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5-23. Give an example of a pair of functions f and g having finite derivatives
in (0, 1), such that
lim 1) _

2—+0 g(’:)

but such that lim.—o f'(z)/¢’(z) does not exist, choosing g so that ¢’(z) is never
zero.

5-24. Prove the following theorem: ,
Let f and g be two functions having finile nth derivatives in (a, b). For some inlerior
point x1 in (a, b), assume that f(z1) = f'(z1) = +++ = f"~V(z)) = 0, and that
gx1) = g(x1) = --- = g*~V(x;) = 0, but that g™ (z) is never zero in (a, b).
Show that

f2) _ @)
Tzt 9(3) 9(")(31)

Note. f and g‘” are not assumed to be continuous at z;. [Hint: Let F(z) =
f(z) — (z — z)"" P (z1)/(n — 1)), define G similarly, and apply Theorem
5-15 to the functions # and G.]

5=25. Show that the formula in Taylor’s theorem can also be written as follows:

n—1 Ak ISRy T |
) = E! @0) (\ _ 2oyt 4 & x(o)(x 2) oy

n — 1)!
k=0

where z) is interior to the interval joining z and z9. Let 1 — 0 = (z — z1)/
(z — %o0). Show that 0 < 6 < 1 and deduce the following form of the remainder
term (due to Cauchy):

1—0""" — 20" ~
m—nr 7 =+ 0 — 0zl

[Hint: Take G(t) = g(t) = tin the proof of Theorem 5-15.]
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CHAPTER 6

DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES .

6-1 Introduction. In Chapter 5 we considered derivatives of functions
defined on subsets of the real line E,. We now wish to discuss differentia-
tion of real-valued functions of several variables. Perhaps the simplest way
to proceed is to reduce the discussion to the one-dimensional case by treat-
ing a function of several variables as a function of one variable at a time,
holding the others fixed. This leads us to the concept of partial derivative,
with which the reader is already somewhat familiar from his knowledge of
elementary calculus.

Ifx = (z1,...,%s) i8a point in E,, andif y = (yy, ..., ya) is another
point all of whose coordinates except the kth are the same as those of x, that
18, y; = z;if ¢ = k and y; ¢ z;, then we can consider the limit

i 1O = 1@

vi~zy Yk — Tk

When this limit exists, it is called the partial derivative of f with respect to
the kth coordinate and is denoted by D.f(x), or fi(x), or 8f(x)/dzs, or by
a similar expression. We shall adhere to the notation D,f(x).
This process then yields, from a given function f, n further functions
Dy f, sz, .. D,.f defined at those points in E,. where the corresponding

in the one-dxmensxonal case, but we shall be interested only in finite deriva-

tives which exist at interior pomts of certain open sets in E,.

In generalizing a concept from E, to E,, we seek to preserve what we
consider to be the important properties in the one-dimensional case. For
example, the existence of the derivative at z implies continuity at z in the
one-dimensional case. Therefore it seems desirable to have a notion of
derivative for functions of several variables which will imply continuity.
Partial derivatives do not do this. A function of n variables can have partial
derivatives at a point with respect to each of the variables and yet not be
continuous at the point. Consider the following example of a function of

two variables: '

ifz=0 ory = 0,
otherwise,
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The partial derivatives D, f(0, 0) and D.f(0,0) both exist. In fact,

D0, 0) = lim Z22 =400 — 1im 2 <1

and, similarly, D2f(0,0) = 1. On the other hand, it is clear that this func-
tion is not continuous at (0, 0). ’
The existence of the partial derivatives with respect to each variable

separately implies continuity in each variable separately; but, as we have

just seen, this does not necessarily imply continuity in all the variables
simultaneously. The difficulty with partial derivatives is that by their very
definition we are forced to consider only one variable at a time. Partial
derivatives give us the rate of change of a function in the direction of each
coordinate axis. It is natural to seek a more general concept of derivative
which does not restrict our considerations to the special directions of the
coordinate axes, but which allows us to study the rate of change in an
arbitrary direction. The directional derivalive serves this purpose.

Before we introduce the directional derivative, we wish to remark that in

this chapter we shall restrict ourselves to functions defined on open sets S in
E,, so that with each point x in S there will be a neighborhood N(x) C 8.
Every point y in N(x) can then be expressed in the form y = x + iy,
where u is a unit vector; that is to say, u ¢ E, and [u| = 1. The number
A has an absolute value not exceeding the radius of the sphere N(x).

6-2 The directional derivative.

6-1 DEFINITION. Let f be a real-valued function defined on an open set S in
E, and assume x £ S. Let u be a unit veclor in E,. We define the direc-
tional derivative of f at x in the direction u to be the number

Duf) = lim 2+ 20 = J&)

whenever the limit exists.

