Lecture 37

H-J theory: Equation
and the
Principle of Constructive
Interference
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PROBLEM. (Particle in a potential)

Set up and solve the Hamilton-Jacoby equation for a particle in a one dimen-
sional potential U(z).
Solution. Setting up the H-J equation is a three step process.

(1) Exhibit the Lagrangian:

- %m:i:z - U(z).
. (2) Determine the momentum and the Hamiltonian:
- 9
P = Bz
= mz;
N2
H = z-é_j: -L
= % 2 + U(z) .
(3)- Express the Hamiltonian in terms of the momentum:
2
=P
H= am +U(z).
(4) Write down the H-J equation —&5 = H (z, ?Es):
as 1 (8s\*
%t " om (8_1:) +U(z).

This a first order non-linear partial differential equation that needs to be solved for
the scalar function S(z,t).
This p.d.c. lends itself to being solved by the method of separation of variables
according to which one finds solutions of the form
(3.5.7) S(z,t) = T(t) + X(z).
Introducing this form into the H-J equation, one finds

dT(t) 1 (dX(z)\*

at  2m ( ) UG-

This equation says that the left hand side is independent of z, while the right hand
side is independent of ¢t. Being equal, the Lh.s. is also independent of z. Being
independent of both ¢ and z it is a constant. Letting this “separation” constant be
equal to E, one obtains two equations

_4T(t)

, & = E
1 [dX(z) _
m(__dz ) +U@) = E.

These are two ordinary equations for 7 and X. Inserting these equations into Eq.
(3.5.7), one obtains the sought after solution to the H-J equation,

S(z,t) = —Et + / * /2m(E —U@))dz' +8(E).

Here the “integration constant” §(E) is an arbitrary function of E. Furthermore,
observe that S depends on E also. This means that one has an E-parametrized



family of solutions. Thus, properly speaking, separation of variables yields many
solutions to the H-J equation, in fact, a one-parameter family of them

S(x,t) = Se(x,t).

3.5.2. Several Degrees of Freedom. We shall see in a subsequent section
that whenever the H-J for a system with several degrees of freedom, say {g*}, lends
itself to being solved by the method of the separation of variables, i.e.

S t) =T +d_Qid"),
i=1
the solution has the form
t L4 q* . i
S = —/ Edt + Z/ pi(z"; E,ay, -+ ,as-1)dg' + 8 (E, a1, ,a5-1)
=1

Here & is an arbitrary function of E and the other separation constants that
arise in the process of solving the H-J equation. We see that for each choice of
(E,aq,+++ ,as—1) we have a different solution S. Thus, properly speaking, we have
SE.ay,.a,-,, @ multi-parametrized family of solutions to the H-J equation.

We shall now continue our development and show that Hamilton-Jacobi Theory
is
a) A new and rapid way of integrating the E-L equations
b) The bridge to wave (also "quantum") mechanics.
The virtue of Hamilton’s principle is that once the kinetic and potential energy
of the system are known, the equations of motion can be set up with little effort.
These Euler-Lagrange equations are Newton’s equations of motion for the system.
Although setting up the equations of motion for a system is a routine process, solv-
ing them can be a considerable challenge. This task can be facilitated considerably
by using an entirely different approach. Instead of setting up and solving the set of
coupled Newtonian ordinary differential equations, one sets up and solves a single
partial differential equation for a single scalar function. Once one has this scalar
function, one knows everything there is to know about the dynamical system. In
particular, we shall see that by differentiating this scalar function (the dynamical
phase, the Hamilton-Jacobi function, the eikonal) one readily deduces all possible
dynamical evolutions of the system.

