


















or Maxwell’sfield systems would be silent: under such circumstances they do
not apply.

1928 Cartan
The problem with Einstein’s

Rµν −
1

2
gµνR =

8πG

c2
Tµν (1)

is that its left hand side is ill-defined when Einstein wrote it down in 1916. He
constructed this tensorial equation from the components of the curvature tensor
merely to (i) satisfy the momenergy conservation law

Tµν
;µ = 0

and (ii) recover the Newtonian gravitational field equation

∇2φ = 4πGρ (2)

in the limit of static weak gravitational fields. Such a construction is necessary
but not enough.

In physics and mathematics both sides of an equation (e.g. the stress-strain
relation of an elastic madium, F=ma, · · · ) must have a well-defined identity.
The geometrical meaning of Einstein’s l.h.s. and the line of reasoning leading
to it need to be specified. Cartan’s formulation in 1928, as well Wheeler’s in
1964 and in 1990 and Misner’s and Wheeler’s in 1972, constitute a non-trivial
step forward in that direction.

A clue as to the sought-after geometrical meaning of the l.h.s. of Eq.(1)
comes from the l.h.s. of Eq.(2). It expresses the following geometrical
Proposition:
For a small sphere of

volume =
4πr3

3

consider the difference between the mean value of φ on the surface of this sphere
and its value at the center. Then

∇2φ = moment of
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8π

volume
.

(3)

(Comment: This property of ∇2φ was pointed out by Maxwell already in 1881.)
The validity of Eq.(3) is based on the following mathematical reasoning: Con-
sider the mean value (M.V.) of the difference of the potential φ on the surface
and the center of a small sphere of surface area 4πr2,

M.V. =
1

4πr2

∫ π

0

∫ 2π

0

[φ(x, y, z)− φ(0, 0, 0)]r2 sin θ dθ dϕ (4)
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Expand [φ(x, y, z)− φ(0, 0, 0)] to second order and obtain

[· · · ] =xφ,x + y φ,y + z φ,z (5)

+
1

2
x2φ,xx +

1

2
y2φ,yy +

1

2
z2φ,zz (6)

+ xy φ,xy + yz φ,yz + zx φ,zx, (7)

where all partial derivatives are evaluated at the center (0, 0, 0) of the sphere.
Introduce the spherical coordinates for (x, y, z), do the integration and finf that
all linear and off-diagonal quadratic terms integrate to zero. The diagonal terms
involving x2, y2, and z2 yield identical results. One obtains

(M.V.) =
1

4πr2
1

2

4πr4

3
(φ,xx + φ,yy + φ,zz)|(0,0,0) . (8)

Consequently, the moment of this mean deviation is

r × (M.V.) =
1

8π
(volume)∇2φ

∣

∣

∣

∣

(0,0,0)

(9)

or

∇2φ = r × (M.V.)
8π

(volume)
(10)

Compare this moment of mean value expression with Newton’s gravitational
field equation Eq.(2). One obtains for a small sphere of radius r

r × (M.V. =
G

2
ρ (volume) =

G

2
(mass) (11)

r × {16π(M.V.} =
8πG

c2
(mass · c2) (12)

Thus, Newton’s gravitational field equation integrated over a sphere of volume
4πr3

3 is

moment of
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=
8πG

c2

(

amount of mass · c2

inside that 3-volume

)

(13)

This is the integral formulation of the Newtoniuan differential field Eq.(2). This
equation relates what is in the interior of a volume to the moment of something
that is measurable on its boundary.
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Cartan, Misner, and Wheeler generalize this moment-based feature to 3-
cubes1 in spacetime. With them the integral formulation of the Einstein field
equations get geometrized into the form

sum of moments of
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8πG

c2









amount of
momenergy
inside this
3-cube









(14)

(a) Each 3-cube has associated with it (i) a geometrical object, its total moment of rotation
and (ii) a certain vectorial amount of momenergy, which it occupies.

(b) The field Eqs.(1) state that the momenergy in the 3-cube is the source
of the moment of rotation. Both are collinjear 4-vectors with Newton’s
relativized gravitational constant 8πG

c2
as the constant of proportionality.

(c) Each vector has 4 momenergy components, and there are four 3-cube
components (∆x∆y∆z, ∆t∆y∆z, ∆t∆z∆x, ∆t∆x∆y) for each volume 4-
vector. Consequently, there are 4× 4 = 16 equations as compared to only
one equation for the Newtonian gravitation.

(d) To summarize: these equations say that, except for the universal factor
8πG/c2, the quantity of moment of rotation equals the amount of momen-
ergy in each of these 3-cubes.

1more precisely, to the components (∆x∆y∆z) , (∆t∆y∆z) , (∆t∆z∆x) , (∆t∆x∆y) of a
typical “volume vector”
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