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Abstract

We identify the roots and the fundamental premise of Newton’s

scientific achievements: to grasp the nature of the world, one’s thinking

must begin with information received from the world. Adopting it, we

apply elementary calculus to three pieces of information, Kepler’s three

laws, to obtain Newton’s universal law of gravitation.

1 Newton’s fundamental premise and its origin

1.1 The fundamental premise

Q: What was the fundamental premise which paved the way towards
Newton’s unprecedented achievement?
Why was he successful, while others (like Descarte) were not?

A: Newton stated it thusly:

· · · I frame no hypotheses; · · ·
The word “hypothesis” is here used by me to signify only
(i) such a proposition as is not a phenomenon
(ii) nor deduced from any phenomena,
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but assumed or supposed – without any experimental proof [whatso-
ever].

To be more explicit1, he used “hypothesis” to refer to an arbitrary statement,
i.e. a claim unsupported by any observational evidence. Here are some
examples:

(i) The works of Plato are being studied by a reading group of gremlins on
the planet Venus (to pick an obvious example).

(ii) Colored light is produced by rotating particles and white light is less
produced by nonrotating particles (Descarte).

(iii) White light is a symmetrical wave pulse (Robert Hooke).

(iv) Quarks are composed of strings in a 26-dimensional space (20th century
string theorist), etc.2

As Wolfgang Pauli would say, none of these statements is right; they aren’t
even wrong.
Following Newton, what Pauli was directing attention to was that there are
three types of claims:

1. Right ones, which are true because they have a positive relationship to
reality,

2. false ones, which are untrue because they have a negative relation to
reality, and

3. arbitrary ones, for which there is no evidence whatsoever: they are
detached from reality.

and it is the arbitrary ones “which aren’t even wrong”.

Q: What cognitive value, if any, did Newton see in one’s contemplation of
arbitrary claims?

1Newton did not mean to reject out of hand all hypotheses that lacked full experimental
proof.

2A continuation of this list would include astrology, intelligent design, clairvoyance,
ESP, God, an afterlife, reincarnation, and other misintegrations.
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A: Newton must be credited with being the first one to identify what in
20th century vernacular is called Garbage In Gargage Out (G.I.G.O.).
Writing to a friend, he said:

“If anyone may offer conjectures about the truth of things
from the mere possibility of hypotheses, I do not see by what
stipulation anything certain can be determined in any science;
since one or another set of hypotheses may always be devised
which will appear to supply new difficulties. Hence I judged that
one should abstain from contemplating hypotheses, as [one does]
from improper argumentation.”

In other words, one’s thinking (“contemplation”) should not start with Garbage,
i.e. arbitrary claims (“hypotheses”) because the output, “conjectures about
the truth of things,” will also be Garbage, just as one gets “from improper
argumentation” .
Furthermore, as David Harriman puts it3 , one cannot even achieve the mis-
guided goal of disproving an arbitrary idea. Such a claim can always be
shielded by further arbitrary assertions (“one or another set of hypotheses”)
There is only one way out of such a proliferating web of arbitrary conjec-
tures, and that is to dismiss them outright as uncognitive and unworthy of
attention.

This is why Newton insisted that the arbitrary be rejected without contem-
plation.

With this Newton introduced a new epistemological principle into the
theory of knowledge:
The outright dismissal of arbitrary claims, without contemplation!
For this principle alone Newton deserves to be regarded as the greatest epis-
temologist of his era.

Q: What, then, is Newton’s fundamental premise stated positively?

A: To grasp the nature of the world one’s thinking has to
start with information received from the world.

3THE LOGICAL LEAP: Induction in Physics, by D. Harriman, With an Introduction
by L. Peikoff (New American Library, New York, N.Y., 2010), page 65.
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a) What is the nature of the world? The world is a causal realm ruled by
natural law. It is not a realm of inexplicable miracles ruled by a supernatural
power, nor is it an unintelligible chaos ruled by chance. Instead, the nature
of the world is expressed by the observation that

“Things are what they are because they were what they were, and
things will be what they will be because they are what they are”

This is the law of causality, Aristotle’s law of identity (everything has a spe-
cific nature; things are what they are; A is A)
applied to actions.

b) That one’s thinking “start with information received from the world”
is the starting point of Aristotle’s epistemology, the evidence of the senses,

be they aided or unaided by specialized instruments.

