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Euler angles 6, ¢ do not change along this curve, one may label the different loops
in S? by the position of the 3-axis in Fig. 3, i.e., by a point of S2. Each point p in
S3 corresponds to a definite rotation A(p), to a definite configuration of the 123
axes in Fig. 3, and in particular to a definite location g € S2 C E3 for the unit
vector along the 3 axis. Thus we have defined a differentiable mapping

7:8% > S2:p »>q = pkpL. (L.11)

For each fixed ¢ € E?, the set of points of $3 which map into g, #~1(g), is a circle $1,
(This relationship can be described by saying that = represents S3 as an S'-bundle
over S2,)

Thus far we have not introduced any coordinates on the manifolds we have
discussed ; however, the possibility of covering any sufficiently small region on the
manifold by a set of local coordinates is the essential and characteristic feature of
differentiable manifolds. 1 will illustrate the idea of local coordinates on S2. First,
note that it is generally impossible to use a single coordinate system for the whole
manifold. The sphere S? is frequently described in terms of co-latitude and longi-
tude angles 8 and ¢, so the standard metric on S2 is written

ds? = df® + sin0 dg® (1.12)

This attempt to use a single set of coordinates is convenient, provided the geo-
metry is so familiar we can ignore obvious formal difficulties, such as the singular-
ities

g% = (sin 6)~2 -» o0

for
g-»0,m

When we expect the formal mathematics rather than our intuition to carry the
burden of deciding questions of differentiability, we must restrict the idea of a
coordinate system in such a way that the components of differentiable tensor fields
will always be differentiable functions. The first requirement then is that we choose
as coordinatcs only differentiable functions, which ncither 8 nor ¢ is at the poles
6 =0,

Since a point x € S%is a triple (x1, x2, x3) of real numbers, we can define three real
valued functions by the rules

x(x) = X1
Y(x) = x2
z(x) = x3

Because each of these functions is differentiable when one lets x vary over E3, it
is also for x € S2. In suitable regions one can take pairs of these functions as local
coordinates on S2. For instance, let

N = {x € §?|z(x) > 0}

Then to any point x in this northern hemisphere N there corresponds a unique
point (x, y) € E2 by the rule .

X, Nerx = (x, Vs \/] - xt o y2)’
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Thus the pair of functions x, y on N gives a one to one correspondence between N
and a region (x12 + x2 < 1) of £2. To any function f defined on S% or N thereisa
corresponding function fy defined on this part of E2 by the rule

Jn(x, ) = f(x)

The coordinate systems one admits and the differentiable functions on the mani-
fold must always be consistent in the sense that f(x) is differentiable if and only if
its representative in a local coordinate patch U, fu(x!, x2, . . ., x"), is a C*® function
on the appropriate region of £7, But this implies consistency conditions among the
various coordinate patches. On S2 again, we might define another coordinate patch
by using x and z as coordinates on the region

E = {x e §¥y(x) > 0}
So the point (x, z) € E2 is made to correspond to the point

X =(x, VI - x% — 22 2)

of £ C S2. Any function fon S? will have its appropriate representative
Je(x, 2) = f(x)

relutive to the E coordinate patch. In particular, where £ and N overlap, the N
coordinates have E-representatives

XN = XE

yy = V10 — xg® — z?
and vice-versa

XE = XN

zg = VI - xx% — pN?

These equations thus define a one-to-one, diflerentiable transformation

(xm, z8) =~ (XN, JN)
of some region of Euclidean space E2, and its differentiable inverse. The differenti-
able structure of a manifold M is normally defined by covering it with coordinate
patches (U, xf). The coordinates x! on a patch U C M must give a one-to-one map-
ping x - (x1(x), x2(x), . . ., x#(x)) of U onto a region of E*. Where two patches
(U, x9, (V, yY) overlap, i.c., on U N ¥V, there is defined a transformation between

regions of £n,
(1), X3(x), . XP(X)) o (PHX), VAN, ., 3 (X))

