LECTURE 28
I. Einstein's line of reasoning
II. Moment of force
III. Translational equilibrium
IV. Moment of force as torque
V. Equivalence via Hodge dual,

The equations of geometrodynamies, i.e. Einstein's gravitational field equations,

$$
G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi \sigma}{c^{4}} T_{\mu \nu}
$$

which he arrived at in 1216 , are the re sult of his following line of reasoning
I.) EINSTEINS LINEOFREASONING,
a) They must be in the frame work of

Special Relativity within any local spacetime neighbor hood via Einstrein's
(1907) instantaneous Lorentz ("inertial", "free float") frames of reference.
b) The equations of motion for freely moving (or "falling") bodies must be independent of their compositions, and hence geometrical. This is because
of the Eotwos experiment and its restateby Einstein (190°) as the Equivalence Principle, "inertial mass = grav'l mass".
c) The Newtonian scalar gravitational field equation for the gravitational potential must generalized to a system of $2^{n d}$ order P, D, E is in the metric coefficients.
d) The field equations must
(i) satisfy momenengy conservation and
(ii) be tensorial equations.

The rif is of Einstein's 1916 tensor equation is well understood both physically and geometrically. Howevers such understanding did not extend to the l,h,s.

This gap was filled subsequently by E, Cartar and Wheeler. They They vemathencatized the Einstinfield equations in terms of Cantan's exterior calculus and introduced the new geometrical concept of the moment relative to a fulcrum point.
This concept occurs non-trivially in a 3-d environment and generalizes to four and higher dimensions.
II) MOMENT OF FORCE

In three dimension consider a dielectric cube subjected to an electric field $\vec{E}=\vec{e}_{k} E^{k}$

$$
\begin{aligned}
& d e_{2}^{ \pm}+p_{i}^{!} \\
& \vec{E}=\vec{e}_{k} E^{k}
\end{aligned}
$$

The total moment of force acting on this cube is

$$
\stackrel{\rightharpoonup}{s}(\mu, v, t)=
$$

The total moment of force acting on the cubes (space End face $\vec{T}(u, v, t)=\left.\left(P_{3}^{ \pm}-8^{-}\right) \wedge \vec{F}(u, v)\right|_{8_{3}^{+}}+\left.\left(P_{3}^{-}-\rho^{-}\right) \wedge F(v, u)\right|_{P_{3}^{-}}+e t a$
 $P_{3}^{+}-P_{3}^{-}=t$

$$
\begin{aligned}
& \underbrace{\vec{e}_{1} \Delta x^{\prime}}_{\theta_{1}-\beta_{-}-} \wedge \vec{e}_{k} F_{i, j}^{k} d x^{2} \wedge d x^{j}(v, t) \\
& \underbrace{\vec{e}_{2} \Delta x^{2}} \wedge \vec{e}_{k} F_{i z}^{k}{ }_{i j}^{r} d x^{6} \wedge d x^{\dot{j}}(t, u) \\
& p_{2}^{+}-p_{2}^{-}=v \\
& -P\left\{\sum_{\ell=1}^{6} \vec{F}\left(\varepsilon^{\text {th }} \text { face }\right)\right. \\
& \sum_{n}^{*}(u, v, t)=\vec{e}_{3} \wedge \vec{e}_{k} F_{i j j^{\prime}}^{k} d x^{3}(t) d x^{i} \wedge d x^{i}(u, v) \\
& \vec{e}_{1} \wedge \vec{e}_{k} F^{k_{2 j}} 1 d x^{\prime}(u) d x^{2} \wedge d x^{j}(\xi, t) \\
& \vec{e}_{2} \wedge \vec{e}_{k} F_{\left|i^{2} j\right|} \mid x^{2}(v) d x^{i} \lambda d x^{i}(t, u)-P_{i=1}^{16} \sum_{R}\left(R^{t h} f a c e\right) \\
& =\vec{e}_{2} \wedge \vec{e}_{k} F_{|i j j|}^{k} d x^{\ell} A d x^{i} \wedge d x^{j}(u, v, t)-v
\end{aligned}
$$

$$
\begin{aligned}
& \text { (moment of force around } \rho^{\prime} \text {) }
\end{aligned}
$$

