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Translation by Thomas Sinha

1 Exterior Differential Forms (see E. Cartan, Lectures on

Integral Invariants, 1922)

1.1 181

We consider differential forms with exterior multiplication, (or briefly ”exterior differential forms”),
which are the forms which occur under the sign in multiple integrals. They obey certain rules of
calculation which we will here indicate.

Take for example, in ordinary space of three dimensions, a double integral considered over a
portion of the surface:

I =

∫∫

P dy dz +Q dx dz +R dx dy

In the differential form:
m = P dy dz +Q dz dx+R dx dy ,

the terms dy dz, dx dz dx dy are not ordinary products. If we express the coordinates of a point
on the surface of integration as a function of two parameters, α and β, we can regard α and β
as the coordinates of a point in another plane; the integral can then be reduced as an ordinary
double integral considered on a certain region of this plane. To perform this reduction, we replace
respectively the symbols

dy dz, dz dx, dx dy

with the quantities:
D(y, z)

D(αβ)
dα dβ,

D(z, x)

D(αβ)
dα dβ,

D(x, y)

D(αβ)
dα dβ

We see as a result that dy dz must not be confused with dz dy, which must be regarded as equal
and opposite of dy dz.

We want to present these things in a suitable manner. We introduce two differentiation symbols
d1 and d2, and pose that:

d1u =
∂u

∂α
dα, d2u =

∂u

∂β
dβ
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These two differentiation symbols commute. With this notation, we have:

dy dz =

∣

∣

∣

∣

d1 y d1 z
d2 y d2 z

∣

∣

∣

∣

, dy dz =

∣

∣

∣

∣

d1 y d1 z
d2 y d2 z

∣

∣

∣

∣

, dx dy =

∣

∣

∣

∣

d1 x d1 y
d2 x d2 y

∣

∣

∣

∣

The quantities dy dz, dz dx, dx dy are products, but with respect to exterior multiplication (Grass-
mann multiplication), the sign of the product changes when we change the order of the factors.

We could more generally introduce any two differentiation symbols, d1 and d2, which are inter-
changeable. If the results of the operations d1 and d2 are infinitesimally small, we can decompose
the surface of integration in a network of tiny, curvilinear paralellograms, each of which would have
respectively:

x, y, z

x+ d1x, y + d1y, z + d1z

x+ d1x+ d2d1x, y + d1y + d2d1y, z + d1z + d2d1z

x+ d2x, y + d2y, z + d2z;

and the integral would become the sum of the quantities:

P (d1y d2z − d1z d2y) +Q(d1z d2x− d1x d2z) +R(d1x d2y − d1y d2z)

Taken over all of these elementary parallelograms. In fact, these quantities dy dz, dz dx, dx dy
behave like the components of a simple bivector.

We will make it a convention, to avoid any confusion, to put an exterior product in square
brackets when such a product is not found under an integration sign (c.f. §45, 147, 160, 163,
178). [Aside: we instead, in modern parlance, would use the wedge product].

1.2 182

The previous considerations on multiple integrals are understood in any number of dimensions and
lead to sums of terms such as:

Λ[dx1 dx2 ...dxp]

The exterior product in square brackets is in place of a determinant of order p involving p inter-
changeable differentiation symbols. Such a product changes sign when one exchanges two of the
factors with each other (the coefficient Λ naturally is not considered as a factor from this point of
view).

Given two differential forms, ω1 and ω2, one of order p and the other of order q, we define the
exterior product [ω1ω2] of these two forms as a p+q form obtained by doing, in any way possible, the
exterior product of the first form by the second, and respecting the order in which the differentials
are presented. So, for example, suppose we have:

ω1 = aidx
i, ω2 = bij[dx

idxj]

We will have:
[ω1ω2] = aibjk[dx

idxjdxk]
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1.3 183

There are a whole series of important formulas that allow us to transform a multiple integral of
order p over a closed domain into a multiple integral of order p+1 over a domain which has the
first domain as a boundary. The simplest of these formulas, given by Cauchy/Green, is

∫

Pdx+Qdy =

∫∫
(

dQ

dx
− dP

dy

)

dxdy (1)

Next comes Stokes’ Equation:
∫

Pdx+Qdy +Rdz =

∫∫
(

dR

dy
− dQ

dz

)

dydz +

(

dP

dz
− dR

dx

)

dzdx+

(

dQ

dx
− dP

dy

)

dxdy (2)

Then the Odstrogradsky formula:
∫∫

Pdy dz +Qdz dx+Rdx dy =

∫∫∫
(

dP

dx
+
dQ

dy
+
dR

dz
dx

)

dy dz (3)

In spaces of more than three dimensions, there exists analogous formulae.
The operation which permits the formation of these formulae can be presented in a very simple

form. Take first the case of a simple integral
∫

ω(d) over a closed contour (C). Let (S) denote the
differential form dω under the double integral sign; we call this the exterior derivative of the form
omega.