1.2 Its origin

Newton did not arrive at his fundamental premise in a cultural vacuum.

Q: What was the frame of reference – the context – that led to the achieve-
ments of Newton, those before him, and those after him?

A: Here it is essential to realize that Aristotle, whose works Newton had
studied as a college student, may be considered as the cultural barom-
eter of Western History.
Whenever his influence dominated the scene it paved the way towards
histories most brilliant eras, whenever it fell so did mankind.

Aristotle’s revival in the 13th century brought men to the Renaissance,
and the Renaissance led to the Age of Reason, the Enlightenment.
Indeed, Galileo was born in the year that Michelangelo died (1564),
and Newton was born on the day that Galileo died (1642).

2 Newton’s universal law of gravitation

The Enlightenment was ushered in by Newton’s unprecedented achievements.
There were three of them:
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1. His Opticks, an inspiration and exemplar of Induction and the Experi-
mental Method.

2. His infinitesimal calculus.

3. His universal law of gravitation.

All three of them illustrate Aristotle’s dictum which Newton adopted as his
basic premise:

“To grasp the nature of the world one’s thinking has to start
with information received from the world”.

To grasp the nature of gravitation, Newton’s thinking started with informa-
tion about the dynamics of moving bodies,

m×
−−−−−−−−→
acceleration =

−−−→
Force,

applied to the motion of planets as given by Kepler’s three laws.

2.1 Kepler’s three laws

(1) The radius vector sun-planet sweeps out equal areas in equal times.

(2) The trajectory of each planet is an ellipse with the sun located at one
focus,

r =
p

1− ǫ cos θ
.

(The parameter p is called the semi-latus rectum of the ellipse. It is
the vertical distance from the focus to ellipse. The parameter ǫ is the
eccentricity of the ellipse.)

(3) The square of the planets’ orbital periods vary as the third power of the
major axes of their ellipses:

T 2

a3
= same const. for all planets .
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2.2 Newton’s first step: acceleration of a moving body

Using his second law of motion,

m
d2
−→
R

dt2
=

−→
F ,

Newton determined
−→
F by evaluating the acceleration along the trajectory of

a moving body.

Planet

uθ

Sun

ur

θ

r

a) Location:
−→
R = r−→ur ;

−→ur =
−→
i cos θ +

−→
j sin θ

−→uθ =
−→−i sin θ +

−→
j cos θ

b) Velocity:
d
−→

R
dt

= dr
dt

−→ur +r d−→ur

dt

= dr
dt

−→ur +r−→uθ
dθ
dt

∣
∣
∣
∣
∣

−→uθ = d−→ur

dθ
d−→uθ

dθ
= −−→ur

c) Acceleration:

d
−→
2R

dt2
=

d2r

dt2
−→ur +

coriolis acc′n
︷ ︸︸ ︷

2
dr

dt
−→uθ

centripetal acc′n
︷ ︸︸ ︷

−r−→ur

(
dθ

dt

)2

+r−→uθ

d2θ

dt2
(1)

=

[

d2r

dt2
− r

(
dθ

dt

)2
]

︸ ︷︷ ︸

ar

−→ur +
1

r

d

dt

(

r2
dθ

dt

)

︸ ︷︷ ︸

aθ

−→uθ (2)
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2.3 Newton’s second step: use Kepler’s laws

Applying
−→
F = m−→a to Kepler’s three laws yields both the direction and the

magnitude of the gravitational force on a planet.

2.3.1 Kepler’s first law

Equal areas in equal times, ∆(area) ∝ ∆t , implies d(area)
dt

= 1
2
r2 dθ

dt
= c

2
.

Consequently,

aθ = 0.

Thus the acceleration, Eq.(2), is purely radial along the direction sun-planet:

d
−→
2R

dt2
= ar

−→ur .

This is the first key result.

