Lecture 17

1. The volume (Levi-Civita) tensor
2. Exterior product [MTW 3.5; 4.1-4.2]
3. Particle Flux (2) Tensor
 in Euclidean space: Flux tube structure
 [Read Box 4.2, Fig 4.2-4.5, Box 4.4]

Supplement

The Particle (or Charge) Density-Flux 3-form
a.k.a. the Worldline Density (3) Tensor
Example 4b (Levi-Civita)

The "Volume tensor" or Levi-Civita's totally antisymmetric tensor:

\[\mathbf{E} : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \rightarrow \mathbb{R} \quad \text{with} \quad \text{Rank} = (0) \]

\[(\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n) \rightarrow \mathbf{E}(\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n) = \det | \begin{array}{cccc} e_1^1 & e_1^2 & \cdots & e_1^n \\ e_2^1 & e_2^2 & \cdots & e_2^n \\ \vdots & \vdots & \ddots & \vdots \\ e_n^1 & e_n^2 & \cdots & e_n^n \end{array} | \]

where \(\mathbf{E}(\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n) \) changes sign when any two of the vectors are interchanged, and

\[\mathbf{E}((\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n)) = \begin{cases} + |\det g|^{1/2} & \text{if } (i_1, \ldots, i_n) \text{ is positively oriented} \\ - |\det g|^{1/2} & \text{if } (i_1, \ldots, i_n) \text{ is negatively oriented} \end{cases} \]

where \(|\det g| \) is the determinant of the oriented metric \(g \) and the \(+ \) or \(- \) sign expresses the orientation (positive or negative) of the basis.

One can show that

\[\mathbf{E}(\mathbf{e}_1, \ldots, \mathbf{e}_n) = \text{(oriented) volume spanned by the parallelepiped } (\mathbf{e}_1, \ldots, \mathbf{e}_n) \]

in order to impart to \(\mathbf{E} \) the fact that \(\mathbf{E}(\mathbf{e}_1, \ldots, \mathbf{e}_n) \) is the oriented volume spanned by \(\mathbf{e}_1, \ldots, \mathbf{e}_n \).

The basis expansion of \(\mathbf{E} \) is given by

\[\mathbf{E} = E_{i_1 \cdots i_n} \mathbf{e}^{i_1} \otimes \cdots \otimes \mathbf{e}^{i_n} \]

Here \(E_{i_1 \cdots i_n} \) is the totally antisymmetric Levi-Civita symbol

\[E_{i_1 \cdots i_n} = 0 \quad \text{if any pair of indices are the same} \]

\[= E_{i_1 \cdots i_n} \quad \text{if } (i_1, \ldots, i_n) \text{ is an even permutation of } 1, \ldots, n \]

\[= -E_{i_1 \cdots i_n} \quad \text{if } (i_1, \ldots, i_n) \text{ is an odd permutation of } 1, \ldots, n \]

and

\[E_{i_2 \cdots i_n}^{i_1} = \begin{cases} + |\det g|^{1/2} & \text{if } (i_1, i_2, \ldots, i_n) \text{ is positively oriented} \\ -|\det g|^{1/2} & \text{if } (i_1, i_2, \ldots, i_n) \text{ is negatively oriented} \end{cases} \]
The basis expansion of ε is given by

$$\varepsilon = \varepsilon_{i_1\ldots i_m} \omega^{i_1} \otimes \cdots \otimes \omega^{i_m}$$

Here $\varepsilon_{i_1\ldots i_m}$ is the totally antisymmetric Levi-Civita symbol.

$$\varepsilon_{i_1\ldots i_m} = 0 \text{ if any pair of indices are the same}$$

$$= \varepsilon_{i_1\ldots i_m} \text{ if } (i_1,\ldots, i_m) \text{ is an even permutation of } 1,\ldots, n$$

$$= -\varepsilon_{i_1\ldots i_m} \text{ if } (i_1,\ldots, i_m) \text{ is an odd permutation of } 1,\ldots, n$$

and

$$\varepsilon_{i_1\ldots i_m} = \begin{cases} \sqrt{\text{det} g} & \text{positive orientation of } g_{i_1\ldots i_m} \\ -\sqrt{\text{det} g} & \text{negative orientation of } g_{i_1\ldots i_m} \end{cases}$$

in order to impart to ε the fact that $\varepsilon(\vec{v}_1,\ldots, \vec{v}_m)$ is the oriented volume spanned by $\vec{v}_1,\ldots, \vec{v}_m$.
Using the Levi-Civita symbols, we notice that this volume can also be written as

\[\epsilon(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \epsilon_{123} \omega^1(a) \omega^2(b) \omega^3(c)\]