We remark that if the exterior derivative of ω is 0, then omega is an exact differential.
To transform, now, a double integral to a triple integral, we introduce in the three dimensional

domain of integration, 3 interchangeable differentiation symbols, so we are permitted to decompose
it into a network of elementary parallelopipeds. We will demonstrate that the double integral (

∫∫

ω)
over the surface of the boundary of these parallelopipeds is equal to

d1ω(d2, d3)− d2ω(d1, d3) + d3ω(d1, d2)

Let Adx dy be the terms of ω. We can easily verify that:

d1

(

A

∣

∣

∣

∣

d2x d3x
d2y d3y

∣

∣

∣

∣

)

+ d2

(

A

∣

∣

∣

∣

d3x d1x
d3y d1y

∣

∣

∣

∣

)

+ d3

(

A

∣

∣

∣

∣

d1x d2x
d1y d2y

∣

∣

∣

∣

)

=

∣

∣

∣

∣

∣

∣

d1A d2A d3A
d1x d2x d3x
d1y d2y d3y)

∣

∣

∣

∣

∣

∣

As a result, we have
∫∫

Adx dy =

∫∫∫

dAdx dy

In general, if
ω = Aij dx

i dxj

We have:
∫∫

ω =

∫∫∫

dAij dxi dxj =

∫∫∫

dω

dω designates the exterior derivative of the form ω.
The process of exterior differentiation indicated for forms of order 1 and 2 extends to forms of

any order: the exterior derivative of the form:

ω = A[dx1 dx2 ...dxp]

is
dω = [dAdx1 dx2 ...dxp]

It is a convention that we can do this, which will be furthered at the end of (185).
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1.4 184

The integrals which appear in the formulas of Green, Stokes, and Ostrogradsky, are cast in a general
form in the relation:

∫

ω =

∫

dω

Where ω is a p-form, and the second term is considered in a domain of the space, D, of p+1
dimensions, the first is a closed set V in p dimensions which limits this domain. This doesn’t make
sense if D is not an oriented domain of which the closed set V is the limit. We can orient the domain
in convention that a certain (p+1)-hedron formed by p+1 independent vectors {e1, e2, ...ep+1} from
a fixed point is directed; the set V is oriented in a coherent manner by sending each point M in
V to a vector e′ outside of the domain D and p vectors {e′1, e′2, ...e′3} tangent to V such that the
(p+1)-hedron formed by {e′, e′1, e′2, ...e′p} is directed; then the orientation of V will then extend from
the p-hedron formed by the vectors {e′1, e′2, ...e′p}. One can easily verify Greens’ formula (and Stokes’
as a generalization) is valid with the preceeding conventions, the same holds for Ostrogradsky’s.
For example, in the case of Green’s formula, if one orients the area of the xy-plane which extends
to the double integral counterclockwise, the the integral

∫

Pdx + Qdy over a contour, simple or
multiple, from the area which is in the direction of an observer who is looking at it from the left.

1.5 185

The exterior differentiation has certain very simple properties. Take ω to be any differential exterior
form, dω is its exterior derivative, and m is a given scalar function of the variables. We have:

d(mω) = m dω + [dm ω] (4)

In fact, if we take omega to be any term such as:

A[dx1...dxp]

Then this corresponds with mω as
mA[dx1...dx+ p]

Then obviously the exterior derivative is

m[dAdx1...dxp] + A[dmdx1...dxp]

The addition of all analogous terms demonstrates the theorem. A more general formula is the
following. Take ω1 and ω2 as two exterior differential forms, with respective order p and q. We
consider the form [ω1ω2] of order p+q. Let

A[dx1...dxp], B[dy1...dyq]

Be ω1 and ω2, respectively. Then the corresponding term [ω1ω2] is

AB[dx1...dxp dy1...dyq]

The exterior derivative of this is:

B[dA dx1...dxp dy1...dyq] + A[dB dx1...dxp dy1...dyq]
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The second term can be written as:

(−1)pA[dx1...dxp dBdy1...dyq]

Which results in the formula:

d[ω1ω2] = [dω1ω2] + (−1)p[ω1dω2] (5)

which generalizes for the product of any number of factors. This generalizes the normal rule for
differentiating a product.

