

Equatorial Plane of a Star

In MTW's chapter 23 read Section 23.8

I. Geometry of spacetime for a static stor.
33.1
The spacetime geometry for any spherically symmetric
system has the form

$$ds^{2} = -e^{2\phi(r,t)}dt^{2} + \frac{dr^{2}}{l-\frac{m(r,t)}{r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

For a system which is also static, there is no time dependence.
It spatial geometry at any fixed time is therefore
 $ds^{2}|_{t=\text{fixed}} = \frac{dr^{2}}{l-\frac{2m(r)}{T}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$
In the equatorial plane $\theta = \frac{\pi}{2}$ it is
 $ds^{4}|_{t=\text{fixed}} = \frac{dr^{2}}{l-\frac{2m(r)}{T}} + r^{2} d\phi^{2}$ (Non-Euclidean)
 $ds^{2}|_{\theta = \frac{\pi}{2}}$
which is to be compared with
 $ds^{2} = dr^{2} + r^{2} d\phi^{2}$ (Euclidean)
A. Imbedding Space

To obtain a geometrical picture of this non-Euclidean geometry, use the method of the imbedding diagram according to which one views the non-Euclidean plane as a surface of revolution in a 3-d fictuitious imbedding space with a Euclidean geometry and spanned by its three coordinates z, r, and p:

 $dl^{2} = dz^{2} + dr^{2} + r^{2}d\varphi^{2} \quad ("metric for the imbedding space")$ On the to-be-found surface of revolution

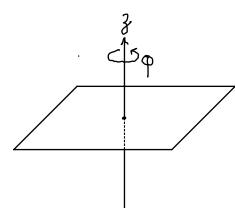


Figure 33.1 Fictitious 3-d imbedding space a non-Euclidean surface of revolution. 3=f(r)

the ambient Euclidean geometry induces the metric

$$dl^{2} = \left[\left(\frac{d}{dr} \right)^{2} + 1 \right] dr^{2} + r^{2} dq^{2}$$

$$3 = f(r)$$

B. The Imbedding Function

Identify the metric on the to-be-found surface of revolution with the metric on the equatorial plane of the spherically symmetric spacetime. This results in the differential

equation $\left(\frac{d_{3}}{dr}\right)^{2} + 1 = \frac{1}{1 - \frac{2m(r)}{r}}$

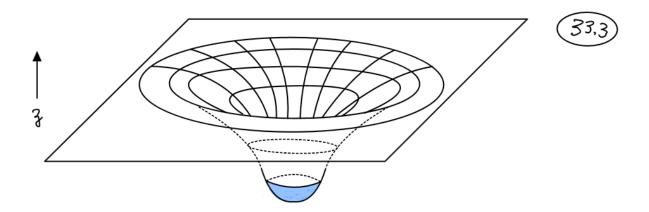


Figure 33.2 Imbedding diagram for the equatorial plane of a homogeneous star.

It allows one to visualize the inner 2-d spatial geometry on the equatorial plane or - because of spherical symmetry - any other rotated plane of the spherically symmetric space. C. Example

Consider at some fixed time (t=const.) a star with mass density p(r) in its interior and vacuum on the outside.

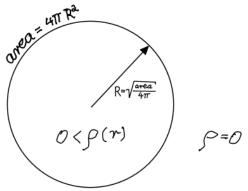


Figure 33,3 The radial parameter R for the concentric spheres of the star's interior and exterior is quantified in term of their proper area: R = Varea/4TT. For such a configuration the mass function and its associated imbedding function are $m(r) = \begin{cases} \int_{0}^{r} 4\pi r^{r^{2}} \rho(r) dr' & inside : r < R \\ M & outside : r > R \\ and & \end{cases}$

(33, 4)

$$\mathfrak{Z}(r) = \begin{cases} \int_{0}^{r} \left[\frac{\mathfrak{Z}m(r)}{r-\mathfrak{Z}m(r)}\right]^{l_{2}} dr' + c \quad inside: r < R \quad (33.2) \\ \left[8M(r-\mathfrak{Z}M)\right]^{l_{2}} + c \quad outside: r > R \quad (33.3) \\ \end{cases}$$
Comment

Here the mass M and the mass density
$$g(r)$$
 are
expressed in term of geometrical units:
$$M = \frac{G}{C^2} M^{conventional} = \left[\frac{G}{C^2} (mass)\right] = \left[length\right]$$
$$g = \frac{G}{C^2} g^{conventional} = \left[\frac{G}{C^2} (mass)\right] = \left[\frac{1}{(length)^2}\right]$$
os Thus outside the star one has
 $(3-c)^2 = 8M(r-2M)$
which is a parabola of revolution.
b) Inside the star, near the center
 $m(r) = \frac{4\pi g}{3}r^3$

The geometrized mass density has units
$$\frac{1}{(\tan q h)^2}$$
.
Consequently, the density, g_c implies a geometrically
determined standard of length designated by \underline{a} :
 $\frac{g_{II}}{g_c} = \frac{1}{a^2}$.
With this the imbedding function in the central
region inside the star has the form.
 $3 = \int_{0}^{T} \sqrt{\frac{\left(\frac{1}{a}\right)^2}{1-\left(\frac{1}{a}\right)^2}} dr' = -a\sqrt{1+\left(\frac{1}{a}\right)^2} \Big|_{0}^{T}$
 $= a - \sqrt{a^2 - r^2}$ for $r \ll a$, near the center
Thus the imbedding function $3(r)$ is part of the circle of
revolution:
 $(3-a)^2 + r^a = a^2$
c) At the star's boundary
 $\frac{d}{dr} = \sqrt{\frac{2m(r)}{r-2m(r)}}$
is continuous because $m(r)$ is continuous,
The geometry of a star is therefore characterized by a
circle of revolution near its center, and a parabola of
revolution outside its interior joined to it surface $r = R$

33,6 with out any kinks. This is because m(r) is continuous there. Figure 33. 2 depicts via its imbedding diagram the equator plane and its non-Euclidean geometry for a homogeneous star.