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1 The Problem

Suppose we are given a polygon in the plane or a polyhedron in space. If we
label the unit normal to the k different edges (faces) of this polygon (polyhe-
dron) n̂1, n̂2, ..., n̂k and define ~ni = αin̂i, where αi is the length (area) of the

corresponding edge (face), then show that
∑k
i=1 ~ni = 0.

2 The Solution in Two Dimensions

Call the area enclosed by the polygon R, and the polygon itself (oriented coun-
terclockwise) ∂R. We will relabel the αi as li to indicate that these are edge
lengths in the 2-D case. Suppose we define a constant (non-zero) vector field
~F . Now one formulation of Green’s Theorem in the plane–utilizing the 2-D
divergence rather than the so-called scalar curl–is stated as:

¨
R

div(~F ) dA =

˛
∂R

~F · dn̂.,

where n̂ is the outward-pointing normal. Now since ~F is constant, its divergence
is zero; thus, the left-hand side of the above theorem is zero, and we will reason
from the right-hand side to obtain the desired identity. Calling the ith oriented
edge of our polygon ∂Ri, we see that ∂R decomposes into the union ∂R =⋃k
i=1 ∂Ri and hence

˛
∂R

~F · dn̂ =

k∑
i=1

ˆ
∂Ri

~F · dn̂ =

k∑
i=1

ˆ
∂Ri

~F · n̂i ds.

Since both ~F and the unit outward normal n̂i are constant along each edge ∂Ri,
we can bring this portion out of the integral to obtain

˛
∂Ri

~F · dn̂ = ~F · n̂i
ˆ
∂Ri

ds,
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where
´
∂Ri

ds = li, the length of the edge ∂Ri, and ~F · n̂i = ‖~F‖ cos θi, where

θi is the angle that the vector ~F makes with the vector n̂i in the plane. Thus,
our original integral becomes

˛
∂R

~F · dn̂ =

k∑
i=1

‖~F‖li cos θi = ‖~F‖
k∑
i=1

li cos θi,

where we have taken ‖~F‖ out of the sum because ~F was assumed to be constant
everywhere. Now we know from before that this expression must equal zero,
and we assumed ~F nonzero, so we conclude that the sum must be zero:

k∑
i=1

li cos θi = 0,

regardless of our choice of ~F . Let us choose, then, two different possibilities for
the vector field ~F and see what happens. First, take ~F = î, the unit vector
the x-direction. Then the angle θi is precisely the angle that n̂i makes with the
x-axis, so that li cos θi is the component of the length-scaled vector ~ni in the
x-direction. Thus our sum becomes

k∑
i=1

(~ni)x = 0.

Similarly, if we take ~F = ĵ, the unit vector in the y-direction, we obtain

k∑
i=1

li cosφi = 0,

where φi is the angle that the vector n̂i makes with the y-axis, or if we express
it in terms of θi from before, we have cosφi = cos (θi − π

2 ) = cos (−(π2 − θi)) =
cos (π2 − θi) = sin θi, yielding the analogous identity

k∑
i=1

li sin θi =

k∑
i=1

(~ni)y = 0.

Now the vector ~ni is simply the sum of its components: ~ni = (~ni)xî+ (~ni)y ĵ, so
we finally obtain the identity

k∑
i=1

~ni =

k∑
i=1

(~ni)xî+

k∑
i=1

(~ni)y ĵ = 0̂i+ 0ĵ = 0

as was to be shown. �
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3 The Solution in m Dimensions

Suppose we now have a polytope in Rm whose interior region we label D and
whose boundary we label ∂D, consisting of (m− 1)-facets, or just facets, as we
shall refer to them. Suppose also that for the ith facet, we call ~ni = hin̂i the
outward-facing normal vector to this facet and hi is the (hyper)volume of the

facet. Then, defining the divergence of a vector field ~F to be

div(~F ) =

m∑
i=1

∂Fi
∂xi

,

we have the analog of the divergence theorem in Rm to be
ˆ
D

div(~F ) dH =

˛
∂D

~F · dN̂,

where it is understood that dH is an infinitesimal m-volume element and dN̂
is the infinitesimal outward pointing normal to ∂D. As before, if we define ~F
to be constant everywhere, then the expression on the left-hand side is equal to
zero. Labelling the k different facets of our polytope ∂Di, we have:

˛
∂D

~F · dN̂ =

k∑
i=1

ˆ
∂Di

~F · dN̂

=

k∑
i=1

ˆ
∂Di

(~F · n̂i) dH,

where dH is now an infinitesimal (m− 1)-volume element, and since ~F and n̂i
are constant along a facet, this is

k∑
i=1

(~F · n̂i)
ˆ
∂Di

dH

=

k∑
i=1

‖~F‖hi cos θi,

because ~F · n̂i = ‖~F‖ cos θi, where θi is the angle between the vectors ~F and n̂i,
and

´
∂Di

dH is simply hi as we defined it, the volume of the ith facet. Since

~F is constant everywhere, we can bring it out of the sum and divide by the
magnitude (~F assumed nonzero) to obtain that

k∑
i=1

hi cos θi = 0.

If we now define, one at time, ~Fj = êj , the jth standard basis vector for Rm,
and if we call θij the angle that n̂i makes with êj , then the jth component of the
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vector ~ni is projêj (~ni) = hi cos θij , and applying the above summation identity,
we obtain the following:

k∑
i=1

~ni =

k∑
i=1

m∑
j=1

hi cos θij êj

=

m∑
j=1

(
k∑
i=1

hi cos θij

)
êj

=

m∑
j=1

0êj = 0,

which was to be shown. �
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