This transformation must be differentiable in both directions, i.e., all the functions
xi(yl, ..., y®) and yi(x!, ..., x*) must be C*® functions. Because the transformation
is invertible, the jacobean dxf/dy/ will have a non-vanishing determinant. These
consistency conditions have as an obvious consequence that if a function f(x) on
M is represented in one patch (U, xt) by a C*® function

f(x) = fu(xt, 2%, ..., x)on U
then it will be represented in (¥, y¥) by a function fy(y', y2, . . ., y*) which is C® on
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at least that part of E" corresponding by the y!(x) to U N V. Thus the differentiable
functions on M may be defined to be those functions f(x) representable in each
coordinate patch by some function f(x1, x2, . . ., x#) which is differentiable on the
corresponding region of E®,

A covering of a set M by a set of consistently overlapping coordinate patches
defines, as well as a differentiable structure on M, also a topology. Any subset of M
which lies in a single coordinate patch and whose corresponding image in E# is an
open subset of E7 is taken to be open in M. These sets provide a basis for the open
sets of M and allow us to define the continuous functions on M and other topo-
logical concepts. All the differentiable functions will be continuous.

11. Contravariant Vectors

In what follows I shall always assume that we have given some differcntiable
manifold M, and that all functions, mapping, curves, etc., are differentiable. Since
each point x € M is contained in some coordinate patch, we can at any point intro-
duce coordinates x(x) for local computations. However, it is preferable to avoid
using coordinates in the basic definitions so that we will not be forced to explicitly
discuss the whole system of overlapping coordinate patches every time we bring
up a global idea such as a vector field defined over the entire manifold.

The essential idea of a tangent vector derives from a consideration of two-
dimensional surfaces imbedded in Euclidean three-space. There an arrow, attached
tangent to a point of the surface, provides the same sort of coordinate free idea of a
vector we have when speaking of the momentum of a particle in Newtonian mech-
anics. In order to avoid thinking of manifolds only as imbedded in Euclidean
spaces, we want to make this arrow infinitesimal so it no longer projects out into
the imbedding space. The two equivalent definitions given below are both attempts
to let a tangent vector be some specific mathematical object independent of the
coordinate system and related to an arrow. The first definition lets a curve in the
manifold try to draw the arrow, and then makes it a small arrow by passing to
infinitesimal, first derivative, properties of the curve. ,

Definitions: A curve through a point xo of M is a mapping ¢ : R — M : t — ¢(t)
such that ¢(0) = xo.

The derivative of a function falong c is the number

d
elf] = {=cc) @
dt t=0 «
Two curves ¢; and ¢ through xo have the same tangent, ¢ -: cs, iff for all func-
tions f defined each in some neighborhood of xy one has
alf] = elf] 2.2)

After these preliminary definitions we now want to define a tangent vector at xo
as the common property of all curves which proceed in the same direction and at the
same rate through xy (as measured by functions /). The mathematical device used
to abstract a common property out of many examples is an equivalence relation,
sich as the relation ¢; = ¢ defined above.

Ty

3
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Definition: Atangent vector v at xg is an equivalence class of curves through xo,
all having the same tangent, i.e.,
v={c|e=c for some fixed c1}

If ¢ e v, we say that v is tangent to ¢ at xo. A tangent vector v can be used as a dif-
ferential operator on functions by defining v[f1], the derivative of f along v, by the

equation
if1=clf], cev 23

Because of equation (2.2), any curve with tangent v may be used here.
The relationship of this definition to the older, component-coordinate, de-
finition can be seen by writing out equation (2.2) in a local coordinate system x!

where it reads .
4
() (&) —(Z) (& @4
oxt/ g\ dt /o xt/ g\ dt /o
if xt = c1#(r) and xt = ¢,'(r) represent the two curves. Thus, all the curves with the
same tangent are characterized by the same values for (dx{/dt)o and this set of
numbers, associated with the coordinate system xf, identifies the equivalence class v.

As a differential operator, a tangent vector v has the following two propertics
(1) vis lincar

vlaf + bg] = av[f] + bv[g] (2.50)
(2) vis a “differentiation”
vi/g] = f(xo)vig] + g(xu)v[ /) (2.5d)

Here a, b arc recal numbers and f, g are any functions defined each in some ncigh-
borhood of xo. The next paragraph simplifies this last remark to “f, g € F(xo0)".

While the domain of definition of a function is frequently important, it
will also often be convenient to ignore it. This can be don€ for local questions
in a precise way by defining: '

Two functions fi, f2 have the same germ at xo if each is defined in some
neighborhood U, U: of x¢ and if, on a neighborhood U C Uy N Uz of xo, one
has /1 = f.