We can now demonstrate the operation of exterior derivation, as it has been defined in the
general case at the end of 183, is covariant for all changes of variables, in the sense that if we
switch the variables xi with the variablesyi, and if for this change of variables the form ω(x, dx)
transforms to ψ(y, dy), the exterior derivative dω calculated with respect to independent variables
xi transforms to dψ calculated with respect to the independent variables yi. In effect, the term
A[dx1...dxp], considered using the variables xi, has exterior derivative equal to [dAdx1dx2...dxp],
according to the product rule of differentiation, and because the factors dx1 dx2...dxp are exact
differentials, so their exterior derivative is 0 (183).

1.6 186

There is an important theorem, from Henri Poincare, on successive exterior derivatives of any
differential form. The second exterior derivative is exactly 0. In the case where we’re in ordinary
space and where we start with a linear form:

m = Pdx+Qdy +Rdz

The theorem is evident. Consider as an example any closed surface (S) and the integral
∫∫

dω
extended over this closed surface. Lets split up this surface into two parts, (S1) and (S2) by a
closed contour (c). The integral

∫∫

dω over (S1) is equal to the integral
∫

ω on the curve (C),
integrated in one direction, and the integral

∫∫

dω over (S2) is equal to the integral
∫

ω on the
curve C integrated in the opposite direction. The result is that the integral over the whole surface
must be 0, regardless of the surface considered. The exterior derivative dω is then identically 0.

The analytic demonstration of this is quite simple. Take

A[dx1dx2...dxp]

To be the given ω; the term corresponding to dω is then:

[dAdx1...dxp]

To take the exterior derivative of this form, we need to can regard it as the exterior product of p+1
factors, each of which is an exact differential: The exterior derivative of this product is therefore
null.

This theorem of Poincare’s admits a reciprocal, but we will not use it.

2 Tensorial Differential Forms

2.1 187

Besides scalar differential forms, as we have considered so far, it is necessary to consider tensorial
differential forms. Lets start in Euclidean space with a fixed cartesian coordinate system. Consider
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an integration domain in p dimensions, at each point of which we attach an infinitesimally small
tensor, the components of which are taken to be a differential form of degree p. If, for example, the
tensor is mixed in two indices, each of these components is a differential form ωi

j. The geometrical
sum of all of these infinitesimal tensors becomes a tensor of the same form as the components of
∫

ωi
j. We will be able to exterior differentiate this tensorial differential form, the exterior derivative

of ωi
j becomes dωi

j

2.2 188

If the euclidean space is given any curvilinear coordinates, there exists a Cartesian representation
of each point in the space. To obtain the absolute exterior derivative of a contravariant vectorial
form ωi, we can introduce a uniform vector field with components Xi and consider the sum Xiω

i;
the exterior derivative of such a sum, which is a scalar, is:

Xidω
i + dXkω

k = Xi(dω
i + [ωi

kω
k])

The absolute exterior derivative is found to be:

Dωl = dωl + [ωl
kω

k] (6)

We obtain the analogous expression

Dωl = dωl − [ωk
l ωl] (7)

And, more generally, for a tensorial form with two indices:

Dωi
j = dωi

j − ωl
kωj

k + ωj
kω

k
l (8)

We note that, in the case of ordinary tensors, the absolute derivative of a product is obtained by
applying the product rule, but we replace ordinary differentiaion with absolute differentiaion.

We have, for example:

D[ai
j
kdu

k] = [Dai
j
kdu

k], D[ωiyl] = [Dωiyl] + (−1)p[ωiDyl]

Where p is the degree of the form ωi

2.3 189

Now lets place ourselves in a Riemannian Manifold. If we take any integration domain in this
space, the geometric sum of infinitely many infinitesimal tensors (for example, vectors) at each
point of the domain does not make sense. But if the domain of integration is the entire infinitesimal
neighborhood of the point A in the Riemann space, we can substitute a linear element of the
Riemann space with a linear element of the Euclidean space resembling A, then the tensorial integral
makes sense, and the integrand, which is a tensor at the point A, is independent of the Euclidean
metric we chose.

