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1. Manifolds

In this chapter we define the fundamental concepts which we deal
with throughout these notes. Specifically, the notions of manifold,
function, and vector, and the concept of differentiability (smoothness),
must be carefully digested for a solid foundation.

Section 1.1 Manifolds

First some notation. Let R be the set of real numbers. For an inte-
ger n > 0, let R” be the product space of ordered n-tuples of real num-
bers. Thus R" = [(81,...,an): a, in R]. Fori=1,...,n, let u, be the
natural coordinate (slot) functions of R™ i.e., u,: R" — R by
ul(al,...,an) = a,. An open set of R™ will be a set which is open in the
standard metric topology induced by the standard metric function d on
R™; thus if a=(a,,...,a ) and b = (b,,...,b,) are points in R", then
dla, b) = [3. (a, — b))%

The concept of differentiability is based ultimately on the definition
of a derivative in elementary calculus. Let r be an integer, r > 0.
Recall from advanced calculus that a map f from an open set A CR"
into R is called Cf on A if it possesses continuous partial derivatives
on A of all orders < r. If f is merely continuous from 4 to R, then f is
C%on A. If fis CTon A for all r, then f is C* on A. If f is real analytic
on A (expandable in a power series in the coordinate functions about
each point of A), then f is C®on A. Henceforth, unless otherwise
specified, we let r be o, w, or an integer > 0.

A map f from an open set A CR™ into R* (k an integer > 1) is C" on A
if each of its slot functions f, = u,o fis C*on A for 1 = 1,...,k; thus
for p in R", (p) = (£,(p),....£,(p)) in R¥.

Fig. 1.1

Overlapping Coordinate Domains




2 Notes on Differential Geometry

We now define a manifold. Let M be a set. An n-coordinate pair
on M is a pair (¢, U) consisting of a subset U of # and 1 to 1 map ¢
of U onto an open set in R”, One n-coordinate pair (¢, U) is C* related
to another n-coordinate pair (0, V) if the maps ¢ 07! and 8 o ™! are
C’ maps wherever they are defined (thus their domains of definition
must be open). A C” n-subatlas on M is a ecollection of n-coordinate
pairs (¢,, U,), each of which is C' related to every other membor of
the collection, and the union of the sets Uh is M. A maximal collection
of C' related n-coordinate pairs is called a C* n-atlas. If a C* n-atlas
contains a C® n-subatlas, we say the subatl as induces or generates the
atlas. Finally, an n dimensional C" manifold or a C" n-manifold is a set
M together with a C* n-atlas, When r = 0, M is customarily called a
locally Euclidean space or a topological manifold, and only when r £ 0
is M called a differentiable or smooth manifold. An atlas on a set ¥
is often called a differentiable structure or a manifold structure on M.
Notice that one set may possess more than one differentiable structure
(see example 4 below), however, a definition of “equivalent” differ-
entiable structures is necessary before the study of different atlases on
a set becomes meaningful (see Munkres?).

Each n-coordinate pait (¢, U) on a set M induces a set of n real
valued functions on U defined by x, = u, © ¢ for i = 1,...,n. The func-
tions x ,....x_are called coordinate functions or a coordinate system
and U is called the domain of the coordinate system.

We list some examples:

1. Let M be R" with a C* n-subatlas equal to the pair consisting of
¢ = the identity map and U = R".

2. Let M be any open set of R” and let a C'n-subatlas be (the identity
map, M).

3. Let M = GL (n, R), the group of non-singular R-linear transforma-
tions of R™ into itself. Then M can be mapped 1:1 onto an open
set in Rn? and thus a manifold structure can be defined on M via
example 2. If (a”) is a matrix representation of an element of ¥
with respect to the usual base of R", then map (a,.i) into the
n’-tuple

(@110 @ 1900000810 B51) go00e0@yp B3, )

The image set of this map will be open since it is the inverse
image of an open set by the determinant map, which is continuous

@; (indeed it is C®as a map on R""). Qf

!
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4. Let M, be the 1-dimensional C?! manifold of example 1, and let
M, = R with the C' 1-subatlas (x% R), where x is the identity

1
mapping on R. Then M, £ M, since x4 is not C! at the origin.

