unspecified
area















(11)
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or more economically by

→
F ≡

→
F ij dx

i ∧ dxj , (12)

the vectorial force field (surface density) acting on the faces of a 3-
cube. This is the momentum flux 2-form, a vectorial flux across an
as-yet-unspecified element of area1. It is a vector-valued 2-form, a
tensor of rank

(
1
2

)

.
The forces on the opposing oriented faces spanned by {"u,"v} are

→
F ("u,"v)|x3+∆x3 =

→
F 12 |x3+∆x3∆x1∆x2 (16)

= force on ("u,"v)-area at x3 +∆x3

and

→
F ("v, "u)|x3 = (−)

→
F 12 |x3∆x1∆x2 (17)

= force on ("v, "u)-area at x3,

with similar expressions for the other faces spanned by {"v,"t} and {"t, "u}.
IV.) SURFACE FORCES VS. VOLUME FORCE

The total force on these opposing faces, all six of them, is

→
F total =

→
F ("u,"v)|x3+∆x3+

→
F ("v, "u)|x3

+
→
F ("v,"t)|x1+∆x1+

→
F ("t,"v)|x1

+
→
F ("t, "u)|x2+∆x2+

→
F ("u,"t)|x2 (18)

which in light of Eq.(12) and Eqs.(2)-(4) becomes

→
F total = ∇"t (

→
F 12 ∆x1∆x2) (19)

+∇"u (
→
F 23 ∆x2∆x3) (20)

+∇"v (
→
F 31 ∆x3∆x1). (21)

1The force field exerts stresses on the faces of the electretized cube in Figure 1. These
stresses are mathematized in terms of the stress tensor familiar from continuum mechanics.
Let

d2Σm = εm|ij|dx
i ∧ dxj m = 1, 2, 3 (13)

be the 2-form of an element of area spanned by an as-yet-unspecified pair of vectors. The
stress tensor is a vector (force) valued surface-density 2-form

"ekT
kmd2Σm ≡

→
F |ij| dx

i ∧ dxj . (14)

Its components, in light of Eq.(11) are

T km = EkNqdm = Ek × (dipole moment)m (15)

This stress-tensor is not symmetric: T km $= Tmk. This happens when the dipole vector
density is not collinear with the applied electrostatic field. Consequently, the stresses acting
on the cube exert a non-zero torque on it. This, as we know, imparts angular momentum to
the cube.
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By introducing the vector valued three-form

d
→
F = d (

→
F |ij| dx

i ∧ dxj) (22)

= d (
→
F 12 dx1 ∧ dx2) (23)

+ d (
→
F 23 dx2 ∧ dx3) (24)

+ d (
→
F 31 dx3 ∧ dx1), (25)

one recognizes that the total force vector, Eqs.(19)-(21), condenses
into the value of that three-form evaluated on the vectors that span
the volume of the cube,

→
F total= d

→
F ("u,"v,"t). (26)

Physically this is the total volume force acting on and averaged over
the cube’s interior domain, which is spanned by the three vectors

"u,"v and "t. Mathematically d
→
F is the familiar exterior derivative of

→
F . Next substitute Eq.(12) into Eq.(26), use the triad of vectors
Eqs.(2)-(4) and thus obtain

→
F total = ∇"en

→
F |ij| dx

n ∧ dxi ∧ dxj("u,"v,"t) (27)

=
(

∇"e1

→
F 23 +∇"e2

→
F 31 +∇"e3

→
F 12

)

×∆x1∆x2∆x3 (28)

=

(
(force)

(volume)

)

×∆x1∆x2)∆x3, (29)

the volume force experienced by the cube in its interior. Here

→
F ij= "ekE

k qNdmεmij (30)

are the surface force densities acting on the ij-labeled faces of the
cube.

By equating Eq.(18) to Eq.(28) one obtains

(

total force on
all 6 faces

)

≡
6
∑

#=1

→
F ('thface) (31)

=
(

∇"e1

→
F 23 +∇"e2

→
F 31 +∇"e3

→
F 12

)

×∆x1∆x2∆x3 (32)

The l.h.s. of this equation refers to the totality of the surface forces
acting on the (6-faced) boundary of the cube. The r.h.s. of Eq.(32)
refers to the volume force on the interior of the cube. Thus the
6 conditions on the surface boundary of the cube are sufficient for
inferring the mean condition inside:

6∑

#=1

→
F ('thface)

∆x1∆x2)∆x3
= ∇"e1

→
F 23 +∇"e2

→
F 31 +∇"e3

→
F 12 . (33)

When the electrostatic field
→
E, Eq.(9), is homogeneous, i.e.

∇"ei

(

"ekE
k
)

= 0, (i = 1, 2, 3), (34)
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Eq.(33) becomes

6
∑

#=1

→
F ('thface) = "ekE

k[∇"e1(Nqdmεm23)

+∇"e2(Nqdmεm31)

+∇"e3(Nqdmεm12)]∆x1∆x2∆x3

= "ekE
k

3
∑

n=1

∂(
√
g Nqdn)

∂xn
∆x1∆x2∆x3

= "ekE
k (N q dn);n

√
g∆x1∆x2∆x3

︸ ︷︷ ︸




invariant
volume





(35)

Here "ekEk (N q dn);n is the force density relative to an physical/orthonormal
frame.