In particular, suppose we have a p+1 dimensional integration domain which has a p-dimensional
boundary. The tensorial integral of the element dωi

j over this boundary is equal to the integral of the
element Dωi

j over the given domain;, or, at the point A, the coefficients of Dωi
j do not involve the

euclidean metric, but rather the coefficients Γi
j
k, which are the same as in the Riemannian metric.

So we can define a tensorial integral over a infinitesimal domain on a Riemannian manifold, and the
operation of absolute exterior differentiation is done according to the same laws as Euclidean space.
The previous related theorems on the exterior derivative of a product extend also to Riemannian
Manifolds.

6



2.4 190

Take for example the vectorial integral integral dM considered on a very small loop. We have here
that:

ωi = dui

Dωi = [ωi
kdu

k] = −1

2

(

Γh
i
k − Γk

i
h

)

[duhduk] = 0

As a result, the geometric sum of vectors ~MM ′ which join a point of the cycle to a point in the
neighborhood is 0. This result can be related to the previous chapters considerations. In effect, it
proves if we develop a cycle in Euclidean space, the geometric sum of vectors ~MM ′ is 0, so, as a
result, the displacement associated with a infinitesimal cycle of any form reduces to a rotation.

3 Bianchi Identities

3.1 191

By the formulas given in (160) and (163), we are given the forms Ωi
j or Ωij which define the

Riemann Curvature:
Ωi

j = dωi
j − [ωi

kωk
j] (9)

Ωij = dωij − [ωikωj
k] (10)

We take the exterior derivative of both terms in equation 9; we obtain, taking into account the
equation itself, the new relation:

dΩi
j = −[Ωk

i ω
j
k] + [ωk

i Ω
j
k] (11)

If we go back to equation 8, we see that the equation 11 implies that the absolute exterior derivative
of the differential tensorial form Ωi

j is 0, so we write:

DΩi
j = 0 (12)

As the form Ωi
j is of 2nd degree, DΩi

j is of degree 3, and the relations (12) can be expressed, with
the notation of absolute differential calculus, in the form:

Ri
j
αβ|γ +Ri

j
βγ|α +Ri

j
γα|β = 0 (i, j, α, β, γ = 1, 2, ...n) (13)

These relations, which only translate the equations (12), constitute what we call the Bianchi Iden-
tities.

The tensorial form Ωij , being simply the form Ωi
j written in covariant form, also has absolute

exterior derivative 0, which gives the identities:

Rijαβ|γ +Rijγα|β +Rijβγ|α = 0 (14)

Which can be deduced directly from equation (13).
The tensor Ωij, or rather the negative tensor −Ωij, represents the bivector which defines the

rotation associated with an element of the surface of the space. We deduce immediately from this,
and from (189), the geometric significance of these Bianchi Identities:

If one considers an elementary domain in three dimensions of space, the bivectors which represent

the rotations associated with elements of the surface which limits the volume, have geometric sum

0.
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4 Poincare’s Theorem on Riemannian Manifolds

4.1 192

We have seen in (186) that the second exterior derivative of a form is exactly 0; this is the theorem
of Poincare. This theorem is obvious in Euclidean space, on any differential tensorial form. It’s not
the same in general on a Riemannian Manifold. Take, to fix this idea, a vectorial differential form
with components ωi. The absolute exterior derivative (188) is:

Dωi = dωi + [ωk
iωk]

Take another absolute exterior derivative:

D2ωi = d(Dωi) + [ωk
iDωk]

This calculation immediately gives us:

D2ωi = [Ωk
iωk] (15)

We see here we’ve introduced the Riemann curvature of the space, which prevents in general the
second absolute exterior derivative of ωi from being 0.