Here \vec{F} is the given force field acting on the uncharged dielectric body

$$
\vec{F}=\vec{e}_{k} E^{k} g N d^{m} \epsilon_{m|i j|} d x^{i} \wedge d x^{j}
$$

with
$q \vec{d}=q \vec{e}_{e} d^{B}=$ elementary dipole moment
$N=$ density of molecules each carrrining depole moment $q \vec{d}$.
If the electric field is non-homogene onus, i.e $d \vec{E} \neq 0$, then the total force on the dielectric body will not vanish

$$
\sum_{e=1}^{6} \overrightarrow{E_{m}}\left(e^{\text {th }} \text { face }\right) \neq 0
$$

and will generate linear momentum s and hence

$$
\rho^{\prime} \sum_{e=1}^{6} \vec{F}\left(e^{t h} \text { face }\right) \neq 0
$$

generates "orbital 4 mom. around $B^{1 /}$
which is
orbital angular momenturn. around/relative to the fulcrum P ! By contrast

$$
d P_{1} \overrightarrow{\vec{E}}(u, v, t) \equiv " \text { torque } " \neq 0
$$

generates" intrinsic * mom. ("spur""
will generate spinning motion, ie,
"spin", which is angular momentum intrinsic to the dielectric body.

- Thus the virtue of Cortan's moment concept is this: Starting with the force field \vec{F} it is the

Con a frame invariant way means for mathematizingत, the generators of total angular momentum, both spin and orbital. In the context of $4-d$ spacetime that starting point is the curvature-inducedrotation field,and it leads to the Einstein tensor.
III.) TRANSLATIONAL EQUILIBRIUM
(IN A HOMOGENEOUS ELECTRO STATIC FIELD)
The force field \vec{F} acts on each of the 6 faces with a force which is

$$
\vec{F}\left(e^{\text {th }} \text { face }\right), \quad e=1, \cdots, 6
$$

Denote the interior domain of the dielectric cube by D and it boundary by 2D. It is the union

$$
\bigcup_{l=1}^{6} l^{\text {th }} \text { face }=\partial D
$$

of the cube's six faces.
The total force, which is distributed additively over these faces, is

$$
\vec{F}(\partial D)=\vec{F}\left(U_{i=1}^{6} l^{\text {th }} \text { face }\right)=\sum_{i=1}^{6} \vec{F}\left(l^{\text {th }} \text { face }\right)
$$

There is no charge inside the cube, However there are charges on each of the faces of the cube but they add up to zero.

Consequently, all the forces due to the electostatic field \vec{E}, which we take to be homogeneous, $\sqrt{\text { also add to zero. The cube is in }}$ tranlational equilibrium:

$$
\vec{F}(\partial D)=\sum_{\ell=1}^{6} \vec{F}\left(l^{\text {th }} \text { face }\right)=0
$$

Apply this condition to the total moment of force, Eq. $(2,8,1)$ on page $(28,4)$
$(28.2) \underbrace{\stackrel{\text { T}}{ }(u, v, t)}_{\text {moment }}=\underbrace{d p \wedge \vec{F}(u, v, t)}_{\text {"torque" }}$
of force.
One arrives a the more abstract matte-
$(28,3)$ matical object the "moment of force density", by following the principle that $\overrightarrow{\dot{m}}$ must be evaluate for some triad of vectors, but may beevalwated for any triad.
IV.) MOMENT OF FORCE AS TORQUE: ITS VALIDATION.

The moment of force density,

$$
\begin{aligned}
& \stackrel{\leftrightarrow}{\psi}=d \beta \wedge \vec{m} \\
& =\vec{e}_{\ell} d x^{2} \Lambda \vec{F}_{z^{\prime j} j} d x^{z^{\prime}} \Lambda d x^{\prime} \\
& (28.4)=\vec{e}_{2} \wedge \vec{e}_{k} E^{k} q N d^{m} \epsilon_{\text {m/Lू } 1} d x^{2} \wedge d x^{i} \wedge d x^{\text {J}},
\end{aligned}
$$

evaluated on the cube spanned by the triad of vectors ($u, 2, t)$, Eq. 28,2) represents torque as a bivector. By contrast, the familiar cross product

$$
\vec{T}=\vec{R} \times \vec{F}
$$

Ehesame
represents torque as a vector, To To validate this claim, we show that these two representations are isomorphic,

V THE $~($ "HODGE DUAL") ISOMORPHISM. From the observation the bases

$$
\left.\left\{\vec{e}_{R} \wedge \vec{e}_{k}: \frac{R}{R}\right\}=1,2,3\right\} \text { for } \wedge^{2}\left(E^{3}\right)
$$

and

$$
\left\{\vec{e}_{m}: m=1,2,3\right\} \text { for } E^{3}
$$

have the same dimension

$$
\operatorname{dim} \Lambda^{2}\left(E^{3}\right)=\operatorname{dim} E^{3}(=3)
$$

one constructs the linear formation * according to the following

Definition" ("Hodge dual")

* $\quad \Lambda^{2}\left(E^{3}\right) \longrightarrow E^{3}$

$$
\vec{e}_{k} \wedge \vec{e}_{k} \leadsto *\left(\vec{e}_{2} \wedge \vec{e}_{k}\right)=\vec{e}_{m} \epsilon^{m} \cdot k k
$$

where

$$
\begin{aligned}
E^{m} \& k & =g^{m n} \epsilon_{n l k} \\
& =g^{m n} \sqrt{g}[n l k]
\end{aligned}
$$

are the $\binom{1}{2}$ tensor components of $E \in \Lambda^{3}\left(E^{3}\right)$.
Comment: $Q:$ Where does this definition
SKIP to P28,12 come from?

