LECTURE 33

Torsion tensor (recap)

Cartan's 1st structural Eq'n

The 1-2 Version of Stokes' Thm.
[MTW sect. 3]

The Infinitesimal Stokes' Thm

[MTW sect 14.5, S&T sect 7]
Let \(x^k(A, x) \) be the 2-D domain spanned by the integral curves whose tangents are \(\Delta x \) and \(\Delta y \):

\[P = \{ x^k(A, x) \} \]

\[U = \frac{\partial x^k}{\partial x} \Delta x \]

\[V = \frac{\partial x^k}{\partial y} \Delta y \]

\[T(U, V) = \Delta x \Delta y \left(\nabla U - \nabla V - [U, V] \right) \]

Note: In the diagram in class, the parameter increments \(\Delta x \) and \(\Delta y \) were absorbed into the vectors \(U \) and \(V \):

\[U = \Delta x \frac{\partial x^k}{\partial x} \frac{\partial}{\partial x^k} \] so that \(\delta P = U \) and

\[V = \Delta y \frac{\partial x^k}{\partial y} \frac{\partial}{\partial x^k} \]
1) Cartan's 1st structural equation

The mapping

\[\Pi : M_0 \times M_0 \rightarrow M_0 \]

\[(\alpha, \nu) \mapsto \Pi(\alpha, \nu) = \nabla_{\nu} \alpha - \nabla_{\alpha} \nu - [\nu, \alpha] \]

is pointwise linear and hence is a tensor map, i.e., a multilinear map. A tensor for each tangent space \(M_0 \).
1) Cartan's 1st Structural Equation

Being a tensor map,

\[T(u, v) = \nabla_u v - \nabla_v u - [u, v] \]

can be expanded in terms of the vector basis and its dual,

\[T = e^k T^k_{\ n} \omega^m \otimes \omega^n; \quad T(u, v) = e^k T^k_{\ mn} \omega^m(u) \omega^n(v) \]

with the expansion coefficients \(T^k_{\ mn} \) to be determined. By expressing \(T \) in terms of the connection 1-forms \(\omega^i \), one obtains Cartan's 1st structure equation of differential geometry as follows:
Choose a field of basis vector ξe_i and its dual ξe_i:

$$\langle \omega^i, e_i \rangle = \delta_i^i.$$

Expand the two given vector fields u and v in $T(u, v)$ in terms of these basis elements:

$$u = e_i \langle \omega^i, u \rangle = e_i u^i(x),$$

$$v = e_i \langle \omega^i, v \rangle = e_i v^i(x).$$

Using the product rule one obtains

$$\nabla_u v - \nabla_v u - [u, v] = T(u, v) =$$

$$e_i \nabla_u \langle \omega^i, v \rangle - e_i \nabla_v \langle \omega^i, u \rangle - e_i \langle \omega^i, [u, v] \rangle$$

$$+ (\nabla_v e_i) \langle \omega^i, v \rangle - (\nabla_u e_i) \langle \omega^i, u \rangle$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$e_i \langle \omega^i, u \rangle \quad e_i \langle \omega^i, v \rangle \quad \text{Law of parallel transport}\}$$

Letting $i = i', j = i''$ then dropping the prime ("index gymnastics") and...
recalling that

\[\nabla_u \langle \omega^2, v \rangle = u \langle \omega^2, v \rangle (= D_u v^2) \]

\[\nabla_v \langle \omega^2, u \rangle = v \langle \omega^2, u \rangle (= D_v u^2) \]

are directional derivatives of scalars one finds

\[T(u, v) = \]

\[= e_i \left\{ \left[u \langle \omega^2, v \rangle - v \langle \omega^2, u \rangle - \langle \omega^2, [u, v] \rangle \right] \right\} \]

\[\int \omega = \left[\int \omega^2 \cdot u \times v \right] \quad \text{"infinitesimal Stokes Thm"} \]

\[+ \langle \omega^2 \cdot \omega^j \times \omega^i \cdot \omega^i \times \omega^j, u \times v \rangle \}

\[= e_i \cdot \langle dw^2 + \omega^2 \cdot \omega^j \times \omega^i, u \times v \rangle \quad \text{vector valued 2-form} \]

This holds \(\forall \) pairs of vector fields \(u \times v \)

Thus the explicit expression for the map \(T \) is

\[T = e_i \otimes (dw^i + \omega^2 \cdot \omega^j \times \omega^i) = e_i \otimes \Omega^2 \]
This is Cartan's 1st structural equation. It is an explicit expression for the tensor map T, Cartan's torsion tensor:

$$T = e_i \otimes \Omega^i,$$

The two-form

$$\Omega^i = d\omega^i + \omega^j \wedge \omega^i$$

is called Cartan's torsion 2-form.

By expanding $d\omega^i$ and $\omega^j \wedge \omega^i$ in terms of $\omega^m \wedge \omega^n$ one obtains

$$T = \frac{1}{2} e_i T^i_{mn} \omega^m \wedge \omega^n = e_i T^i_{mn} \omega^m \wedge \omega^n$$

$$\Omega^i = \frac{1}{2} T^i_{mn} \omega^m \wedge \omega^n$$

The parallel transport is said to be integrable if Cartan's torsion vectorial 2-form vanishes:

$$e_i \otimes \Omega^i = 0$$
II Stokes Theorem

Consider the line of a one-dimensional form $\omega = \int\alpha \, d\gamma(\alpha)$ around a closed loop determined by the vector fields \mathbf{u} and \mathbf{v}.

\[\oint \omega = \int_{\mathbf{u}} \alpha \, ds + \frac{1}{2} \int_{\mathbf{u} \times \mathbf{v}} \alpha \, ds + \int_{\mathbf{u}} \left(-\mathbf{V} \cdot \nabla \right) d\mathbf{u} \]

Applying the mean value theorem for integrals whose limits are close together, one finds to second order accuracy that...
\[\delta \omega = \langle \omega, \nu \rangle \Delta \Phi - \langle \omega, \nu \rangle \Delta \Phi + \langle \omega, \nu \rangle \Delta \Phi - \langle \omega, \nu \rangle \Delta \Phi \]

Hence

\[\Delta \nu = \frac{\langle \omega, \nu \rangle \Delta \Phi}{\langle \omega, \nu \rangle} \]

Q: What is the value of the three term expression inside the curly bracket?