2.3.2 Kepler’s second law

Next consider one of Kepler’s ellipses having semi-latus rectum p and eccen-
tricity ǫ. Calculate the radial acceleration ar using Kepler’s first and second
laws:

r = p

1−ǫ cos θ
⇐ Kepler (2)

dr
dt

= − pǫ sin θ

(1−ǫ cos θ)2
dθ
dt

= − ǫ sin θ
p

r2
dθ

dt
︸︷︷︸

c

⇐ Kepler (1)

= − ǫ sin θ
p

c ⇐ Kepler (1)
d2r
dt2

= − c
p
ǫ cos θ dθ

dt

= c
p

(
p

r
− 1

)
dθ
dt

⇐ −ǫ cos = p

r
− 1 ⇐ Kepler (2)

= c
p

(
p

r
− 1

)
c
r2

⇐ dθ
dt

= c
r2

⇐ Kepler (1)

r
(
dθ
dt

)2
= c2

r3
⇐ Kepler (1)

Subtracting the last two lines, one finds that the radial acceleration ar in
Eq.(2) is

d2r

dt2
− r

(
dθ

dt

)2

= −
c2

p

1

r2
.
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Thus, not only is the acceleration, Eq.(2), of a moving planet purely radial,
but its magnitude is inversely proportional to its squared distance, with a
constant of proportionality constant (c2/p) that depends on the square of the
planet’s areal velocity and the shape of the planetary ellipse.

Question: Is this acceleration the same for all planets?
The answer depends on the orbital periods of the planets.

2.3.3 Kepler’s third law

Kepler’s first law implies that the orbital period is proportional to the plan-
etary ellipse. This ellipse has major and minor axes a and b. Consequently,

c

2
=

d(area)

dt
⇒

c

2
T = area = πab

Hence

c =
2πab

T

Q: What is the relation between the semi-latus rectum p and the two axes a
and b?

︸ ︷︷ ︸

ǫ a






=p

a
a

b

A: Passing through the two foci of the ellipse are its two lati recti (“straight
sides”), the vertical chords through the two focal points located at ±ǫa =
±
√
a2 − b2. The size of each latus rectum is 2p. Thus one has a right triangle

whose two sides are 2ǫa and p, and whose hypotenuse is 2a− p. Pythagoras
tells us that
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p2 + (2ǫa)2 = (2a− p)2.

Using (ǫa)2 = a2 − b2one finds that the semi-latus rectum is

p =
b2

a
.

By applying the two boxed expressions to the radial acceleration ar

ar = −
c2

p

1

r2
= −

(
2πab

T

)2
a

b2
1

r2

= −4π2 a
3

T 2

1

r2
.

Using Kepler’s third law, one obtains

ar = −
γ

r2

where γ = γ(M) is a constant which is the same for all planets, but which
depends on the mass M of of the sun in an as-yet-unspecified way.

2.4 Newton’s third step: use his 2nd and 3rd law of
motion.

Q: What is the value of that planet-independent constant γ?
Newton answers this question by resorting to his second and third law of
motion.

(i) Applying his second law to a planet of mass m,

m×
−−−−−−−−−→
(acceleration) =

−→
F ,

one obtains the purely redial gravitational force,

F SP
r = −

mγ(M)

r2
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acting on the planet. This is the force with which the sun attracts the
planet.

(ii) On the other hand, by his third law there is an equal but opposite force
acting on the sun,

F PS
r = −F SP

r ,

which is to say that the weight of the planet towards the sun is equal
to the weight of the sun towards the planet. Consequently,

M Γ(m)

r2
=

mγ(M)

r2
.

This equality holds for all pairs of masses m and M. Consequently,

Fr = −κ
Mm

r2
.

Here κ, Newton’s gravitational constant, is a universal constant inde-
pendent of M and m. The boxed equation is a mathematical statement
of Newton’s universal law of gravitation.

2.5 The Cavendish Experiment (1789)

The universal constant κ has the value

κ =
1

15 000 000

[
cm3

gr sec3

]

in c.g.s. units. This constant is determined by measuring the attractive
force between masses separated by a known distant r. One suspends two
small masses m from a torsional balance.
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=r
m

M

m

M

By bringing large masses M to
each of the masses m, Cavendish measured the gravitational force Fr by
measuring the angular deflection of the pendulum.
Newton’s third law of motion, “For every action there is an equal and opposite
reaction”, applied to his law of gravitation, implies that the weight of an apple
attracted by the earth’s gravity equals the weight of the earth attracted by
the gravity of the apples. This equality determines the mass of the earth
once the weight of the apple and its distance from the (center of the) earth
have been measured.
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