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Physical Foundations of a Theory of Gravitation'
by Albent Einstein
[Naturforschende Gesellschaft in Ziirich, Vierteljahrsschrift 58 (1914); 284—290]

By the word “mass” of a body one denotes two things that are very different
according to their definitions: on the one hand, the inertial resistance of the body and,
on the other hand, the characteristic constant that is the determining factor for the
effect of the gravitational field on the body. It is one of the most remarkable
.empirical facts of physics that these two masses, the inertial and the gravitational,

I"”‘ il o3 "Hg ag;reefgxacuj:, with cach other as regards their magnitude. This agreement was proved
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most exactly by Edtvos’s experiments. A body on the surface of the Earth is acted
upon by two generally differently directed forces, which together constitute the
apparent gravily of the body: one of these forces, the gravitation proper, depends on
the gravitational mass, while the other, the centrifugal force, depends on the inertial
mass. By experiments with the torsion balance, Edtvés established that the ratio of
these two forees is independent of the nature of the material; in that way he proved
the agreement of the two masses of a body with an accuracy that rules out deviations
of the relative magnitude of 1077,

This empirical law can also be expressed in the following way. In a gravitational
field all bodies fall with the same acceleration. This suggests the view that, with
regard to its influence on mechanical and other physical processes, a gravitational
ficld may be replaced by a state of acceleration of the reference body (coordinate

«'system). This conception does not follow with necessity from the experiments
' mentioned, but it is of great heuristic interest all the same. For, since the course of

physical processes relative to an accelerated reference system can be determined
theoretically, this equivalence hypothesis permits us to predict the influence of a
gravitational field on physical processes of cvery kind. The experimental test of the
conclusions so reached must then show whether the underlying hypothesis was
correct.

In the way indicated, one comes to the conclusion that the speed with which a
physical process oceurs in a gravitational field is greater the greater the gravitational
potential at the location where the physical system in question is situated. For that
reason, the spectral lines of solar light should, for example, experience a small shift
toward the red end of the spectrum as compared with the corresponding spectral lines

'Based on a lecture delivered on 9 September 1913 at the annual meeting of the
Schweizer Naturforschende Gesellschaft in Frauenfeld.
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of terrestrial light sources, namely, a shift of about two millionths of the wa\.-e!cnglfl,
A further consequence of this equivalence hypothesis is the bending of light ra)'s. in
a gravitational field, which amounts to 0.84 seconds of arc for a light ray passing
near the sun and is thus not inaccessible to experimental test. This bending of light
rays implies that the velocity of light is not constant, but depends, instead, on the
location. This forces us to generalize the theory of space and time, known as the
theory of relativity, since the latter was based on the assumption of the constancy of
the velocity of light. ‘

According to the familiar theory of relativity, an isolated material point moves
rectilinearly and uniformly according to the equation

b(fas) = 0,
where
ds? = ~dv? - dy? - dz? + c2dth,

and ¢ denotes the (constant) velocity of light. The equivalence hypothesis permits the
conclusion that in a static gravitational field (of special kind) a material point moves
according to the above equation, in which now, however, ¢ is a function of location
and is determined by the gravitational potential. From this special case of. the
gravitational field, one can arrive at a general case by passing to mov‘m{; coordinate
systems by means of coordinate transformation.? In this way one recognizes (h.al the
only sufficiently encompassing invariant-theoretical generalization of the indicated
law of motion consists in assuming that the “line element ds™ has the form

ds? = 3 g dv,dx, (ik = 12,34)
ik
where the g, are functions of x,, x,, x;, and x,, while the first three coordinates

characterize the position, and the last one the time, and the equation of motion is
again to have the form

5( f ds) = 0.
If one considers that in this view, instead of the customary line element of the

original theory of relativity,
ds? = ¥ dx}
i

one has the more general

2We postulate that we arrive at an equally justified description of Lh.c process if \er
refer it to an appropriately moving coordinate system; in that way we abide by the basic
idea of the theory of relativity.
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ds? = ¥ g, dx,dx,
ik

as the absolute invariant (scalar), then one sees at once how one attains a generaliza-
tion of the theory of relativity that encompasses gravitation on the basis of the
equivalence hypothesis. While in the original theory of relativity the independence
of the physical equations from the special choice of the reference system is based on
the postulation of the fundamental invariant ds? - Y dx/’, we are concerned with