3.6. Hamilton-Jacobi Description of Motion

Hamilton-Jacobi theory is an example of the principle of unit economy®, ac-
cording to which one condenses a vast amount of knowledge into a smaller and
smaller number of principles. Indeed, H-J theory condenses all of classical mechan-
ics and all of wave mechanics (in the asymptotic high-frequency/short-wavelength
(a.k.a. W.K.B.) approximation) into two conceptual units,, (i) the H-J equation

3The principle of unit economy, also known informally as the “crow epistemology”, is the
principle that stipulates the formation of a new concept
(1) when the description of a set of clements of knowledge becomes too complex,
(2) when the elements comprising the knowledge are used repeatedly, and
(3) when the elements of that set require further study.
Pushing back the frontier of knowledge and successful navigation of the world demands the for-
mation of a new concept under any one of these three circumstances.



and (ii) the principle of constructive interference. These two units are a mathemat-
ical expression of the fact that classical mechanics is an asymptotic limit of wave
mechanics.

Hamilton thinking started with his observations of numerous known analogies
between "particle world lines" of mechanics and "light rays" of geometric optics.
These observations were the driving force of his theory. With it he developed
classical mechanics as an asymptotic limit in the same way that ray optics is the
asymptotic limit of wave optics. Ray optics is a mathematically precise asymptotic
limit of wave optics. Hamilton applied this mathematical formulation to classical
mechanics. He obtained what nowadays is called the Hamilton-Jacobi formulation
of mechanics. Even though H-J theory is a mathematical limit of wave mechanics, in
Hamilton’s time there was no logical justification for attributing any wave properties
to material particles. (That justification did not come until experimental evidence
to that effect was received in the beginning of the 20th century.) The most he
was able to claim was that H-J theory is a mathematical method with more unit
economy than any other formulation of mechanics. The justification for associating
a wave function with a mechanical system did not come until observational evidence
to that effect was received in the beginning of the 20th century.

We shall take advantage of this observation (in particular by Davidson and
Germer, 1925) implied association by assigning to a mechanical system a wave
function. For our development of the H-J theory it is irrelevant whether it satis-
fies the Schroedinger, the Klein-Gordon, or some other quantum mechanical wave
equation. Furthermore, whatever the form of the wave equation governing this
wave function, our focus is only on those circumstances where the wave function
has the form

(36.1) Ug(z,t) = Az,t) x  exp (%Sg(x,t))

slowly varying function of r and ¢
rapidly varying function of z and ¢
This circumstance is called the "high frequency" limit or the "semi-classical" ap-
proximation. It can be achieved by making the energy E of the system large enough.
In that case

SE(za t)
1<< A

with the consequence that the phase factor oscillates as a function of z and ¢ rapidly
indeed. The existence of such a wave function raises a non-trivial problem:

If the wave and its dynamical phase, and hence the wave intensity, is defined over all
of space-time, how is it possible that a particle traces out a sharp and well defined
path in space-time when we are left with three delemas?

(1) The large magnitude (S > £=1.05x10"%[erg sec]) of the action for a
classical particle is certainly of no help.
(2) Neither is the simplicity of the H-J equation

as as
o FH@ 50 =0

which governs the dynamical phase in

¥ = Aexp (i %) ,
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FIGURE 3.6.1. The spatial oscillation rate of the wave function
Re Vg at t = const. is proportional to its z-momentum, whose
square is proportional to the kinetic energy ( K.E.=T.E.-P.E. ).

(3) Nor is the simplicity of the solution S for a particle of energy E,

S(z,t) = —Et + / * /(B = U(@))dz + 6(E)

of any help in identifying a localized trajectory ("world line") of the par-
ticle in space-time coordinatized by z and t.

What s of help is the basic implication of associating a wave function with a
moving particle, namely, it is a linear superposition of monochromatic waves, Eq.
(3.6.1), which gives rise to a travelling wave packet - a localized moving wave packet
whose history is the particle’s world line. To validate this claim we shall give two
heuristic arguements (i-ii), one application (iii), a more precise argument (iv) and
an observation (v).

(i): The most elementary superposition monochomatic waves is given by the
sum wave trains with different wavelengths

\I‘(.'L‘,t) = \I’E(I) t) + ‘I‘E+AE($s t) +oee

(ii): In space-time one has the following system of level surfaces for Sg(z,t)
and SE+AE(-'C' t)

Destructive interference between different waves comprising ¥(x,t) oc-
cures everywhere except where the phase of the waves agree:

Sg(z,t) = SE+ae(z,t)
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FIGURE 3.6.2. Photographic snapshot in space of two interfering
wave trains and their resulting wave packet.

