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Dear Rodica,
In our last conversation, if I remember correctly, you directed attention to the
problem of the quantum dynamics of & particle subjected to periodic poten-
tial like the one in Figure 1 below. Systems mathematized by such periodic
structures are fundamental to physics (and engineering), not only in the con-
text of quantum mechanics, but also in laser holography, transmission through
periodic optical fibers, etc.The Epilogue below concreitizes aspects of this in
mathematical terms.

Below is a more readable account of my hand written e-mail from Thursday..

1 THE FRAMEWORK

Consider Klein-Gordon (K-K) wave equation
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The asymptotic non-relativistic limit of its solutions can be obtained in two
ways:”

# 1: First exhibit the asymptotic non-relativistic wave equation, and then solve
it, or

#£ 2: First solve the K-G equation, and then go to the asymptotic non-relativistic
limit of its solutions.

When the potential V(t,z,y,2) depends on time and varies with sufficiently
high frequency, e.g. like in Figure 1,
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Figure 1: Ramped-up sinosoid

then approach # 1 does not really mathematize all the facts of the matter.
This is because approach # 1 excludes the possibility of particle-antiparticle
pair creation from the very start of one’s formulation.
If the potential
V(t,z,y,2) ~sinwt

has Fourier components of frequency w suffiently high (z'.e. w2 2'"T°2) then

there is the possibility of non-zero amplitude (i.e. inner product) between pos-
itive and negative energy solutions to the K-G wave equation. Such a non-
zeroness mathematizes the creation process of particles and anti-particles. A



mathematical formulation in trms of the (non-relativistic) Schrodinger equation
would exclude such a process from the beginning,.

Nevertheless, a formulation in terms of the Schrédinger equation would be
very desirable for a number of reasons. The least one is by no means the fact that
most workers in this field feel more comfortable with the Schrédinger equation.
This is in spite of the fact that the problemis easier in the context of a K-G
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instead of a Schrédinger equation like
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However, if one takes into account the fact that both the K-G approach and
the Schrédinger approach are valid in their respective domains, then there
should be a line of asymptotic mathematical reasoning in which one derives
the Schrédinger equation from the K-G wave equation.

2 SCHRODINGER AS THE ASYMPTOTIC LIMIT
OF KLEIN-GORDON

The derivation of the asymptotic non-relativistic limit in the form of the Schrodinger
equation hinges on a specific type of solutions to the K-G Eq.(1), namely those
whose space-time propagation vector
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point primarily into the time direction, i.e.
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This means thal the spatial momenta |pz|, |py|, |p:| are small compared t mec.
Thus the phase fronts in ¢, z, y, z-space have only a slight tilt with respect to
the ¢ = 0 By contrast to a highly relativistic particle has phase fronts whose
vectorial gradient is close to the speed of light (z = ct) as in Figure 3.
Question:



Figure 3: Phase fronts of ¥ for a highly relativistic particle

By what mathematical relation does one conceptualize a K-G wave
solution ¥(¢,z,y, 2) as being non-relativistic?

Answer:

STEP I: Consider a K-G solution #(t, z,y, z) which is non-relativistic
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Figure 4: The Compton wave length of a particle of mass m

STEP II:

and thus obeys inequality (4).

Introduce the new non-relativistic wave function ¢(¢, z,y, z) by
setting

Y= ei(n}f)ct¢ ’ (5)

so that
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Then mathematize the non-relativistic condition on ¢ by the
condition that the second term on the r.h.s. is much smaller

than the first:
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The (inverse of the) coefficient ;"3 = re¢ is the quantum
mechanical Compton wave length of the particle and ¢
is the speed of light. Thus

% = take for light to travel

the amount of time it would
one Compton wave length

This time, 5

rc

— = —5 = Alg,

¢ mc? ¢
is called the Compton time. Inequality (6), the tem-
poral non-relativistic condition, stipulates that

Atel , )]

0¢

namely, namely that the non-relativistic wave function
¢ changes very little over the g.m. Compton time of
the particle.



STEP III: Taking the time derivative of inequality (6) on page 4 results
in the condition
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STEP 1V: Introduce Eq.(5) into the K-G Eq.(1) on page 1. The resulting
exact equation for ¢ is =
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Multiply by -2!‘% and obtain the equivalent exact equation:
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STEP V: Taking note of inequality (8), we note that the 2" term on the
the Lh.s. of this exact equation is neglegible compared t to the
first. Thus
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This is the Schrédinger equation whose non-relativistic poten-
tial Vionrer is related to the relativistic V on page 1 by
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Vnonrel(t1x1 Y, Z) = %V(t) z,y, Z)

3 CONCLUSION

The mathematical relation by which one conceptualizes a K-G wave solution 9
to be asymptotically non-relativistic is the condition (4). Its implementation
consists of introducing via Eq.(5) the new function ¢, which, because of (4),
satisfies (7) and (8), and hence the Schrdinger Eq.(9).

4 EPILOGUE

The mathematical analysis of Schrodinger waves in the ramped up periodic
potential, Figure 1, also applies to Euclidean optics. There one has a parezial®
laser beam passing through a medium with a periodic refractive index whose
spatial variations have the same mathematical form as V has in Figure 1. In
fact, in that Euclidean scenario one must use Kokelnik’s equation for paraxial

Ythe Euclidean analogue of being non-relativistic in space-time
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wave patterns. This equation is the Euclidean analogue of the Schrédinger
equation. The Kogelnik equation is
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It is the result of an asymptotic analysis applied to the Helmholtz equation,
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in a medium whose refractive index n is n(z,y, z) = 1+&(z,y, 2). If € is periodic
in = and z but uniform in g, then such a periodic structure is a thick hologram,
and ¥ is the amplitude of laser radiation propagating through it. Equations (10)
and (11) are the Euclidean analogue of what in space-time are the Schrédinger
and the K-G equations.