L
constructing a theory in which the most general line element of the form

ds® = 3" g dx,dx,
1k

plays the role of the fundamental invariant. The concepts of vector analysis needed
for that purpose are provided by the method of the absolute differential calculus,
which will be explained in the lecture by Grossmann which is to come next,

It follows from the idea outlined above that the ten quantities g;, characterize the
gravitational field; they replace the scalar gravitational potential ¢ of Newtonian
gravitation theory, and form the second-rank fundamental covariant tensor of the
gravitational field. The fundamental physical significance of these quantities g,
consists, i.a., in the fact that they determine the behavior of measuring rods and
clocks.

The method of the absolute differential calculus allows us to generalize the
systems of equations of any physical process, as they occur in the original theory of
relativity, in such a way that they fit into the scheme of the new theory, The
components gy of the gravitational field always appear in these equations. The
physical meaning of this is that the equations provide information about the influence
of the gravitational field on processes in the region under study. The previously
indicated law of motion of the material point may serve as the simplest example of
this kind. Otherwise, we shall confine ourselves to the formulation of the most
general law known to physics, namely, the law that corresponds to the momentum
and energy conservation law in the original theory of relativity. As is well known,
one has there a symmetric tensor Tuv, the components of which, the stress
components, yield the components of the momentum, and the components of energy
flux density and energy density. These quantities can be specified for phenomena in
any domain. The laws of momentum and energy conservation are contained in the
cquations

)
) ¥ 2 o,

v

(v,o0 =1,234)

since by integrating with respect to the spatial coordinates over the whole system, one
can obtain from these equations the conservation equations
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(1) %(f?‘,‘m) =0,

where dt denotes the three-dimensional volume element. . .
In the general theory, the following equations correspond to equations (1):

A%Tov 1 08,
@ Y S T3 g Ywew

(0=1234)

uvr
Here

Tov = V8% 8 uvr
"

where g is the determinant gy |, and y, is the subdeterminant adjo%m to‘ g.m
divided by this determinant; @y is the symmetrical secund-.nmk contravariant lm:ﬁr
that characterizes the behavior of energy in the domain of ph‘cnurm:na under
consideration. The quantities Tov have the same physical meaning here asf l:c
quantity Tov in the original theory of relativity; the stress-energy components of the
gravitational field are not contained in them. . . »
The right-hand side of equations (2) vanishes if the {?unnhllcs guv are com:.t.fn -
i.c., if no gravitational field is present. In that case, cqu.:mon (2) reduces to tqua!:?:;
(1) and can therefore be brought into the form (la); in other words: the malcs.w.
process satisfies the conservation laws all by itself. If, on the conum, the g,’u. -m:
variable, i.c., if a gravitational field is present, then the right-hand side o.f cqudl‘lr‘:ﬁ‘n:‘s
(2) expresses the energetic influence of the gravitational field on l_hc malc‘rlal pru.um
It is clear that no conservation laws can be deduced from equation (2) in t]lmt case,
because the stress-energy components of the material process cannot satl‘sfy‘ any
conservation laws all by themselves, without the components of the gravitational
field. . o
The method sketched up to this point shows how the equation systems of phy.‘,nf.tj

can be obtained when the influence of a given gravitational field on the processes is
taken into account. But this does not solve the main pm_b?cm of the theory of
gravitation, since the latter consists in determining the quantities g; when El:e ::;Id—
generating material processes (including the electrical oncs}_ are to be considered as
given. In other words, the generalization of Poisson’s equation

(3) Ay = dwkp

Ig : . .

) Soct;lbthlll.w one hand, the proportionality of energy and inertial mass that is uhta.uf]crd
from the ordinary theory of relativity, and, on the uther' hand, lht_e cll['l]fl:"l:;dE
proportionality of inertial and gravitational mass ]tl.‘iid necessarily to Lhnf \Tlct\iv‘l a m:::
same quantities that determine the energetic behavior of a system must also ; em 2e
the gravitational effects of the system. From 1]11:- ‘wc Iconcludc lhalfe:nsor ; pvu::ilo.“
appear in equations of gravitation we are secking, in licu of the density p of eq
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(3). We are therefore looking for equations that express the equality of two tensors,
one of which is the given tensor Tuv, while the other comes from the fundamental
tensor guv through differential operations.