At the locus of cvents satisfying this condition, the waves interfere con-
structively and wave packet has non-zero amplitude. The quantum prici-
ple says that this condition of constructive interference
0= lim Se+age(z,t) — Sp(z,t) - 0Sg(z,t)
AE—0 AE oF
yields a Newtonian worldline, i.e. an extremal paths.
(iii): Apply this condition to the action S(x,t) of a single particle. One
obtains the time the particle requires to travel to point x,

. )
m 1
°=“+/,.,\/;(E—U(x)) dz+to

- J(E)

= T9E
This condition yields the Newtonian worldline indeed. The precise argue-
ment is Lecture 13. The additional observation is on p13 Lecture 13.

with
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FIGURE 3.6.3. Constructive interference represented in space-
time. The intersection of the respective isograms of Sg(z,t) and
Se+ag(z,t) locates the events (z,t) which make up the trajectory
of the particle in z-t space — the locus of constructive interference.

Lecture 13

\/\J o2 PC( C ‘(lﬁj/"() D-CQ 8.7. Constructive Interference

Our formulation of constructive interference is based on a picture in which at

each time ¢ a superposition of wave trains
Ve(z,t) + Yerae(z,t) + - = ¥(z,t)
yields a wave packet at time ¢. The principle of constructive interference itself,
aSE (1, t) =0
8E

is a condition which at each time ¢ locates where the maximum amplitude of the
wave packet is.
It is possible to bring into much sharper focus the picture of superposed wave trains
and thereby not only identify the location of the resultant wave packet maximum,
but also width of that packet.

3.8. Spacetime History of a Wave Packet

The sharpened formulation of this picture consists of replacing a sum of super-
posed wave amplitudes with an integral of wave amplitudes

U(z,t) "UE(z,t) + YEras(z, t) + -7
/°° S(E)etSe@tdp
-0

A very instructive example is that of a superpostion of monochromatic ("single en-
ergy") wavetrains, each one weighted by the amplitude f(E) of a Gaussian window

Il

(3.8.1)
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SPACETIME HISTORY OF A WAVE PACKET

in the Fourier ("energy") domain,

mam,
(3.8.2) l F(E) = Ae~(E-Eo*/e]

The dominant contribution to this integral comes from within the window, which
is centered around the location of Ep of the Gaussian maximum and has width 2e,
which is small for physical reasons. Consequently, it suffices to represent the phase
function as a Taylor series around that central point Ep, namely

(3.8.3)

higher

dSk(x,t) 1 9%Se(z,t) 2

Se(z,t) = Sgy (2, )+ ——22|  (E—Eo)+7 —astt| (E-E,)*+ order ,
9E |g, 2 9E? g, terms

and neglect the higher order terms. Keeping only the first three terms and ignoring
the remainder allows an exact evaluation of the Gaussian superposition integral.
This evaluation is based on the following formula

(3.8.4) /‘°° e +8z g,y = —“—e_gé .
—oo V -a

Applying it to the superpostion integral, Eq. (3.8.1) together with Eqs. (3.8.2) and
(3.8.3), we make the following identification

z=FE-Ey; dz=dF,

3 2
_I_ €2 _pltio
a l-io 1402’
IIBZSEz,t
(3.85) U=§E—6E(r)'2062,
_i 8Sg(z,t)
ThT9ET |y~

Inserting these expressions into the righthand side of the formula (3.8.4), one obtains

a9S(z.t) 2
1+io 1 gE. 2 1+i0 . Sg,(x.1)
A _t —_ A LA
Vme 1+a2exP{ 4( n ) S \1+o2)(°
iSg, (.t)
LA
Az, t) e .

rapidly
varying

U(z,t)

slowly
varying

This is a rapidly oscillating function
ot Seo(@.)/h

modulated by a slowly verying amplitude A(z,t). For each time ¢ this product
represents a wave packet. The location of the maximum of this wave packet is
given implicitly by

aSE(:L', t)

(3.8.6) 9E |,

=1{.