S. Let f be a C* real valued function on R™*!, with r> 0 and

n > 0, and suppose the gradient of f does not vanish on an
f-constant set M = [p in R**1: Ap) = 0). Then at each point
in M, choose any partial derivative of f that doesn’t vanish,
say the i*? one, apply the implicit function theorem to obtain a
neighborhood of p (relative topology on M) which projects in a
1:1 way into the u, = 0 hyperplane of R"*!, and thus define a
subatlas which makes M a C" n-manifold.

This example covers many classical hypersurfaces in R™*?,
including spheres, planes, and cylinders.

6. The process in example S can easily be generalized to obtain
- C* (n - k)-manifolds from “constant sets” of a C* map £ R" — R*
whose Jacobian matrix is of rank k on the constant set.

7. Let F be a univalent map from an open sét in R™ into R™, with
0 <n <m, and let M be the image of F. Then the n-coordinate
pair (F~!, M) defines a C* n-subatlas on M.

For further definitions, let M be a fixed C* n-manifold. An open
set in M is a subset A of M such that ¢(4 NU) is open in R" for
every n-coordinate pair (¢, U). The reader can verify that M becomes
a topological space with this definition of the open sets. If pin M,
then a neighborhood of p is any open set containing p. Notice M need
not be Hausdorff. The concept of Hausdorffness is irrelevant for much
of local differential geometry. It becomes relevant in passing from a
Riemannian metric to a distance function,

Section 1,2 Smooth Functions

In this section let A be the domain of a function f and assume 4
is an open subset of the C* n-manifold M. If { is real valued, then f
is C*on A if fog™! is C® on ¢(4 NV) for every coordinate pair
(¢, U) on M. Note the independence of r and s. If N is a C* d-mani-
fold and f is N-valued, and f is C® on A if { is continuous and for every
real valued function g, that is C? on an open domain in N, the composite
gofis C5on ANf ! (domain of g). Note the independence of r, k, and s.

€
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Fig. 1.2 An Induced Map from R? into R

The local character of the smoothness of a function is captured in
the following definition. Suppose the domain of f is not necessarily
open and f is N-valued. If p is in the domain of {, then fis C® at p
if there is a neighborhood U of p with f defined on U such that f|  is
C®on U. As a corollary, if { is C® at every point in its domain then
its domain is open,

Let us now specialize to C™ manifolds and C* functions. This is
done for convenience chiefly and it allows us to define a tangent vec-
lor in a very elegant way. Our concern in these notes is not with “the
least possible assumptions” but rather with those concepts that arise
naturally in a general situation. The restriction is not too drastic !
because of the following result due to Whitney: A C® atlas on a set
with r > 0 contains a C*™ atlas (see Munkres'). There is an example of
Ketvaire which exhibits a C° atlas on a set which admits no C! atlas.
For further work on the “equivalence” of differentiable structures see
Milnor® #*9 2, Munkres! #"¢ 2, and Smalel.

The following list of nine problems are recommended in order to
familiarize oneself with the notion of a C* map. In particular the pro-
blems are aimed at obtaining numbers 6 and 7 which are often useful.
The list (remember A is open in M, which is a C* n-manifold);

1. Themap f: A - N is C*on A iff fis C™ at each point p in A. :

2, Iff: A-N, fis C®on A, and U is an open set contained in 4,
then f| , is C* on U.
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3. LetU » be a collection of open sets in M and let f: Uy~ N
be C* on U, for each h. If f is a function whose domain is
the union of all U, and if f]v = f, for all b, then f js C* on
its domain. " )

4, Iff; A-R¥is C°on ACR" and §: B » R is C* on the open
set B CR¥%, then g o f is C® on A N f~!(B).

5. If f: A>Nis C”on A CM and (¢, U) is a coordinate pair on
M, then f o ¢~ is C™ on (4 NU).

6. Let P be a C*™ s-manifold. If F: AN is C®on 4 CM and
g: B - Pis C™ on the open set B CN, then g o fis C* on
ANfYB).

7. The map f: A - N is C® on A CM iff for every coordinate pair
(¢, U) in a subatlas on N the functions x, o f are C* on
AnfYw), fori =1,...,d and X, =u, 0.

8 Ifn>kand g R">Rkby éa,,...,a ) = (a,...,a,) then § is
C®on R~ If h: R* 5 R™by h(a,,...,a,) = (a,,...,a,, 0,...,0)
then h is C* on R%,

9. Let f and g be real valued functions that are C* on the subsets
A and B of M, respectively. Show that f + g and fg are C* on
A N B, where (f + g)(p) = {(p) + &(p) and (££)(p) = f(p)4(p).