The following exterior derivatives then give:

D3ωi = [Ωk
iDωk]

D4ωi = [Ωk
hΩh

iomk]

We have analogous expressions starting with any tensorial form. If in particular, if ωi = dui, the
absolute exterior derivative Dωi is is 0, the second derivative is likewise also 0, and as a result, we
have from (15):

[dukΩk
i] = 0 (16)

This relation restores Equation (13), which restricts the components Rk
i
hl, Rh

i
lk, Rl

i
kh of the

curvature tensor; in this sense it may be regarded as a demonstration of Equation (13).
Another interesting application of (15) is obtained by taking for ωi a field of ordinary contravari-

ant vectors X i. Consider a cycle (C) limiting an infinitesimal area, that is to say, all of the points
are infinite neighborhoods of a point A. The integral

∫

DX i over this cycle is equal to the double
integral

∫∫

XkOmk
i, considered over the area. If the area is equivalent to an infinitesimal bivector

pij, we have the relation:
∫

(C)

DXℓ =
1

2
Rk

l
rsp

rsXk

From remark 2 from (158), we can deduce that the geometric variation ∇X i due to the rotation
associated with the cycle is

∇X i = −1

2
XkRk

i
rsp

rs

The mixed components ai
j of a bivector which represents this rotation are therefore

ai
j = −1

2
Ri

j
rsp

rs
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This result is identical to the one found in formula 6 in (162), demonstrated in the particular case
where the cycle is an infinitesimal parallelogram. We now observe that this result is valid for all
infinitesimal cycles, regardless of its form.

Remark: In the formula which gives the covariant exterior derivative of a tensorial form, we
deduce that the derivative is 0 if the bivectorial form of the forth degree [Ωi

kΩk
j] is 0. This will be

trivial if the space is in 2 or 3 dimensions. One can easily verify that this will still hold if the space
is any number of dimensions, and has constant curvature.

5 The Vectorial Curvatures and Their 1st Representation

5.1 193

Returning to the geometric interpretation of the Bianchi Identities. They express (191) that if one
considers an element in three-dimensional space, the geometric sum of the bivectors which represent
rotations associated with the elements of the surface of the boundary of the domain are 0.

The bivectors in the above statement are free bivectors. Lets see what happens if we consider
applied bivectors (19). For each element of the surface there is an associated applied bivector.

1

2
[Meiej]Ω

ij

The geometric sum of all of these applied bivectors is a free trivector; the first is null by the Bianchi
identites, so there remains only the free trivector. The integral

∫∫

1

2
[Meiej]Ω

ij

evidentally gives, by absolute exterior differentiation, the free trivector:

∫∫∫

1

6

(

duiΩjk + dujΩki + dukΩij
)

[eiejek]

We will agree to say the trivector with components:

Ωijk = [duiΩjk] + [dujΩki] + [dukΩij ] (17)

Or rather, its negative, represents the trivectorial curvature at the 3-dimensional point considered.
The tensor provided with these coefficients has six indices, with

Rijk
ijk = Rjk

jk +Rkl
kl +Rij

ij

Rijk
ijh = Rjk

jh +Rik
ih

Rijk
ihl = Rjk

hl

Rijk
hlm = 0 (i, j, k, h, l,m distinct)

In these formulas, there is not a sum over twice repeated indices, they instead have their values
fixed.
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5.2 194

Consider now (n ≥ 4) an elementary domain in 4 dimensions of space and the free trivectorial
curvature of the elements of its three- dimensional boundary. Their geometric sum will be given by
the absolute exterior derivative of the form Ωijk; It is null, because the forms dui and Ωjk have 0
derivative. So the geometric sum of the free curvature trivectors of a boundary of an infinitesimally
small domain in 4-dimensions is 0.

If we instead consider the applied curvature trivectors, it is no longer the same, and we obtain
a quadrivector with components:

Ωijkh = [duiΩjkh]− [dujΩikh] + [dukΩijh]− [duhΩijk]

= 2{[duidujΩkh] + [dujdukΩih] + [dukduiΩjh] + [duiduhΩjk] + [dujduhΩki] + [dukduhΩij ]}
(18)

This quadrivector, or rather half of its negative, may be regarded as defining the free quadrivec-
torial curvature of an element in four dimensions of space.

We can see how we can continue these operations and gradually define the (applied or free)
p-vectorial curvature in a p-dimensional space. We have the following theorem:

Theorem: Given an infinitesimal domain in a p-dimensional Riemannian manifold, the geo-
metric sum of the free (p-1) vectorial curvatures on the boundary are 0; the geometric sum of the
applied (p-1) vectorial curvatures of the same elements is equal, up to a numerical factor, to the
free vectorial curvature on the domain.