Observe that in the one-dimensional case, this reduces to the definition of
f'(x) if we take u = 1. Also, this definition includes the kth partial deriva-
tive as a special case when the unit vector u is taken to be the kth unit
coordinate vector u; (that is, the vector having all components zero except
the kth, which has the value 1). We then write D, instead of D,,. Observe
also that if we introduce F(\) = f(x + Au), we have D,f(x) = F'(0).

If a function f defined in E, has a directional derivative in every direction
u at & point x, then, in particular, all partial derivatives D,f, ..., Dnf exist
at x. The converse is not true, however. For example, the function f con-
sidered above, which has the value z + y at (z,y) if z = Oory = 0 and
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has the value 1 otherwise, has finite partials D,f(0,0) and D,f(0, 0).
Nevertheless, if we consider any other direction u = (ay, az), a; = 0,
az # 0, we have

f(May, Aagz) — f(0,0) 1
A A

and this does not tend to a finite limit as A — 0.
A rather surprising fact is that a function may have a finite directional

derivative in every direction at some point but may fail to be continuous at

that point. For example, consider the function of two variables defined by
the formulas

2 2 4 .
flap = {1+ itz 20

Let u = (a;, az) be an arbitrary unit vector in E;. Then we have

f(Aay, Aaz) — £(0,0) _ a:a3,
A a? 4 A\aj’

and hence Dof(0, 0) = a2/a, if @y 0. If a; = 0, we find D,f(0, 0) = 0.
Therefore, Dyf(0, 0) is finite for all directions u. On the other hand, the
function f takes on the value % at each point of the parabola z = »2
(except at the origin), so that f is clearly not continuous at (0, 0), since
f(0,0) = 0.

Thus we see that even the existence of all directional derivatives at a
point fails to imply continuity at the point. For this reason directional, like
partial derivatives, are a somewhat unsatisfactory extension of the one-
dimensional concept of derivative. We now introduce a more suitable
generalization which does imply continuity and, at the same time, permits
us to extend the principal theorems of one-dimensional derivative theory to
functions of several variables. The concept which seems to serve this pur-
pose best is the notion of differential. We shall first discuss the one-
dimensional case in detail before we define differentials in n-dimensions.

6-3 Differentials of functions of one real variable.

6-2 DerinNITION. Let f be a real-valued function defined on an open interval
S in E,. Construct a new function g of two real variables as follows: For
every poinl z in S such that f'(z) exists (finite), and for every real. number
t, let

g(z;8) = f'(2)t.
The function g so defined i3 called the differential of f.
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NotEe. We write g(z; ) rather than o <
g(z, 1) to place further emphasis on ‘““S‘ﬁ:‘):??(;‘)‘"vh
the different roles of z and &. The ol
first point, z, must be a point where -7
f'(z) exists, whereas the second Ef (x) -t
point, ¢, is an arbitrary point in E,. e Dttt - L
We sometimes say that g(z; t) is the : ff =) e+ 0 - S
differential of f at x with increment t. z z+t

The differential can be given a F1a. 6-1. Geometric interpretation
geometric interpretation asindicated of the differential in E;.
in Fig. 6-1. Observe in the figure
that when ¢ is “small,” the difference f(z 4 t) — f(z) and the differential
f'(z)t are nearly equal. This fact, which is of fundamental importance,
is described precisely in the next theorem.
6-3 Tueorem: Lel f have a finite derivative at z, and let g(z; t) = f'(2)t.

Then for every ¢ > 0, there exists a neighborhood N (z) such that for every
y in N'(x) we have the inequality
) — f(z) — g(z;y — 2)| < ely — 2.

Proof. Given ¢ > 0, there is a neighborhood N(z) such that y € N'(z)

implies
f(y) _ f(I) — f’(l‘) < e

y—z

Multiplication by |y — z| gives the result.

The next property of differentials is an immediate consequence of the
definition.

6-4 TuroreM. If f'(z) exists and if g(z;t) = f'(z)t, then for all real numbers
¢, t, a, and o', we have

g(z; of + o't') = ag(z; 1) + o'g(z; ).

Proof. g(z; ot + &'t") = f'(z)(at + &'t') = olf'(x)4] + «'[f'(x)t'].

Nore. We describe the property just proved by saying that g is linear
in the second variable.
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6—4 Differentials of functions of several variables. Instead of defining
a differential of a function of several variables by a formula, as we did in
E,, we chopse to define a differential in E, by the properties we wish it-to
possess. The properties we want are the natural extensions of those
embodied in Theorems 6-3 and 6—4.