For the record, we can and so do define a Lie group. A Lie group
G is a group G whose underlying set is also a C* manifold such that
the group operations are C*, i.e. the map ¢: GxG -+ G where ¢(g, h) =
gh™! is C* (see problem 18 and 20). _

One last bit of notation, let C™(4, N) denote the set of C*™ functions
mapping an open set 4 in a manifold M into a manifold N.

Section 1.3 Vectors and vector fields

The definition of a tangent vector generalizes the “directional
derivative” in R". If X  is an ordinary (advanced calculus) vector
at a point m in R™ and f is a C* function in a neighborhood of m,
then define X_f=X_ . (V{)_, where V{ is the gradient vector field
of f. From the properties of the “dot” product and the operator V,
it follows that
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X (af + bg) = aX _f+ bX &
X_(fg) = fm)X g + g(mX f,

where g is a C™ function in a neighborhood of m and a and b are real
numbers. Notice X is not normalized to be a unit vector. We general-
ize now to define a tangent vector on a manifold as an operator on C*
functions which obeys the above rules.

Let M be a C* n-manifold. Let m be in M and let C®(m) denote
the set of real valued functions that are C* on some neighborhood of
m. A tangent vector at m is a real valued function X on C*(m) having
the following properties:

(1) X(f+8) = Xf + Xg, X(bf) = b(XD)
(2)  X(lg) = (XDg(m) + Km)(Xg),

where f and g are in C™(m), and b is in R. The set C™(m) is almost a
ring (there is a slight problem with domains), and thus a tangent vector
is often called a derivation on C*(m).
The tangent space to M at m, denoted by ¥_, is the set of all tan-
gent vectors at m. It is a vector space over the real field where
(X + Y)f = Xf + Yfand (bBX)f = b(X{) for X, Y in M_, {in C>®(m), and b
a real number.
Let x,...,x_Dbe a coordinate system about m (i.e., m is in the domain }
of these coordinate functions). We define for each i, a coordinate vec-
tor at m, denoted (d/ ax')m by

<2Lf;_u¢_"_‘2 (b))

D, -
i i

where X, = u, o ¢ and the differentiation on the right side is as usual on

R", The verification of properties (1) and (2) above we leave to the

reader. In a moment we show these coordinate vectors form a base for

the tangent space at m.

LEMMA. Let X ppeenX be a coordinate system about m with
x(m) = 0 for all i. Then for every function f in C™(m) there exists n

C C
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functions f,...,f_in C*(m) with f (m) = (9/0x)_f and f = f(m) + 2x {,
in a neighborhood of m. (Note the equality in question is an equality
between functions, and f(m) represents a constant function with value
#(m); the sum is taken for i = 1, 2,...,n, and in the future this relevant
range is to be understood.)

Proof. Let ¢ be the coordinate map belonging to the x,. Let F= fog~l,
and we know F is defined in a ball about the origin in R7, i.e., in a set
B = [p in R™ distance from origin to p < rl. For (al,...,an) in B we have,

F(a e ) = Fla),e,a,) - Flay,eana, ), 0) +

F(a;,..,a 0) ~ F(a,y:0008,-5, 0, 0) +iout

n—~1?

Flay, Oyvess0) = F(0,.00,0) + F0,..0,0) =
= 2 F(ayeeay, ta, 0,...,0)](1, + F(0,...0)

1
- F0,0+ 5, [ aiu’i (@gperer@ s 18y Oyens,O)adt
H

= F(0,...,0) + E‘a,F,(al,...,an), where

! oF
F@yena)) = [ (@, ta, O 00
i

is C* in B since (az«'/au,) is C™. Let f =F o¢ and the lemma is
proved. //
THEOREM. Let M be a C™ n-manifold and let X ,...,x, be a co-

ordinate system about m in M. Then if X inM_, X = Ei(Xxi)(r‘)/axi)m,
and the coordinate vectors form a base for M m which thus has dimension

.

