Geometric Properties of the Particle Density-flux 3-form

$$
{ }^{*} S=N u^{\mu} \epsilon_{\mu \alpha \beta \gamma} \frac{d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}}{3!}
$$

One way of mathematizing matter in motion is in terms the eventwise previously defined particle current 4 -vector,

$$
\begin{align*}
\mathbf{S} \equiv N \mathbf{u} & =\underbrace{N\left(x^{\nu}\right) u^{\mu}}_{S^{\mu}} \frac{\partial}{\partial x^{\mu}} \\
& =\mathbf{e}_{\mu} S^{\mu} \tag{1}
\end{align*}
$$

But in order to mathematize the causal relation between matter and gravitation/geometry one also needs to know the amount of matter in a given generalized volume of spacetime. For any triad of spacetime vectors $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ this volume is expressed by the "volume 1-form"

$$
\begin{aligned}
\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C}) & =\Sigma_{\mu}(\mathbf{A}, \mathbf{B}, \mathbf{C}) d x^{\mu} \\
& \equiv \epsilon_{\mu \alpha \beta \gamma} \frac{d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}}{3!}(\mathbf{A}, \mathbf{B}, \mathbf{C}) d x^{\mu} \\
& =\epsilon_{\mu \alpha \beta \gamma} A^{\alpha} B^{\beta} C^{\gamma} d x^{\mu}
\end{aligned}
$$

or equivalently by the "volume vector"

$$
\begin{align*}
\boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C}) & =\mathbf{e}_{\nu} g^{\nu \mu} \Sigma_{\mu}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \\
& \equiv \mathbf{e}_{\nu} \Sigma^{\nu}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \tag{2}
\end{align*}
$$

Here

$$
\epsilon_{\mu \alpha \beta \gamma}=\sqrt{-\operatorname{det} g_{\sigma \rho}}[\mu \alpha \beta \gamma]
$$

are the components of the totally anti-symmetric Levi-Civita tensor in 4-d with metric

$$
g_{\sigma \rho} d x^{\sigma} d x^{\rho} .
$$

The importance of this "volume vector" derives from its four geometrical properties:

1. First of all, the "volume vector" $\boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, Eq.(2), in 4-d spacetime is the Lorentzian version of the "area vector", i.e. the familiar cross product, in 3d Euclidean space,

$$
\begin{align*}
{ }^{(2)} \boldsymbol{\Sigma}(\vec{A}, \vec{B}) & =\vec{e}_{\ell} g^{\ell i}{ }^{(2)} \Sigma_{i}(\vec{A}, \vec{B}) \\
& \equiv \vec{e}_{\ell}{ }^{(2)} \Sigma^{\ell}(\vec{A}, \vec{B}), \tag{3}
\end{align*}
$$

which as shown in the footnote ${ }^{1}$ below is equal to $\vec{A} \times \vec{B}$.
Relative to rectilinear (x, y, z)-coordinates, for an area subtended by an as-yet-unspecified pair of vectors, that area vector is

$$
{ }^{(2)} \boldsymbol{\Sigma}=\vec{i} d y \wedge d z+\vec{j} d z \wedge d x+\vec{k} d x \wedge d y
$$

This is the mathematical building block for constructing a syrface integral in Euclidean space.
2. Secondly, the vector $\boldsymbol{\Sigma}$ is (Lorentz)-orthogonal to each of the vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ which span span this volume:

$$
\begin{align*}
\mathbf{A} \cdot \boldsymbol{\Sigma} & =A^{\sigma} g_{\sigma \nu} \Sigma^{\nu}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \tag{4}\\
& =A^{\sigma} g_{\sigma \nu} g^{\nu \mu} \epsilon_{\mu \alpha \beta \gamma} A^{\alpha} B^{\beta} C^{\gamma}=0 \tag{5}
\end{align*}
$$

and similarly for the others.
3. On the other hand, its inner product with the current 4 -vector, Eq.(1),