5.3 195

Notice in particular what happens for an infinitesimal domain in n-1 dimensions. The n-1 vectorial
curvature has components:

Ωi1i2...in−1 = [dui1...du
i
n−2Ω

in−2in−1 ] + ....

We have here

R
i1i2...in−1

i1i2...in−1
=

1

2
R

iαiβ
iαiβ

R
i1i2...in−2in−1

i1i2...in−2in
= R

kin−1

kin

In the left hand side of the above, there is not a sum on repeated indices; on the right-hand side
however, iα and iβ in the first equation are summed over all values of α, β up to n. In the second
equation, on the right-hand side, k takes the values 1,2,...n.

We orient the space and designate by lidσ the covariant components of an vector additional
to the n-1 dimensions considered. Likewise, designate qidσ as the vector additional to the (n-1)
vectorial curvature of the given point.

We have, by denoting R = Rkh
kh

qi =
1

2
liR−Rikl

k (19)

It’s introduced as well as the Riemannian curvature scalar R and the contracted curvature tensor
Rij (180). These formulae can be interpreted in the following manner.

Consider, in the tangent space at a point in the manifold, the quadric having the point at its
center with the equation:

SijX
iXj =

1

2
RgijX

iXj −RijX
iXj = 1

10



We call this the Einstein quadric. The curvature of the element in (n-1) dimensions of magnitude
dσ may be represented by a vector qidσ with:

qi = Sikl
k (20)

The lks denote the contravariant components of a unit vector normal to the given element. We
see that the vector is normal in the hyperplane diametrically conjugate to the direction li with
respect to the Einstein quadric. The general theorem (194) we interpret as the geometric sum of
vectors which represent the curvature of the elements of a boundray of an infinitesimal domain in
n-dimensions is 0. Analytically, the theorem can be expressed in writing as the divergence of the
tensor Sij is 0 or:

Si
k
|k = 0

These are, for n=4, the equations which in Einstein’s theory express the theorem of the conservation
of momentum and energy. The vector which represents the curvature of an element in 3-dimensions
of space (space-time) represents nothing else, in fact, than the momentum and energy contained
within that element.

We remark that the formulas (19) give, as a specific case, the formulas (16) found to represent
the curvature of a 3-dimensional space.

5.4 196

The principle directions of Ricci (180) are at the same time the principle directions of a Ricci Cone
and of the Einstein quadric. It is easy now to demonstrate a general theorem of Ricci and that we
have already considered in the case of 3 dimensions (171).

Imagine a total geodesic variety Vn−1. The normal of this variety remains normal when it is
displaced parallel along any path traced in the variety; as a result, the rotation associated with any
cycle in the variety leave this normal fixed. The bivector associated with such a cycle is entirely
tangent to the variety. It follows immediately that the trivector associated with an element in three
dimensions of the variety is itself also entirely tangent to Vn−1, since it is a sum of simple tangent
trivectors. The reasoning extends the same to an element of Vn−1 in any number of dimensions. In
particular, the (n-1)-vector which represents the curvature of an element in n-1 dimensions of Vn−1

is tangent to Vn−1, and supplementary vector qidσ is normal in Vn−1, that is to say, normal to the
element. The normal is therefore a principal direction of the Einstein quadric, that is to say, of the
space.

6 The Vectorial Curvatures and Their 2nd Representation

6.1 197

We have in the previous section, defined the Riemann curvature of an element in p-dimensionial
space and represented said curvature by a p-vector. There is a second way of representing this
by means of an additional (n-p)-vector, which we cannot take to be free or applied. This second
representation supposes a pre-existing orientation of the space. We have already used this for p =
3 (169) and p = n-1 (193).

If we take free (n-p)-vectors, the theorem given in (194) is expressed as the sum of free (n-p)-
vectors which represent the curvature of the elements of a boundary of a infinitesimal domain in
p+1 dimensions is 0. It is very remarkable that, contrary to what we found in the previous section,
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the geometric sum of the same applied (n-p)-vectors is also 0. It will suffice to demonstrate this for
p = 4; n = 7.

Take Θ123 = 1√−g
Ω4567, the components of a trivector attached to an element in 4-dimensions of

space. The free 4-vector represents the geometric sum of applied trivectors on a small domain of 5
dimensions with components Θ1234. In the expression

Θ1234 = [du1Θ234]− [du2Θ134] + [du3Θ124]− [du4Θ123] = − 1√−g [du
kΩk567]

Each of the terms which compose Ωk567 has a factor of the form ωk = gkhdu
h, or of the form

Ωki (i = 5, 6, 7), or the sum
dukωk = gkh[du

kduh]

is nulle, so that the sum
[dukΩki]

iS 0 by equation (16). This proves that the different components of Θijkh are all 0. QED.