Proof. We first prove the stated representation. Take X in ¥ and
fin C*(m). If x (m) # 0 for all , lety = x, - x (m). Then apply the
lemma to f with respect to the coordinate system y ...,y and notice
(0f/dy i)(m) = (0f/ ox ,)(m). Next we see if ¢ a constant map then

C
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X(c) = eX(1) = c(1X(1) + 1X(1)) = 2¢X(1)
which implies cX(1) = 0 and X(c) = 0. Thus Xf = X(f(m) + 2y f)
= Z [(Xy ) () + y (m)(X£)]
= 2 X(x, - x,(m))f (m)
= 3 (Xx,)(0t/9x,)(m)

which proves the required representation. If ¥ = Zia,(a/ax.) = 0 then
0= Yxi =a, thus the coordinate vectors are independent and span
M_.//

A vec or field X on a set A is a mapping that assigns to each point
pin A a sector X‘D inM_. A field X is C* on A if A is open and for
each re=: valued function f that is C* on B, the function (Xf) (p) =
TXPI is C®on ANB. If X and Y are C™ vector fields on A their bracket
is a C™ vector field [X, ¥] on 4 defined by (X, Y]pf =X (¥H -Y(XH.

If f and g are C* functions, it is trivial that [X, YI{f +8) = [X, Y1f +
[X, Y1g, and [X, Y)(af) = alX, Y)f for a.in R. To check the product
property, consider

[X, YI(fg) = X(¥(fg)) - Y(X(fg))
= X(fYg + gVF) - Y(£X4 + gX1)
= fXYVg + (XI)Yg) + (XgNY{) + gXYf
- f¥YXg — (Y)(Xg) — (Y)(Xf) — gV Xf
= flX, Yg + glX, Yt

Thus [X, Y] is a vector field and the proof of its C* nature we leave
as a problem.

For later use, notice that [X, ¥]1=~[¥, X], [X, X] =0, and the
bracket is linear in each slot with respect to addition, i.e.,
X, +X,, ¥Y1=[x,, Y1+ [X,, Y]. However, [{X, g¥] = KXg)Y -
g(YHX + £glX, Y], and it is this property that prevents the bracket map-
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ping from being a tensor (problem 10). Problem 13 gives a geometric
interpretation of the bracket, and in section 9.1 there are applications
involving integrability conditions. For example, if x,,...,x, is a co-
ordinate system then [9/9x, d/dx ’] =0 for all { and j (since cross
partial derivatives of C* functions are equal), and actually this con-
dition on n independent vector fields is sufficient to imply the fields
are coordinate vector fields (section 9.1):

The bracket operation also satisfies the following expression which
is called the Jacobi identity,

X, v, 20+ [z, X, YN + [y, [2, X]] =0
where X, ¥, and Z are C* fields with a common domain.

Section 1.4 The Jacobian of a map

Let M and N be C* manifolds of dimensions n and k respectively.
We defined above the concept of a C* map f from M into N. Such a
map induces a linear transformation from each tangent space M_ into
the tangent space N ) This linear map is called the Jacobian map
or the differential of f and we denote it by fx (often it is de noted df,
but we reserve the symbol d for the exterior derivative operator). Let
XbeinM and we define f+X as a vector at f(m) in N by taking a
function g which is C* in a neighborhood of f(m) and setting (f£X)g =
X(g o f). It is trivial to check that f+X is a vector at f(m) and the map
fx is linear. :

By selecting a coordinate system x,,...,x, about m and another
Yyrerer¥y about f(m), we can determine a matrix representation for fx
which is called the Jacobian matrix of fx with respect to the chosen
coordinate systems. Let X, =09/0x, ¥, = /9y, thus X ,...,X , at
m, form a base for M and we compute f4+ by computing its action on
this base. Namely, fxX, =2 ,(f*X v,Y, by the representation theorem
above, hence the matrix in question is the matrix ((f+X !)y }) =
(a(y,o{)/ax‘) for 1<i<nand1<j<k

The implicit function theorem and the inverse function theorem can
be applied and formulated in this language. The former we postpone,
since we do not really need it for some time (see problem 16) but the
latter is both useful and instructive. First a definition. A diffeomor-
phism is a map f: M - N that is 1:1 and onto with both fand f71C™,
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and if such an f exists, then M is diffeomorphic to N.

THEOREM. (Inverse function) Let M and N be C* n-manifolds
and let f: M - N be C®. If for m in M, the Jacobian fx at m is an
isomorphism of M_ onto N, then there is a neighborhood U of m and
a neighborhood V of f(m) Such that f is a diffeomorphism from U to V
(i.e., f is a local diffeomorphism about m).