-~ -

6-5 DEFINITION. Let f be a real-valued funciion defined on an open sel S in
E,, and assume x ¢ S. We say that f has a differential at x if there exists
another function g which satisfies the following conditions:

(a) g 1s a real-valued function of two n-dimensional variables, and
the function values, denoted by g(x; t), are defined for the given
point x in S and for every point t in E,,.

(b) g %s linear in the second vartable; that is, for every pair of points
t and t' in E,, and for every pair of real numbers « and o', we have

9(x; at + a't') = ag(x;t) + og(x; t).

(¢c) For every e > 0, there exists a neighborhood N(x) such that
y & N'(x) implies

I76) — f&x) — g(x;3 — x)| < €y — x|.
Nore. It is important to observe that we have no guarantee in advance

that, for given f, any such function g exists. We shall prove later that when
f is suitably restricted, there will be one and only one such function g.

Before we deal with the question of the existence of differentials, we shall
prove some theorems on the assumption that a differential does exist. The
first of these is a consequence of the linearity property and tells us that the

.value of a differential must be a linear combination of the components of

the second variable.

66 THEOREM. Assume that f has a differential g(x;t) at x, and write
t= (4,...,%). Then there exist n real numbers ai(x), ..., ay(x)
(depending on x but independent of t) such that

o) = 30 a@te

kw1

Proof. We can write t = fyju; + - - - + L,u,, where u, is the kth unit
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coordinate vector. From the linearity of g in the second variable, we then
have

glx;t) = g(x; tiug + - - - + tatta) = g(x;u)ty +- - - 4+ g(x; ua)ln.

This proves the theorem, if we take ax(x) = g(x;up), k= 1,2,...,n.

Theorem 66 will now be used to prove that if the differential exists at all,
it is uniquely determined. In fact, we will show that the n numbers
ay(x), ..., a,(x) of Theorem 6-6 are simply the n partial derivatives
Dyf(x), ..., Daf(x).

6-7 TueoreM. (Uniqueness theorem). Assume that f has a differential
g(x; t) at x and write

g(x; t) = i ax(x)lx,

kw1

in accordance with Theorem 6-6. Then each partial derivative D,f(x)
exists and we have

aw(x) = Dif(x), k=12,...,n

Proof. By hypothesis, for every ¢ > 0 there is a neighborhood N(x) such
that y e N'(x) implies |f(y) — f(x) — g(x;y — x)| < dly — x|. By
Theorem 6-6, we also have

oy — 0 = 3 0D — =),

ram]

Writing y = X + My, where [)] is less than the radius of N(x) and u, is
the kth unit coordinate vector, we have

O<ly—xl=N, wm—z=X% ¥—2z=0  ifr=k
Therefore, the fundamental inequality becomes

(x4 M) — f(x) — Nax(x)] < oAl
Dividing by [A], we find

J(x + M) — f(x)
X

— ai(x)] < ¢,

and this implies that Dyf(x) exists and has the value ax(x).
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We have therefore proved that if a function f has a differential g{x; t)
at x, this differential is uniquely determined and must necessarily have the

form {}’ ‘
g(x;t) = > Daf(@ts, ift=(,...,t). L ,}
knal . . \\’ t )':

- -

It is customary to use the symbol df instead of g for the differential. It is
also customary to use the symbols dz,, ..., dz, instead of ¢,, ..., ¢, for
the components of .t, in which case the symbol dx is used in place of the
vector t. Theorem 6-7 then states that

dfx;dn) = 3 DufWdar,  ifdx = (o, ..., dza).

kw1

This is sometimes expressed more briéﬁy in the following notation:
= e A
df = oz, dz, + oz, dz,.

Indeed this last formula is often used as the definition of df and the proper-
ties given in our definition are then proved as theorems.

It is quite easy to see that the directional derivative D,f(x) will exist in
every direction u if f has a differential at x. In fact, the directional deriva-
tive is merely a special case of the differential.

6-8 THEOREM. Let f have a differential at a point x of an open set S in E,,
and let u be a unit vector in E,. Then the directional derivative Dy f(x)
exists and we have

D.f(x) = df(x;u).

Proof. Given ¢ > 0, there exists a neighborhood N (x; 8) such that
I7@) — fx) — df(x;y — x)| < ely — x|, ify e N'(x; 8).
Given the unit vector u, for every real A > 0 such that [A] < 8, the point
x + M will be in N'(x; §). Takingy = x + Au in the inequality, we obtain

the relation

w —df(x;u)f<¢ IO <N <8

But this means that D,f(x) exists and has the value df(x; u).