Then obtain the set.# (x) of germs of differentiable functions at x by defining:

A germ f of a differentiable function at x is an equivalence class of functions,
all having the same germ at x. I purposely use the same notation f for germs as
for functions, since the context can make clear which is meant when it matters.

The differential operators v corresponding to tangent vectors can be combined
lincarly in an obvious way

(avi + bv2)[f]) = ava[f] + bv2[f] (2.6)

For this reason it is convenient to define: A tangent vector v is a linear differen-
tiation on #(x), i.e., a mapping v : F(x) — R satisfying equations (2.5). With
this definition, which we shall find equivalent to the previous one, it is evident that
the tangent vectors at x form a vector space over the real numbers.

To study the equivalence of our definitions we introduce a local coordinate
system x{. Then the curves through x¢ which follow the coordinate lines define
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certain tangent vectors o
«i (o) @.7)
oxt Zo

In terms of these differential operators e; we want to compulte v[j:I for some given v
satisfying equations (2.5). To begin we put f(x) in a form which lets us use the
product rule (2.5d):

S(x) = [f(xo) + [f(x) — f(x0)]

= f(xo) + f: -;itf (xo! + 1(x* — xoY)) dt

=ﬂm+w—mmhm+@-mm

fx) = f(xo) + (xt = xo')ge(x). (2-8)

Here f; means the partial derivative of (the coordinate representative of) J with
respect to its ith argument, and

g = | :f:t(-\‘ok + 1(xk = xo¥)) dr

satisfies o
ax0) = 1) = (577)_ = /] @9)
Acting on equation (2.8) with the operator v gives
v[f]1 = vixe'le[f] (2.10)
after using (2.5d), (2.9), and the fact that derivatives of constants vanish:
vla] =0 (2.11)

[This relation follows from cquations (2.5), for with b = 0 in (2.5/) we have
vlaf'] = av[f] while (2.5d) with g = a gives
vlaf] = f(xo)¥[al + av[f] = av(/f]

or f(xo)v[a] = 0. Equation (2.11) follows, since we may assume f(x0) = 1.]
To show the equivalence of our two definitions of tangent vectors, we must
show that any operator v is tangent to some curve, The equation

xi(1) = xot + tv[xo']

defines such a curve.
In equation (2.10) the numbers

—— (2.12)

are the components of v with respect to the basis ¢¢; because any tangent vector can
be expanded as a lincar combination (2.10) of the e we learn that the vector space

hoye—>
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T(xe) of tangent vectors at xg is #-dimensional. Using a more specific notation

P
e = (%)% (2.13)
for these basis vectors we can rewrite equation (2.10) in the form
v = v‘(—a—) (2.14)
oxt/ g,
which emphasizes the operator character of v while
v = olg (2.15)

shows the usual expansion of a vector in terms of a basis. If we wish to choose some
other basis, by, then the cxpansions

. . ex = Ar¥by (2.16)
“substituted in (2.15) give
v = vhey = vk Ap¥'by =.vFby
thus deriving the transformation law
ok = ApKok 2.17)

for the components of v. Although a basis for T(x) need not be obtained from a
coordinate system, in case both e = 9/0x* and by = 2/9p¥ are coordinate axes
we have the classical rule
¥
- ()
axk ] 4
in (2.16) and (2.17).

The preceding transformation law considered the case where we had one
fixed manifold and one fixed vector v at x, and let the coordinate system and/or
the basis for T(x) shift about under our feet. The components ot of v then changed
although v itself did not. We now turn to a quite different situation, in which we
wish to consider two manifolds and a mapping between them ¢ : M — N. Given a
vector v at x € M, we will define a corresponding vector ¢¥v at ¢(x) e N. Again
there are two equivalent definitions depending on which definition of tangent vector
we refer to. If ¢ is a curve through x with tangent v, then ¢*c = ¢oc is a curve
through ¢(x) = $x; we define its tangent there to be $*vand could verify that ¥y
does not depend on which curve ¢ € v was used. This definition of ¢¥ lets us visualize
how vectors are transformed by imagining how ¢ : M —> N transformed the points

of the curve which drew the arrow, v. Somewhat more clegant is the definition of
the diffcrential operator ¢¥v by the equation

(2.18)

. . (H#9)[f] = v[$S) (2.19)
or the equivalent diagram
- $r
F(x)=— F ($x)
(2.20)
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