As t changes, the z:location of the maximum changes. Thus we have curve in
z-t space of the locus of those events where the slowly varying amplitude A has
a maximum. In other words, this wave packet maximum condition locates those
events (= points in spacetime) where constructive interference takes place.

A wave packet has finite extent in space and in time. This extent is governed
by its squared modulus, i.e. the squared magnitude of its slowly varying amplitude,

(855!1.!! )2
2 9E

1 exp _‘6_. 1 Ey

V1 +o? 2 /1402 h?

E(z.t)

(3.8.7) |¥(z,t)?® = |A]? = A?xe?

We see that this squared amplitude has nonzero value even if the condition for
constructive interference, Eq.(3.8.6), is violated. This violation is responsible for
the finite width of the wave packet. More precisely, its shape is controlled by the
exponent E(z, t),

Bt ={ -5 ! (g%gﬁ E") £0.

2 928 2 "
2 x,t
\/1 + (%ﬁ ) Eﬂ)

The spacetime evolution of this shape is exhibited in Figure 3.8.1 on the next

page. Thus the worldline of the particle is not a sharp one, but instead has a slight
spread in space and in time. How large is this spread?
The magnitude of the wave mechanical (“non-classical”) spread in the world line is
the width of the Gaussian wave packet. This spread is Az, the amount by which one
has to move away from the maximum in order that the amplitude profile change
by the factor et from the maximum value. Let us calculate this spread under
the circumstance where the effect due to dispersion is a minimum, i.e. when ¢ is
neglegibly small. In that case the condition that E(z + Az,t) = —1 becomes

€ 9Sg(z + Az, t)
h OE

=1.

Eo

Expand the left hand side to first order, make use of the fact that (z,t) is a point
in spacetime where the wavepacket profile has a maximum, i.e. satisfies Eq.(3.8.6).
One obtains

i)
EmA.’C =h
or, in light of 8Sg(z,t)/0z = p(z,t; E),
dp
Ca—EAI = h )

and hence
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FIGURE 3.8.1. Spacetime particle trajectory (“the E(z,t) = 0 iso-
gram”) and the dispersive wave packet amplitude histories sur-
rounding it. The two mutually diverging ones (both characterized
by E(z,t) = —1) in this figure refer to the front and the back end
of the wave packet at each instant ¢t = fized, or to the beginning
and the end of the wave disturbance passing by a fixed location
z = fized. The particle and the wave packet maximum are moving

) . . OSe(z.t
with a velocity given by the slope of the E(z,t) =0 = —3};—2 .

isogram, which is the locus of constructive interference exhibited
in Figure 3.6.3

On the other hand, the convergence and subsequent divergence
(“dispersion”) of the wave packet is controlled (and expressed math-

2
ematically) by the behavior of the second derivative, 3—35%9’—'9 E of
0

the dynamical phase Sg(z,t). Whereas the behavior of its first
derivative characterizes the difference in the motion of particles
launched with difference initial conditions, its second derivative
characterizes the intrinsically wave mechanical aspects of each of
these particles.




Similarly the temporal extent At, the amount by which one has to wait (at
fixed z) for the wave amplitude profile to decrease by the factor e~!/2 from its
maximum value, satisfies the condition

€ dSg(z,t + Ot)
h OE

Eo
which become

¢ 9’8k

oFEat

)2z

At
Eq

=h

At
Eo

=h

or

AEAt = k.

The two boxed equation are called the Heisenberg indeterminacy relation.
Even though we started with the dynamical phase S (see page 38) with ¥ ~ e*
to arrive at the extremal path in spacetime, the constant /i ("quantum of action")
never appeared in the final result for the spacetime trajectory. The reason is that
in the limit

E®
the location of the wave packet reduces to the location of the wave crest. Once
one knows the dynamical phase S(z,t) of the system, the condition of construc-
tive interference gives without epprozimation the location of the sharply defined
Newtonian world line, the history of this wave crest, an extremal path through
spacetime.