V.) ENERGY INJECTED INTO THE CUBE

If the cube undergoes displacement, say
→
w= "e# w

#, then each of its
6 faces receives mechanical energy from the force field. The amount
of that energy is

→
w ·

→
F ('thface), ' = 1, · · · , 6, (36)

the work done by each of the respective forces listed in Eq.(18). The
union of the 6 oriented faces is the boundary ∂D of the cube’s interior
domain D:

6
⋃

#=1

('thface) = ∂D.

The function
→
F (· · · ) = ·

→
F i,j dx

i ∧ dxj(· · · ) (37)

=
→
E N q dmεmijdx

i ∧ dxj(· · · ) (38)

is a linear vector-valued function on its components:

→
F total

(
6
⋃

#=1

('thface)

)

=
6
∑

#=1

→
F ('thface)

From this line of reasoning one arrives from Eq.(36) that

"w·
→
F=

→
E ·"wNq dmεmijdx

i ∧ dxj (39)

is the translational energy injected into the cube’s interior through
one of its as-yet-unspecified faces of its boundary.

The total change in mechanical energy of the dielectric cube is
therefore

→
w ·

→
F total =

→
w ·

[
6
∑

#=1

→
F ('thface)

]

, (40)

In light of Eqs.(32) this total is

→
w ·

→
F total =

→
w ·
(

∇"e1

→
F 23 +∇"e2

→
F 31 +∇"e3

→
F 12

)

×∆x1∆x2∆x3, (41)
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or, equivalently, because of Eq.(26),

→
w ·

→
F total =

→
w ·d

→
F ("u,"v,"t). (42)

VI.) TRANSLATIONAL EQUILIBRIUM
Even though the opposing faces carry non-zero charges, the total

charge on the 3-d cube is zero. Such a cube, when subjected to an
→
E-field, which we take to be homogeneous (∇"u

→
E= ∇"v

→
E= ∇"t

→
E= 0),

exerts no net force on the cube. The sum total of the forces on the
cube’s 6 faces vanishes:

→
F total=

6
∑

#=1

→
F ('thface) =

→
0 . (43)

Thus the cube is in a state of translational equilibrium. It gains no
translational energy. In light of the fact that Eq.(43) holds for any
set of spanning vectors in Eq.(26), one concludes that

d
→
F= 0 (44)

mathematizes that condition for translational equilibrium. In light of
Eq.(33) this is equivalent to

∇"e1

→
F 23 +∇"e2

→
F 31 +∇"e3

→
F 12= 0 (45)

or more compactly

∇i

→
F jk +∇j

→
F ki +∇k

→
F ij= 0 (46)

VI.) DIVERGENCELESS VECTOR FIELD
The internal charge structure of the cube consists of dipoles dis-

tributed uniformly throughout its interior. If "emdm(
→
E)q is the molec-

ular dipole moment2, then

→
P= "end

nq N ≡ "enP
n

in Eq.(6) is the macroscopic polarization vector field. Compare its
components with those in the volume force, Eq.(35), experienced by
the cube under the condition of translational equilibrium, Eq.(43).
Based on this, the conclusion is that the divergence of the polarization
vector field vanishes:

0 = (N q dn);n ≡ Pn
;n ≡ ∇·

→
P≡ div (polarization) (47)

2The molecular charge separation vector {dm(
→
E)} is typically a linear, but not necessarily

a coliniear, function of the externally applied electrostatic field.
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VII.) CONCLUSION
Mathematically the Einstein field equations (EFE), Eq.(1), is a

geometrical extension3 of the interaction between a dielectric body
and the electrostatic forces acting on it. The forces in Euclidean space
have two types of causal attributes:

1. those that result in translational motion and

2. those that result in rotational motion.

For Einstein’s field equations (EFE) both types need to be extended
to the 4-d spacetime. Moreover, both of them require the conserva-
tion laws stated in the form of the generalized vectorial and tenso-
rial Stokes’ theorem, the relation between vectorial, as well as tenso-
rial, physical attributes inside a given 3-d domain to those on its 2-d
boundary.

Electrostatics Gravitation

Eq.(#) Electrostatic-induced force field: Curvature-induced rotation field:

Eq.(12)
→
F=

→
F i,j dx

i ∧ dxj
↔
R=

↔
Ri,j dx

i ∧ dxj

Eq.(11) =
→
E N q dmεm|ij|dx

i ∧ dxj = "eµ ∧ "eνR
µν

αβdx
αdxβ

Volume force:

Eq.(26)
→
F total= d

→
F ("u,"v,"t) d

↔
R (u,v, t)

Change in energy due to Rotational change in movement
displacement shift "w: due to displacement shift w = eνwν :

Eq.(39)
→
F ·"w =

→
E ·"wNq dmεmijdx

i ∧ dxj
↔
R ·(eνwν) = "eµw

νRµ
ναβdx

αdxβ

Translational Equilibrium: Bianchi Identity:

Eq.(44) d
→
F= 0 d

↔
R= 0

Eq.(46) ∇i

→
F jk +∇j

→
F ki +∇k

→
F ij= 0 ∇γ

↔
Rαβ +∇α

↔
Rβγ +∇β

↔
Rγα= 0

Table 1 above highlights the extension of vectorial concepts from
electrostatics in a 3-d Euclidean environment to tensorial concepts in
4-d spacetime necessary for the EFE.

3The extension is one from vectors in Euclidean space to tensors in 4-d spacetime.
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