A: The answer, to be validated below, is that

\[u \langle \omega, \nu \rangle - v \langle \omega, \nu \rangle - \langle \omega, [\nu, \omega] \rangle = \langle d\omega, u \times \nu \rangle \]

Consequently, the line integral over the boundary \(\partial A \) of the area \(A \) spanned by the vectors \(d\omega \) and \(d\omega \times \nu \) is

\[\oint_{\partial A} \omega = \int_{\partial A} \langle d\omega, u \times \nu \rangle d\sigma = \int_{\partial A} \langle d\omega, u \times \nu \rangle d\sigma
\]
This is the infinitesimal version of the 1-2 version of Stokes' theorem, which relates the area integral over a region spanned by \(\partial S \) and \(\partial \Gamma \) to the line integral over the boundary of that region.

It is parametrized by the curve parameter \(t \) and \(\xi \),

\[
X^k(\xi, t) \quad \text{for} \quad 0 < \Delta \xi \leq 5 \\
2 \Delta \xi \leq t \\
2 \Delta \xi \leq 2 \Delta t
\]

so that

\[
v = \frac{\partial X^k}{\partial \xi} \frac{\partial}{\partial x^k} \\
v = \frac{\partial X^k}{\partial t} \frac{\partial}{\partial x^k}
\]

are the given tangent. One needs to evaluate \(\langle dw, u \times v \rangle \). To this end one observes that the 2-form \(dw \)
is given to by
\[d\omega = d\left(\omega^i dx^i\right) = \frac{\partial \omega^i}{\partial x^j} dx^j dx^i \]

Consequently
\[\langle d\omega, u \times v \rangle = \left(\frac{\partial \omega^i}{\partial x^j} - \frac{\partial \omega^i}{\partial x^j}\right) \langle dx^j \circ dx^i, \frac{\partial x^k}{\partial x^j} \frac{\partial x^l}{\partial x^i} \frac{\partial x^m}{\partial x^k} \frac{\partial x^n}{\partial x^l} \rangle \]

\[= \left(\frac{\partial \omega^i}{\partial x^j} - \frac{\partial \omega^i}{\partial x^j}\right) \frac{\partial x^i}{\partial x^j} \frac{\partial x^j}{\partial x^i} \frac{\partial x^k}{\partial x^l} \frac{\partial x^l}{\partial x^k} \frac{\partial x^m}{\partial x^k} \frac{\partial x^n}{\partial x^l} = 0 \]
Combining Eqs. (1), (2), and (3) on p 33.6, 33.8

\[\oint \omega = \langle dw, u \times v \rangle \Delta S \Delta z \]

\[- \int_{SS} \left(\frac{\partial \omega_2}{\partial x} - \frac{\partial \omega_1}{\partial y} \right) \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} \, dx \, dy \]

The right hand side is a surface integral over an area parametrized by \(s \) and \(t \).

This result, written symbolically as

\[\oint \omega = \iiint_{\text{area}} \omega \, \text{d}(\text{area}) \]

is known as the 1-2 version of Stokes' theorem. Applied to an infinitesimal area, it is a mere restatement of Eq. (2) on page 33.6.

It therefore is appropriate to refer to
This equation is the "infinitesimal 1-2 version of Stokes' theorem.

The fundamental equality Eq. (2) on page 33.6, namely

$$\langle dw, u \times v \rangle = u(\langle w, v \rangle) - v(\langle w, u \rangle) - \langle w, [u, v] \rangle$$

is a statement which combines linear algebra with calculus. Its validity is based on the observation that both sides of this equation are pointwise linear in w. Hence it is enough to validate it for the 1-form

$$w = \gamma \, d \, y$$
Without loss of generality.

Proof: we consider \(w = f \, dg \) so that we have

\[
\begin{align*}
\text{L.H.S.} & = \langle dw, u \times v \rangle = \langle df \wedge dg, u \times v \rangle \\
& = \langle df, u \rangle \langle dg, v \rangle - \langle dg, u \rangle \langle df, v \rangle \\
& = u(f) v(g) - u(g) v(f)
\end{align*}
\]

Here \(u(f), \) etc. have the usual meaning.

\[
\begin{align*}
\text{R.H.S.} & = \langle u, u \rangle v - v \langle u, u \rangle - \langle u, u \rangle |
\end{align*}
\]

\[
\begin{align*}
& = u(f) \langle dg, v \rangle - v(f) \langle dg, u \rangle - f \langle dg, u \rangle (g) \\
& = u(f) v(g) - v(f) u(g) \\
& \quad + f \langle u(v(g)), - f v(u(g)) \rangle - f \{ u(v(g)) - v(u(g)) \} \\
& = u(f) v(g) - v(f) u(g) + \text{canceled terms}
\end{align*}
\]

\[
\begin{align*}
\therefore \text{L.H.S.} & = \text{R.H.S.}
\end{align*}
\]

This validates the boxed Stokes' Thm on page 33.10, and therefore establishes
Cartan's 1st structural equation

\[\delta^i_j = dw^i + \omega^i_j \wedge \omega_j^i \]