A: It comes from the metric-induced fact that

$$
\epsilon_{n l k}=\sqrt{g}[n l k] .
$$

and the observation that for

$$
\begin{aligned}
& u=\vec{e}_{n} u^{n} \\
& v=\vec{e}_{z} v^{l} \\
& t=\vec{e}_{k} t^{k}
\end{aligned}
$$

one has the basis invariant inner product

$$
\begin{aligned}
\epsilon_{n e k} u^{n} v^{2} t^{k} & =u^{n} e_{n} \cdot e_{m} \epsilon_{2 k}^{m} v^{2} t^{k} \\
\sqrt{g}\left|\begin{array}{cc}
u^{\prime} u^{2} u^{3} \\
v^{\prime} v^{2} v^{3} \\
t^{\prime} t^{2} t^{3}
\end{array}\right| & \triangleq u \cdot \nless\left(e_{2} \wedge e_{k} v^{2} t^{k}\right) \quad \forall u, v, t \in E^{3} \\
& =u \cdot *(v \wedge t)
\end{aligned}
$$

Apply the * transformation to Eq. $(28,4)$ on page 28,9, a bivector-valued 3-form. The result is the vector-valued 3 -form

$$
\begin{aligned}
X(\stackrel{s}{m}) & =X\left(\vec{e}_{\& \wedge} \vec{e}_{k} E^{k} q N d^{m} \epsilon_{m\left|i_{j}^{\prime}\right|} d x^{2} 1 d x^{i} \wedge d x^{\hat{j}}\right) \\
& =\vec{e}_{n} \epsilon_{l k}^{n} E^{k} q N d^{m} \epsilon_{m\left|i_{j}^{\prime}\right|}\left[i^{\prime} i^{\prime}\right] d x^{\prime} \wedge d x^{2} d x^{3}
\end{aligned}
$$

Take advantage of the fact that

$$
E_{m i j}\left[l_{i j}{ }^{\prime}\right]=\sqrt{g}\left[m_{i j}\right]\left[l_{i j}\right]=\sqrt{g} \delta_{m}^{l}
$$

to obtain

$$
\begin{aligned}
& \text { * }\left(\frac{\stackrel{\rightharpoonup}{s}}{\mathscr{s}}\right)=\vec{e}_{n} \epsilon^{n l k} E_{k} q N d_{2} \sqrt{g} d x^{\prime} \wedge d x^{2} \wedge d x^{3} \\
& \text { Use } \epsilon^{n l k}=g^{n \bar{n}} g^{2 \bar{E}} g^{k \bar{k}} \epsilon_{\bar{n} \bar{\xi} \bar{b}}=\frac{1}{g} \sqrt{g}[n l k] \\
& =\frac{1}{\sqrt{g}}[n l k] \\
& \text { * }\left(\mathcal{S}_{m}^{2}\right)=\vec{e}_{n}[n \ell k] E_{k} g N d e d x^{\prime} \wedge d x^{2} \wedge d x^{3} \\
& =\frac{1}{\sqrt{g}}\left|\begin{array}{lll}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
d_{1} & d_{2} & d_{3} \\
q E_{1} & q E_{2} & q E_{3}
\end{array}\right| N \sqrt{g} d x^{\prime} \wedge d x^{2} \wedge d x^{3}
\end{aligned}
$$

relative to a
generically
given basis)
Evaluate this vectorial 3-form on the triad
of spanning vectors (u, v, t)

$$
\begin{aligned}
*(\stackrel{\leftrightarrow}{\mathcal{T}})(u, v, t) & =(\vec{q} \vec{d} \times \vec{E}) \cdot(\# \text { of molecules }) \\
& =(\overline{\text { dipole moment }}) \times \vec{E} \\
& =\vec{R} \times \vec{F}
\end{aligned}
$$

where $\vec{R}=\vec{d}$. (\# of molecules)

$$
\vec{F}=q \vec{E}
$$

OR

$$
\begin{aligned}
& \vec{F}=\vec{E} \times(\text { total \# of surface charges } q) \\
& \vec{R}=\vec{d}
\end{aligned}
$$