It has now tumed out that the conservation laws of momentum and energy make
possible the derivation of these equations. It has already been emphasized above that
the material process alone cannot satisfy the conservation laws; but we must demand
that the conservation laws be satisfied for the material process and the gravitational
field rogether. According to the arguments presented above, this means thai there
must exist four equations of the form

“ E az @ov + tov) = 0.

Here the tov characterize the stress-energy components of the gravitational field in
a manner analogous to the way in which the quantities Tov characterize those of the
material process. In panicular, the quantities Tov and tov must have the same
invariant-theoretical character. It turmned out to be possible to show by means of a
general argument that the equations that completely determine the gravitational field
cannat be covariant with respect to arbitrary substitutions. This fundamental discovery
is especially noteworthy because all other physical equations, such as, e.g., equations
(2), possess general covariance. In accordance with this general result, the postulated
cquations (4) are also covariant only with respect to linear substitutions, but are not
so with respect to arbitrary substitutions, Hence, we will have to demand covariance
only with respect to linear transformaticns from the gravitation equations that we are
sceking. It has turned out that one is led to completely determined equations if one
adds to these considerations the demand that when these equations are applicd to the
relevant special case and an approximate solution is sought, they must yield Poisson’s
equation (3). Using the way indicated, one cbtains the following equations:

(0 =1234)

- 8 ri— 01,

(0) -%‘ br, (' T3 Va3 Gas '6%) v ﬂ(z,"-.“‘t.,,): @retag
Here

6) —2x.f v O, Oy 1 8gr. Oy,

6) —2x.4, =y y(I%'rﬂ. BVze Tay ~ T e Pun ass);

K is a universal constant that corresponds to the gravitational constants; &y is 1 or
0, depending on whether ¢ and v are different or equal.

One can see from the system of equations (5), which corresponds 10 equation (3),
that along with the stress-cnergy components Lov of the material process, those of
the gravitational field (namely, tov) appear as an equivalent ficld-inducing cause, a
circumstance that obviously must be demanded; for the gravitational effect of a
system may not depend on the physical nature of the system’s field-producing encrgy.
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. . threc-
Since only lincar substitutions are admissible, ccnau_l one-, t\\«:u-t,mzim](:t linc::
dimensional manifolds are privileged, which may be designated as straig R
4 i es.
p|m$l;eanthflecl:rl;e:rlces::al:d here overcomes an epistemological defect that ::‘t‘acul;s not
igi ivil Galilean mechanics, t was
the original theory of relativity, but also to c
::ly litlly strmsedg by E. Mach. It is obvious that one‘ cannot ascribe ua: ab::l:al:
meamnpec' g 1o the concept of acceleration of a material point, no more t_soed a:o,-e o can
ascribe it to the concept of velocity. Acceleration ca.n o.nly be defin o ladve
acceleration of a point with respect to other bodies. Thlstcma:m:‘t;n:l:;::m o
. . o
tsimlascnbetoabodyarcslswnce_ : lerat
semtla:‘:c o‘:' the lfo:l'y in the sense of classical mechanics); mst.ead, it will ham:luii t:
mnded that the occurrence of an inertial resistance be linked ‘f’ lhlc n:at ve
acceleration of the body under consideration with respect to b:tl}er bodies. b; mhl:, e
L, . 1
that the inertial resistance of a body cou : .mcreased havir
dcn::a:e‘li:;ted inertial masses arranged in its vicinity; and this mcwase. of the b:l:ru.';:
gaislance must disappear again if these masses ncceler:te along w‘;:u‘hl t::elaﬁw ;" o
i i ineti istance, which we may
tumns out that this behavior of inertial resis! ce, . 2
inertia, actually follows from equations (5). This circumstance constitutes cne o

strongest pillars of the theory skeiched.
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