6.2 198

In the particular case of p = n-1, the previous theorem expresses that the vectors which represent
the curvature of elements of a boundary of an infinitesimal domain in n-dimensions can be regarded
as a system of forces in equilibrium.

For n = 4, this theorem completes the physical interpretation of Einstein’s gravitational equa-
tions: The vectors which represent in mechanics the quantity of ”momenergy” are in effect the
applied vectors and not the free vectors.

For n = 3, the theorem can take a remarkable mechanical form.
Take A to be a point in a 3-dimensional Riemannian manifold. Attach to this point a rectangular

coordinate patch and consider the small domain around the point A. The components pdσ, qdσ and
rdσ of a vector attached to an element of surface of the boundary of the domain have the form

p = K11α +K12β +K13γ

q = K21α +K22β +K23γ

r = K31α +K32β +K33γ

Where α, β and γ designate the guiding cosines of the normal of the element. These formulas are
identical to the ones expressing the elastic forces in a continuous medium. We have, therefore, the
following theorem:

If one imagines a Riemannian Manifold in three dimensions like a continuous medium then
elastic pressure that is exerted on each element of the surface is equal to a vector which represents
the Riemann curvature of that element, and this medium is in equilibrium under the action of
elastic forces.

7 F. Schur’s Theorem

7.1 199

The previous considerations lead us to naturally what becomes of these theorems relative to the
vectorial curvature for an space which is isotropic at each of its points.
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In this case of rotation associated with an element of the surface is reduced to a bivector
tangent to that element and equal to the product of that element by a scalar K. The contravariant
components of this bivector are:

−Ωij = K[duiduj]

This has 0 absolute exterior derivative, and by noticing that the tensor [duiduj] is itself 0 (190), we
obtain:

[dKduiduj] = 0

If n ≥ 3, all of the derivatives ∂K
∂uk are 0, therefore K is constant. We have the following theorem,

from F. Schur
Theorem: If a Riemannian Manifold of n ≥ 3 dimensions is isotropic at each of its points, it

has constant curvature.

7.2 200

There exists a more general theorem for n = 4, from G. Herglotz, on spaces whose principle
directions are completely indeterminate, that is to say, for those where the Einstein Quadric is a
hypersphere. These spaces are still characterized by the constancy, at each point, of the curvature
in different directions in n-1 dimensions.

For a space with this property, the (n-1)-vectorial curvature of an element in n-1 dimensions is
represented by an (n-1)-vector situated in the same n-1-plane of that element and proportional to
that element; the contravariant components are of the form:

Ωi1i2...in = H[dui1du
i
2...du

i
n−1]

The absoulute exterior derivative of the tensorial form is found to 0, and as a result, H is a scalar:

[dHdui1du
i
2....du

i
n−1] = 0

Where if
∂H

∂uiα
= 0

The curvature H is thereby constant. We have moreover

Sij = Hgij =
1

2
Rgij −Rij

Where:
Ri

j = 0 (i 6= j)

Ri
i = Rik

ik =
1

2
R−H

Where the index i in the last formula is not a summing index. If we now sum over i, we obtain

R = n

(

1

2
R−H

)

H =
n− 2

2n
R

The Riemannian curvature scalar is therefore constant.
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The preceeding theorem reduces, for n = 3, to the theorem of Schur. It is to be compared to
the Hydrostatic Theorem according to which a perfect fluid in equilibrium under the action of the
only elastic forces behaves, under constant pressure.

We’ll end with an interesting remark. If the curvature of a Riemannian Manifold is 0 in p
dimensions at a point, the Riemann-Christoffel tensor at that point has all zeros as its components.
An exception is made if p = n-1, the hypothesis leads to n(n+ 1)/2 relations:

Rij = 0,

Which expresses that the contracted curvature tensor is 0. The spaces for which these relations
are always verified have 0 curvature, but only in the n-1 directions in n dimensions. That’s whats
happening in Einstein’s theory for an empty spacetime, where there is no momentum nor any energy.
We give the name Einstein Spaces for spaces for which Rij = 0.
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