We leave it to the reader to choose a coordinate system on both
sides and apply the theorem from advanced calculus to obtain the re-
sult. Notice the C™ demand of f and f~! implies the theorem could be
stated as a necessary as well as a sufficient condition for the exist~
ence of a local inverse. If one only demands continuity of the inverse,
then the map x » x° provides a homeomorphism of R onto R whose
Jacobian is singular at the origin.

Now consider the behavior of the Jacobian with respect to com-
posite maps. Let § be a C® map of N into the C* manifold L. Then
at each m in M, (g o D% = &% o fx, for if A is a C™ function about
g(f(m)) and X in M _ then ((§ o N)xX)h = Xhogof)=({sX)hog)=
(g+(f«X))h. In terms of coordinate systems, the above computation ex-

hibits the chain rule and a multiplicative behavior of Jacobian matrices.

When f is a diffeomorphism of M into N, and X and ¥ are C*° fields on
M, then f+X and f+x¥ are C* fields on N with fx[X, Y] = [fxX, f+Y].

Scction 1.5 Curves and integral curves

In these notes curves will be viewed as a special case of mappings,
thus we will deal with “parameterized curves” almost exclusively. A
curve in M is a C*® map o from an open subset of R into M. Often we
speak of a curve ¢ from (&, b] into M where [a, b) is a closed interval
of real numbers, and in this case it is assumed the domain of ois
actually an open set in R containing {a, bl

Let o be a curve in M with domain U. For each t in U define the
tangent of o at  to be the vector T(t), or T (¢), at oft) where T(t) =
ox(d/dt), and d/dt denotes the usual dxfferentlatlon operator of real
valued C°° functions on R. Thus if x ,...,x,_ a coordinate system about
olt), then T(¢) = (d(x o o)/dr) (0/dx )0(‘) By differentiating the co-
ordinate parameter functxons x, o o(t) one determines the coefficients
of T(¢t) with respect to the coordmate vectors associated with the co-

C

C
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Fig. 1.3

A Curve

otrdinate system. Notice this T(¢) is the usual “velocity” vector
associated with a parameterized curve in R 3, ‘

Having the idea of curve and tangent vector we can give a geo-
metric description of the Jacobian fx associated with the map f: M - N.
For X in M_, chodse any curve o on M with 6(0) =mand T (0)

Then foois a curve on N with f o o(0) = f(m) and indeed f*X =
(0) Thus we “fill in the vector by a curve, map the curve to N,
and take the new tangent vector.” This device is very useful if one
knows geometrically the behavior of certain curves; e.g., let ¥ =
((x, y, 2) in R®% x2 +y?=1], let S be the unit sphere in R?, and let
f: M »Sby f(x, y, z) = (x, y, 0). The particular f just defined is
called the “sphere map” or the “Gauss map” from M to S, since it
essentially uses a unit normal vector field to ¥ in its definition. Its
Jacobian should be trivial to compute at each point from the above
remarks.

We carry the idea of “filling in a vector” to a classical setting.
Let X be a C™ vector field on the manifold M. A cutve ¢ is an in-
tegral curve of X if whenever o(t) is in the domain of X then T (t) =
Xy ey Thus we say the curve o “fits” X, and suggest the physical
example of the velocity vector field (which gives X) of a steady fluid
flow and its streamlines (which give integral curves). The local ex-
istence of integral curves is guaranteed by the theory of ordinary
differential equations.
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Fig. 1.4 An Integral Curve of a Vector Field

THEOREM. Let X be a C™ vector ficld on M and let m be a point
in the domain of X. Then for any real number b there exists a real
aumber r > 0 and a unique curve o: (b -1, b+ r) » M such that o(b) = m

and ¢ an integral curve of X.