$$
\mathbf{S} \cdot \boldsymbol{\Sigma}=S^{\sigma} \underbrace{\mathbf{e}_{\sigma \nu} \cdot \mathbf{e}_{\nu} g^{\nu \mu}}_{\delta_{\sigma}{ }^{\mu}} \Sigma_{\mu}(\mathbf{A}, \mathbf{B}, \mathbf{C})
$$

yields

$$
\begin{align*}
\mathbf{S} \cdot \boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C}) & ={ }^{*} \mathbf{S}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \tag{6}\\
& =\left(\begin{array}{c}
\# \text { of particle world lines } \\
\text { passing through the volume } \\
\text { spanned by } \mathbf{A}, \mathbf{B}, \mathbf{C}
\end{array}\right) . \tag{7}
\end{align*}
$$

Thus the particle number ${ }^{*} \mathbf{S}$ arises from the particle 4-current \mathbf{S} and the "volume vector" $\boldsymbol{\Sigma}$ conjointly.
4. Fourth, the "volume vector"

$$
\begin{equation*}
\boldsymbol{\Sigma}=\mathbf{e}_{\mu} \underbrace{\epsilon_{\alpha \beta \gamma}^{\mu} \frac{d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}}{3!}}_{\boldsymbol{\Sigma}^{\mu}} \tag{8}
\end{equation*}
$$

[^0]is invariant under translations into any direction; in other words, its covariant differential vanishes:
$$
d\left(\mathbf{e}_{\mu} \boldsymbol{\Sigma}^{\mu}\right)=0
$$

Leaving the spanning vectors in Eq.(6) unspecified, capitalize on this invariance to find that the exterior derivative of the particle density-flux 3 -form is

$$
\begin{align*}
d^{*} \mathbf{S} & =d(\overbrace{\mathbf{e}_{\mu} S^{\mu}}^{\mathbf{S}} \cdot \overbrace{\mathbf{e}_{\nu} \Sigma^{\nu}}^{\mathbf{\Sigma}}) \\
& =d\left(\mathbf{e}_{\mu} S^{\mu}\right) \cdot \mathbf{e}_{\nu} \wedge \Sigma^{\nu}+S^{\mu} \mathbf{e}_{\mu} \cdot d\left(\mathbf{e}_{\nu} \Sigma^{\nu}\right) \\
& =\mathbf{e}_{\mu} S^{\mu}{ }_{; \sigma} d x^{\sigma} \cdot \mathbf{e}_{\nu} \wedge \Sigma^{\nu}+z e r o \\
& =S_{; \sigma}^{\mu} \delta^{\sigma}{ }_{\mu} \sqrt{-{ }^{4} g} d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3} \\
& =\frac{\partial\left(S^{\mu} \sqrt{-{ }^{4} g}\right)}{\partial x^{\mu}} d^{4} x \\
& =S^{\mu}{ }_{; \mu} \sqrt{-{ }^{4} g} d^{4} x \tag{9}
\end{align*}
$$

1

[^0]: ${ }^{1}$ Indeed, one has

 $$
 \begin{aligned}
 { }^{(2)} \boldsymbol{\Sigma}(\vec{A}, \vec{B})= & \vec{e}_{\ell} \underbrace{\sum_{i}(\vec{A}, \vec{B})}_{g^{\ell i} \underbrace{(2)}_{i j k} \underbrace{(2)}(\vec{A}, \vec{B})} \\
 & \epsilon_{i x^{j} \wedge d x^{k}}^{2!}(\vec{A}, \vec{B}) \\
 = & \vec{e}_{\ell} g^{\ell i} \epsilon_{i j k} A^{j} B^{k} \\
 = & \vec{e}_{\ell}(\vec{A} \times \vec{B})^{\ell} \\
 & \equiv \vec{A} \times \vec{B}
 \end{aligned}
 $$