Specializing to \(n=3\) for illustrative purposes, one obtains:

\[\epsilon(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) = \epsilon_{12345} \omega^1(a) \omega^2(b) \omega^3(c) \omega^4(d)\]

In \(n\) dimensions \(\epsilon\) is

\[\epsilon = \frac{1}{n!} \epsilon_{12...n} \omega^1 \omega^2 ... \omega^n\]

In \(n=2\) dimensions one has

\[\epsilon = \epsilon_{ij} \omega^i \omega^j\]

This is a totally antisymmetric tensor of rank 3. With this definition in place, the Levi-Civita tensor for the \(n=3\) dimensional space is

\[\epsilon_{123} \omega^1 \omega^2 \omega^3\]

\[= \frac{1}{2} \left(\epsilon_{12} \omega^1 \omega^2 + \epsilon_{13} \omega^1 \omega^3 + \epsilon_{23} \omega^2 \omega^3 \right)\]
Example 6 (Particle Flux Tensor)

The *Particle Flux tensor* arises as follows:

The velocity of a fluid in three dimensional Euclidean space gives rise to its flux, an antisymmetric tensor of rank 2.

Let \(\mathbf{v} \) be the uniform velocity of the fluid, and let \(N \) be the density of the particles that make up the fluid.

Consider the area of the parallelogram spanned by the pair of vectors \(\mathbf{A}_1 \) and \(\mathbf{A}_2 \), the number of particles per unit time crossing this area is

\[
|\det g| \text{[} N \mathbf{v} (\omega_1 \times \omega_2 - \omega_2 \times \omega_1) + N \mathbf{v} (\omega_1 \times \omega_2 - \omega_2 \times \omega_1) \text{]} (\mathbf{A}_1 \times \mathbf{A}_2) = \mathbf{g} (\mathbf{A}_1, \mathbf{A}_2)
\]

Introducing the exterior product

\[
\omega_1 \wedge \omega_2 = \omega_1 \times \omega_2 - \omega_2 \times \omega_1
\]

and the Levi-Civita tensor component

\[
\epsilon_{123} = |\det g|^{1/2} \quad \text{"positive orientation"}
\]

one obtains the particle flux tensor,

\[
\mathbf{g} = N \left(\epsilon_{123} \mathbf{v} \omega_1 \omega_2 + \epsilon_{231} \mathbf{v} \omega_2 \omega_1 + \epsilon_{312} \mathbf{v} \omega_3 \omega_2 \right)
\]

or

\[
\mathbf{g} = N \frac{1}{2!} \mathbf{v} \epsilon_{ijk} \omega_i \omega_j \omega_k = N \epsilon (\mathbf{\omega})
\]

\(\text{\# of particles flowing per unit time per (cross) oriented area.} \)
Let us choose a basis \{e_1, e_2, e_3\} relative to which \(V = v_1 e_1 + v_2 e_2 + v_3 e_3 \), i.e., the first basis vector is lined up with \(V \).

In that case

\[
\mathcal{F} = N \, v^1 \, e_{13} \, \omega^2 \, \omega^3
\]

This is a scalar valued two-form. This expression leads to the picture of the bilinear map \(\mathcal{F} \) as a flux tube structure whose value

\[
\mathcal{F} (\vec{A}_1, \vec{A}_2) = N \, v^1 \, e_{13} \, (A_1^2 A_3^3 - A_2^3 A_3^2)
\]

equals \(N \, s (\vec{A}_1, \vec{A}_2) \) the number of flux tubes intercepted by the parallelogram \((\vec{A}_1, \vec{A}_2) \).

The essential feature of the concept of the \((2) \)-rank tensorial flux-tube structure, which in the previous pages was developed for a 3-dimensional vector space, remains the same for a 4-dimensional vector space. This is done in Box 4.2 and Figures 4.2-4.5 of MTW.