Proof. Let X 000X be a coordinate system about m wh?se dc;main
U is contained in the domain of X, Let X = Elf'(a/ax,) define C 1"ea1
valued functions f, on U. Then the condition that a curve o be an in-
tegral curve of X becomes the condition

d(x, © 0)

Bl =1, oag
dt

on the domain of g, or writing (improperly) as usual xi(t) =x,0 olt), we

have the system of first order ordinary differential equations

dx
—L . f,(xl,...,xn),

for i = 1,...,n. Apply an existence and uniqueness theorem from differ-
ential equation theory to obtain r > 0 and functions x () that define o
on the specified range with the required properties.// .
Actually the theorem from differential equations gives much more
than the above conclusion for it includes the C* dependence of solu-
tions as we vary the initial parameter b and the point m (see section

9.3)., We return to this later when discussing the existence of geodesics

and the exponential map (sections 5.1 and 9.3). For global ramifica-
tions see Palais? or Lang.
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It is convenient to define a broken C* curve o on an interval
[a, b] to be a continuous map o from [a, b] into M which is C* on
each of a finite number of subintervals [a, 5 ], [5,. bz],...,[bk_‘ , bl.

Section 1.6 Submanifolds

~

A C™ k-manifold M is a submanifold of a C* n-manifold ¥ if for
every point p in M there is a coordinate neighbothood U of M with co-
ordinate functions X,,...,x . such that the set U = [m in U: x wrp(m) =
=X n(m) = 0] is a coordinate neighborhood of p in M with coordinate
functions x, = JTllv,...,xk = J?klv. These coordinate systems are
called special or adapted coordinate systems.

Notice it is not required that wjrlso “slices” of M may ap-
proach other “slices” of M in M (see problem 17), and hence the
topology on M may not be the relative topology. The definition of
submanifold implies M is a subset of ¥ and k < n, Letting i: M - M
be the inclusion map, then i is C* since x , o i are C* maps for all
special coordinate functions. The inclusion map is also an imbedding
(see below) since the Jacobian ix is non-singular, i.e., ix(d/dx !(p) =
0/9x j(p) forj=1,...,k. In the_se notes we will identify a tangent vec-
tor X in M_ with its image in M o unless there is a possibility of con-
fusion (just as we identify p and i(p)).

To make some more standard definitions, let M and M be C* mani-
folds and let f be a C* map of M into M. If fy is non-singular (thus
fx has no kernel) at each point p of M, then f is called an immersion
of M into M. If in addition, f is univalent, then f is called ‘an imbed-
ding of M into M. A subset M’ of i is called an immersed submanilold
if there exists a manifold M and an immersion f: M » M such that
f(M) = M'. (Thus an immersion is a “local imbedding with self-inter-
sections.”) One can verify (problem 17) that if f: M - M is an imbed-
ding and M' = f(M), then by defining a differentiable structure on M’
so f becomes a diffeomorphism, M' becomes a submanifold of M (see
Helgason, p. 23).

For examples of submanifolds see the examples 5, 6, and 7 at the
end of section 1.1.

It is convenient to define a base field on a set A contained in an
n-manifold to be a set of n vector fields that are independent at each
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to the constant surface of f thru p show Vp. (curl V)p =0
(see section 9.1).
Instead of seeking surfaces that are orthogonal to V (as
. above), one could seek surfaces whose tangent plane contains
V and then one has a “geometric quasi-linear partial differential

point of A, When each field in a base field is C*, then the base field

is C*. Since a set of coordinate fields is a C* base field on the co- -
ordinate domain, we know C* base fields always exist locally. A

C* base field does not necessarily exist over a whole manifold (con-

sider the 2-sphere, S%); indeed, the manifold is called parallelizable ’ equation of the first order.” Integral curves of V are called
if it admits a global C* base field. ‘ characteristics of the “equation.” One generates solution sur-

We now define a concept which we will often use. Let ¥ be a sub- faces by taking a non-characteristic curve (an “initial value”
manifold of M as described above. An M-vector field Z that is C* on curve) and considering the surface formed by characteristics
M (or C*™ on an open set A in M) is a map that assigns to each p in ¥ ' thru the initial value curve. Show two solution surfaces must

’ in A) a vector Z_ in M_ such that if X ,..., X is any C* base ' intersect along a characteristic. Show there are an infinite
(or pin _ - 7 - zga ( )&') formin MNT number of solution surfaces thru one characteristic. Can there
field on a neighborhood U of p and Z_ = 27a,(m)\4,),, 10 there b initial val ith lution thru it?
; C*™ on M NU for all i, Notice Z re be an initial value curve with no solution thru it?

