Proof for Prof. Gerlach

Benjamin Thayer (thayer.80@osu.edu)

30 January 2023

1 The Problem

Suppose we are given a polygon in the plane or a polyhedron in space. If we label the unit normal to the k different edges (faces) of this polygon (polyhedron) $\hat{n}_1, \hat{n}_2, ..., \hat{n}_k$ and define $\vec{n}_i = \alpha_i \hat{n}_i$, where α_i is the length (area) of the corresponding edge (face), then show that $\sum_{i=1}^k \vec{n}_i = 0$.

2 The Solution in Two Dimensions

Call the area enclosed by the polygon R, and the polygon itself (oriented counterclockwise) ∂R . We will relabel the α_i as l_i to indicate that these are edge lengths in the 2-D case. Suppose we define a constant (non-zero) vector field \vec{F} . Now one formulation of Green's Theorem in the plane-utilizing the 2-D divergence rather than the so-called scalar curl-is stated as:

$$\iint_R div(\vec{F}) \, dA = \oint_{\partial R} \vec{F} \cdot d\hat{n}.,$$

where \hat{n} is the outward-pointing normal. Now since \vec{F} is constant, its divergence is zero; thus, the left-hand side of the above theorem is zero, and we will reason from the right-hand side to obtain the desired identity. Calling the *i*th oriented edge of our polygon ∂R_i , we see that ∂R decomposes into the union $\partial R = \bigcup_{i=1}^k \partial R_i$ and hence

$$\oint_{\partial R} \vec{F} \cdot d\hat{n} = \sum_{i=1}^{k} \int_{\partial R_i} \vec{F} \cdot d\hat{n} = \sum_{i=1}^{k} \int_{\partial R_i} \vec{F} \cdot \hat{n}_i \, ds.$$

Since both \vec{F} and the unit outward normal \hat{n}_i are constant along each edge ∂R_i , we can bring this portion out of the integral to obtain

$$\oint_{\partial R_i} \vec{F} \cdot d\hat{n} = \vec{F} \cdot \hat{n}_i \int_{\partial R_i} ds,$$

where $\int_{\partial R_i} ds = l_i$, the length of the edge ∂R_i , and $\vec{F} \cdot \hat{n}_i = \|\vec{F}\| \cos \theta_i$, where θ_i is the angle that the vector \vec{F} makes with the vector \hat{n}_i in the plane. Thus, our original integral becomes

$$\oint_{\partial R} \vec{F} \cdot d\hat{n} = \sum_{i=1}^{k} \|\vec{F}\| |l_i \cos \theta_i = \|\vec{F}\| \sum_{i=1}^{k} l_i \cos \theta_i,$$

where we have taken $\|\vec{F}\|$ out of the sum because \vec{F} was assumed to be constant everywhere. Now we know from before that this expression must equal zero, and we assumed \vec{F} nonzero, so we conclude that the sum must be zero:

$$\sum_{i=1}^{k} l_i \cos \theta_i = 0,$$

regardless of our choice of \vec{F} . Let us choose, then, two different possibilities for the vector field \vec{F} and see what happens. First, take $\vec{F} = \hat{i}$, the unit vector the x-direction. Then the angle θ_i is precisely the angle that \hat{n}_i makes with the x-axis, so that $l_i \cos \theta_i$ is the component of the length-scaled vector \vec{n}_i in the x-direction. Thus our sum becomes

$$\sum_{i=1}^k (\vec{n}_i)_x = 0$$

Similarly, if we take $\vec{F} = \hat{j}$, the unit vector in the y-direction, we obtain

$$\sum_{i=1}^{k} l_i \cos \phi_i = 0,$$

where ϕ_i is the angle that the vector \hat{n}_i makes with the y-axis, or if we express it in terms of θ_i from before, we have $\cos \phi_i = \cos \left(\theta_i - \frac{\pi}{2}\right) = \cos \left(-\left(\frac{\pi}{2} - \theta_i\right)\right) = \cos \left(\frac{\pi}{2} - \theta_i\right) = \sin \theta_i$, yielding the analogous identity