then the real valued functions a, are P

is not necessarily tangent to M. Since the restriction to M, of a_C°° N 12. Let f: R? > R2 by f(a, b) = (a? -2b, 4a%b?) and let g: R? »
* function on M, is a C* function on M, it follows if Z is C* on M then %\}/ R3 by g(u, v) = (u?v + v2, u - 2v3, ve¥). Compute a matrix
Z|, is an M-vector field that is C* on M. 2 for f+ at (1, 2) and g% at any (u, v). Find g+(49/9x - 9/9y) 0,1y
]‘/ ' {; Find integral curves for the vector field X = yi + yj + 2k on '
*" R3, Find a coordinate system X, X,, x; on R? such that

: 5 4 and 5 : ;
Problems (For problems 1 thru 9 see pages 4 and 5) . ‘ Ff “’\c')/ax, - 2i +3j - k at all points.
10. Let ¥ ,...,W_be a C* base field on an open set U in a mani- :

fold Mland l:t X =37 f£W be a vector field on U. Show X \ 13. Let X and ¥ be C* fields about m in M. For small ¢t > 0
is C* on U iff the fuin-clti‘on‘s £, are C®onUforalli. IfY and Z - define the curve oft) as follows: go ¢ parameter units on X

' are C* fields on U show [Y, Z] is C>. Show: that a coordinate ‘ o 5 integral curve thru m to p y» B0 tunits on Y curve thru p, to
field 8/, is C* on its domain. If X _ is a given vector at p ;\_-} Py, g0 tunits on ( - X) curve thru p, to py, go ¢ units on (- ¥)
o showfthete is a C™ field X on a neighborhood of p with ‘ ' P 'cufve thru p. to o(t). If ¥(¢) = o(y/t) show TY(O) =X, ¥]_.
X X fxyumx, isa coordinate system with domain U sof (Hint: use the lemma in section 9.1 and partial Taylor series.)

p = p. seeylt, . £ ..:)

and A = 2a (9/0x,) and B= Eb,(a/ 31‘],) are C* fields on U ) : 14. Let M and N be manifolds with M connected and let f and g be
then ﬁpd the representation of {4, B] in terms of the coordinate C* maps of M into N. Show f, = 0 iff f is a constant map. If
vector fields. Show [X, g¥1 = f(Xg)Y — g(YDX + fglX, Y] f(m) = g(m) at one m in M and f, = g, at all points show f = g.

where X and ¥ are C* fields on U and f and £ are in Cc*=(U, R).

identi 15, Let f be in C™(M, R) and define the differential of f, df, to be
Prove the Jacoby identity.

- 7 thelinear map of ¥_ into R where (df)_(X_)=X_f. Show
11. Let 4, B and C be in C*(R?, R) with B #£ 0 anywhere. Let f,(X,,) = [(df)_(X))(3/3¢) where ¢ is the identity coordinate

V = Ai + Bj + Ck, X = -Bi+ Aj, and ¥ = -Cj + Bk (advanced " —_— function on R. It is because of this case that in a general

calculuso?otzsi;ion)b Forp in R:.' let P =1[f g::e(’if)pv'ectors ‘at ’ case the Jacobian f, is often called the “differential of f.
Z .V =0] Show is a two-dimensional sp
P

each point by showing X_and Y _ are a base for Pp. Sl)O\'v '
[X, Y] lies in P_iff V_-(curl V) =Q. If there is a function

16. Prove the Inverse Function Theorem (p.h 10). State and prove
a version of the Implicit Function Theorem of advanced calcu-

ii;
|

ppS °%(R 3 R) Wipth graﬁ £ 40 such thg't MPP is the tangent plane -~ lus in terms of the Jacobian map.
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17. Prove the last sentence in the third paragraph of section 1.6.

. Show that the image of a regular (o, £ 0) univalent curve o
mapping an open interval into a manifold ¥ is a one-dimensional
submanifold of M. Let X be a unit constant vector field on
R?2 with irrational slope. Let T be the set of equivalence

. classes on R2 where (g, b) ~(c. d) iffa~c=nand (b-d)=m
for integers m and n. Show T is a two-dimensional manifold
(which is called the flat torus) in a natural way. Show Xin-
duces a vector field on T such that the image of one integral
curve of X defines a one-dimensional submanifold of T that
is dense in T.

18. Let M, and M, be C* manifolds. Letw,;: M, x M, > M, by
,(ml, m,) = m, for i = 1, 2. Define a C* structure on M, x
- M, som are C*. Show (M, x M )(ml'mz) is naturally isomor-
phic to (Ml)ml x (M3)m, ’

19. Lét M be a C* n-manifold. Let T(M) = [(m, X): X in¥_],
and let m T(M) » M by wlm, X) = m. If (¢, U) is a coordinate
pair on M with x, = u, o ¢ let U=n"U), X, = x,om, and for
(m, X)in U et x [m, X)=a,if X = 2a (a/ax‘) Let ¢: U-
R?"sou o¢— f,andu , op=5%, fori=1,.,n Show the
-subatlas of pairs (¢, U) defines a C°° structure on T(M) which
is called the tangent bundle of M. If f is a C* map of M into
N show f, induces a C* map of T(M) into T(N).

+20, Let G be a Lie group. If g:in G let L R g and A denote the
maps of G into G defined by L (h) gh, R (b) hg, and
A (h) = ghg™*. Show L, R, and A, are C°° A vector field
X on G is left invariant 1f (L ) X , for all g and h. Show
alleft invariant field is C* and is completely determined by
its value at the identity e. If X and ¥ are left invariant, show
[X, Y] is left invariant. The set of left invariant vector fields
on G forms an n dimensional vector space called the Lie alge-
bra of G which is denoted by g. Define a one-parameter sub-
group of G to be the image of a C* homormorphism of R into
G. Show there is a 1:1 correspondence between one-parameter
subgroups and integral curves of left invariant vector fields
thru e. Show the map (g, h) — gh™! is C* from Gx G into G

a
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iff the maps (g, h) — gh and g —» g~ ! are C™,

Let G = GL(n, R) and for a matrix g in G let u, (g) = g, (see
example 3). Call u, ; the natural coordinate functions on G.
Write u,, + L gasa linear combination of the natural coordinate
functions. Let X, / be the unique left invariant field on G with
X, le) = (9/8u,,)e) where e is the identity element. Compute
X,, as a field on G in terms of the coordinate vector fields.
Compute [X“, X ). If A(t) is a C*® curve in G with A(0) = e
and A(t) orthogonal for all t show dA/dt = (da”/dt) is a skew-
symmetric matrix for ¢ = 0,

Let M be a C* n-manifold. Let B(M) = [(m; e,,...,e.): min¥
and e ,...,e_ an ordered base& of M_ )1 Letm B(M)— M by
wlm; e ) =m If(p, U)a coordmate pair on M with x;
=u, + P, let (¢, U)zbe a coordinate pair on B(M) with U = ﬂ"(U)
and ¢: U — Rn*"" by the coordinate functions ¥ preeerX

X1y XygpeensX,, Where X ,=x, +mand if b= (m; el’z_’"in) then
e, = 2.,x,,(b)(d/0x,). Show the subatlas of pairs (¢ U )
defines a C* structure on B(M) which is called the bundle of
bases over M. For g in GL(n, R) let R, BUWM) — B(M) by

R (b) = bg = (m; =
Show R is C™. Lets,: U - B(M) by sy(m) = {m; (c?/c?xl)m
seess(0/0x ) ) for m in U Show s,, is C*and 7 - s, is the
identity on U The map s, is called the coordinate sectzon

map over U. Let qS U x GL(n, R) — U by qb(m, 8) =

iu(m) = s, (m)g. Show $is a diffeo onto its image. The map

¢ is called a strip map. 1f (¢, U) and (¢, V) are coordinate

pairs on M define s, ,,: UNV — GL(n, R) by s, ,(m) = g if
sy(m)g = sy (m). Show s, is C* it is called a structural
function for B(M). Show (bg,)g, = b(g,8,) which justifies the
name right action for Re‘- For fixed b in B(M) let f,: GL(n, R) —»
B(M) by f,(g) = bg. Show £, is C™. Call the set Fm = Ym)

the (vertical) fiber over m in M. Show F_ isan n? — submani-
fold of B(M) and f, is a diffo of GL(n, R) onto F‘n’(b)‘ If 7(b) =
n(c), show £ 1o f, is a left translation on GL(n, R). A vector

X on B(M) such that 7{X) = 0 is called a vertical vector. For

b in B(M), let E”(b) = (fb),,X”(e) define a vector E”(b) (see
problem 21). Show E yisa global C vertical vector field on
B(M). Compute [E, , E_ ).

1j?

‘- xg“ep 2,g12e,,...,5.ig'."e,) if b = (m,‘ el'"'en)°
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