$$\sum_{i=1}^{k} l_i \sin \theta_i = \sum_{i=1}^{k} (\vec{n}_i)_y = 0.$$

Now the vector \vec{n}_i is simply the sum of its components: $\vec{n}_i = (\vec{n}_i)_x \hat{i} + (\vec{n}_i)_y \hat{j}$, so we finally obtain the identity

$$\sum_{i=1}^{k} \vec{n}_i = \sum_{i=1}^{k} (\vec{n}_i)_x \hat{i} + \sum_{i=1}^{k} (\vec{n}_i)_y \hat{j} = 0 \hat{i} + 0 \hat{j} = 0$$

as was to be shown. \blacksquare

3 The Solution in *m* Dimensions

Suppose we now have a polytope in \mathbb{R}^m whose interior region we label D and whose boundary we label ∂D , consisting of (m-1)-facets, or just facets, as we shall refer to them. Suppose also that for the *i*th facet, we call $\vec{n}_i = h_i \hat{n}_i$ the outward-facing normal vector to this facet and h_i is the (hyper)volume of the facet. Then, defining the divergence of a vector field \vec{F} to be

$$div(\vec{F}) = \sum_{i=1}^{m} \frac{\partial F_i}{\partial x_i},$$

we have the analog of the divergence theorem in \mathbb{R}^m to be

$$\int_D div(\vec{F}) \, dH = \oint_{\partial D} \vec{F} \cdot d\hat{N},$$

where it is understood that dH is an infinitesimal *m*-volume element and $d\hat{N}$ is the infinitesimal outward pointing normal to ∂D . As before, if we define \vec{F} to be constant everywhere, then the expression on the left-hand side is equal to zero. Labelling the k different facets of our polytope ∂D_i , we have:

$$\oint_{\partial D} \vec{F} \cdot d\hat{N} = \sum_{i=1}^{k} \int_{\partial D_i} \vec{F} \cdot d\hat{N}$$
$$= \sum_{i=1}^{k} \int_{\partial D_i} (\vec{F} \cdot \hat{n}_i) \, dH,$$

where dH is now an infinitesimal (m-1)-volume element, and since \vec{F} and \hat{n}_i are constant along a facet, this is

$$\sum_{i=1}^{k} (\vec{F} \cdot \hat{n}_i) \int_{\partial D_i} dH$$
$$= \sum_{i=1}^{k} \|\vec{F}\| h_i \cos \theta_i,$$

because $\vec{F} \cdot \hat{n}_i = \|\vec{F}\| \cos \theta_i$, where θ_i is the angle between the vectors \vec{F} and \hat{n}_i , and $\int_{\partial D_i} dH$ is simply h_i as we defined it, the volume of the *i*th facet. Since \vec{F} is constant everywhere, we can bring it out of the sum and divide by the magnitude (\vec{F} assumed nonzero) to obtain that

$$\sum_{i=1}^{k} h_i \cos \theta_i = 0.$$

If we now define, one at time, $\vec{F}_j = \hat{e}_j$, the *j*th standard basis vector for \mathbb{R}^m , and if we call θ_{ij} the angle that \hat{n}_i makes with \hat{e}_j , then the *j*th component of the

vector \vec{n}_i is $proj_{\hat{e}_j}(\vec{n}_i) = h_i \cos \theta_{ij}$, and applying the above summation identity, we obtain the following:

$$\sum_{i=1}^{k} \vec{n}_i = \sum_{i=1}^{k} \sum_{j=1}^{m} h_i \cos \theta_{ij} \hat{e}_j$$
$$= \sum_{j=1}^{m} \left(\sum_{i=1}^{k} h_i \cos \theta_{ij} \right) \hat{e}_j$$
$$= \sum_{j=1}^{m} 0 \hat{e}_j = 0,$$

which was to be shown. \blacksquare