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3.5. THE HAMILTON-JACOBI EQUATION

PROBLEM. (Particle in a potential)
Set up and solve the Hamilton-Jacoby equation for a particle in a one dimen-
sional potential U(z).
Solution. Setting up the H-J equation is a three step process.
(1) Exhibit the Lagrangian:
L= %m:i:2 -U(z).

. (2) Determine the momentum and the Hamiltonian:
_ oL
P = B
= mt;
H = .'12-52—: -L

= %m:z':z +U@).

(3) Express the Hamiltonian in terms of the momentum:
2
=2
H=3—+U (z).
(4) Write down the H-J equation —95 = H (z, §3):

- as 1 [a8s\®
P —§='2";(a—z) +U(z).

This a first order non-linear partial differential equation that needs to be solved for

the scalar function S(z,t).
This p.d.c. lends itself to being solved by the method of separation of variables

according to which one finds solutions of the form
(3.5.7) S(z,t) = T(t) + X(z).
Introducing this form into the H-J equation, one finds
daT(t) 1 (dX(z)\?
dt ~'2m( dz +Ul@).

This equation says that the left hand side is independent of z, while the right hand
side is independent of ¢t. Being equal, the Lh.s. is also independent of z. Being
independent of both ¢ and z, it is a constant, Letting this “separation” constant be

equal to E, one obtains two equations

dr(t)
& T E
%(d—);—?) +U(z) = E.

These are two ordinary equations for T and X. Inserting these equations into Eq.
(3.5.7), one obtains the sought after solution to the H-J equation,

S(z,t) = —Et + f * /2m(E —U@))ds' +5(E).

- Here the “integration constant” §(E) is an arbitrary function of E. Furthermore,
e observe that S depends on E also. This means that one has an E-parametrized

a Lp LecDvre Notedon Varialional Md’Eﬂww %&@ |
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48 3. VARIATIONAL FORMULATION OF MECHANICS

family of solutions. Thus, properly speaking, separation of variables yields many
solutions to the H-J equation, in fact, a one-parameter family of them

S(z,t) = Sg(x,t).

3.5.2. Several Degrees of Freedom. We shall see in a subsequent section
that whenever the H-J for a system with several degrees of freedom, say {q*}, lends
itself to being solved by the method of the separation of variables, i.e.

§
5@t =Tt +>_Qid"),
i=1
the solution has the form
t s q' ) .
S= —/ Edt +Z/ pi(z E,any o y0aem1)dg' +6(E,an,- - yas-1)
i=1

Here 4 is an arbitrary function of E and the other separation constants that
arise in the process of solving the H-J equation. We see that for each choice of
(E,ay,- -+ ,as-1) we have a different solution S. Thus, properly speaking, we have
SE.a),.a,_1s & multi-parametrized family of solutions to the H-J equation.

We shall now continue our development and show that Hamilton-Jacobi Theory
is
a) A new and rapid way of integrating the E-L equations
b) The bridge to wave (also "quantum") mechanics.
The virtue of Hamilton’s principle is that once the kinetic and potential energy
of the system are known, the equations of motion can be set up with little effort.
These Euler-Lagrange equations are Newton’s equations of motion for the system.
Although setting up the equations of motion for a system is a routine process, solv-
ing them can be a considerable challenge. This task can be facilitated considerably
by using an entirely different approach. Instead of setting up and solving the set of
coupled Newtonian ordinary differential equations, one sets up and solves a single
partial differential equation for a single scalar function. Once one has this scalar
function, one knows everything there is to know about the dynamical system. In
particular, we shall see that by differentiating this scalar function (the dynamical
phase, the Hamilton-Jacobi function, the eikonal) one readily deduces all possible
dynamical evolutions of the system.

3.6. Hamilton-Jacobi Description of Motion

Hamilton-Jacobi theory is an example of the principle of unit economy?, ac-
cording to which one condenses a vast amount of knowledge into a smaller and
smaller number of principles. Indeed, H-J theory condenses all of classical mechan-
ics and all of wave mechanics (in the asymptotic high-frequency/short-wavelength
(a.k.a. W.K.B.) approximation) into two conceptual units, (i) the H-J equation

3The principle of unit economy, also known informally as the “crow epistemology”, is the
principle that stipulates the formation of a new concept
(1) when the description of a set of elements of knowledge becomes too complex,
{2) when the elements comprising the knowledge are used repeatedly, and
(3) when the elements of that set require further study.

Pushing back the frontier of knowledge and successful navigation of the world demands the for-
mation of a new concept under any one of these three circumstances.
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and (ii) the principle of constructive interference. These two units are a mathemat-
ical expression of the fact that classical mechanics is an asymptotic limit of wave
mechanics.

Hamilton thinking started with his observations of numerous known analogies
between "particle world lines" of mechanics and "light rays" of geometric optics.
These observations were the driving force of his theory. With it he developed
classical mechanics as an asymptotic limit in the same way that ray optics is the
asymptotic limit of wave optics. Ray optics is a mathematically precise asymptotic
limit of wave optics. Hamilton applied this mathematical formulation to classical
mechanics. He obtained what nowadays is called the Hamilton-Jacobi formulation
of mechanics. Even though H-J theory is a mathematical limit of wave mechanics, in
Hamilton's time there was no logical justification for attributing any wave properties
to material particles. (That justification did not come until experimental evidence
to that effect was received in the beginning of the 20th century.) The most he
was able to claim was that H-J theory is a mathematical method with more unit
economy than any other formulation of mechanics. The justification for associating
a wave function with a mechanical system did not come until observational evidence
to that effect was received in the beginning of the 20th century.

We shall take advantage of this observation (in particular by Davidson and
Germer, 1925) implied association by assigning to a mechanical system a wave
function. For our development of the H-J theory it is irrelevant whether it satis-
fies the Schroedinger, the Klein-Gordon, or some other quantum mechanical wave
equation. Furthermore, whatever the form of the wave equation governing this
wave function, our focus is only on those circumstances where the wave function
has the form

(3.6.1) Yg(z,t)= A(z,t) X exp (iSE(m,t))
——— h

slowly varying function of T and ¢
rapidly varying function of z and ¢t

This circumstance is called the "high frequency" limit or the "semi-classical” ap-
proximation. It can be achieved by making the energy E of the system large enough.
In that case
SE (:L' ’ t)

h
with the consequence that the phase factor oscillates as a function of z and ¢ rapidly
indeed. The existence of such a wave function raises a non-trivial problem:
If the wave and its dynamical phase, and hence the wave intensity, is defined over all
of space-time, how is it possible that a particle traces out a sharp and well defined
path in space-time when we are left with three delemas?

(1) The large magnitude (S > A=1.05x10"%[erg sec|) of the action for a
classical particle is certainly of no help.
{2) Neither is the simplicity of the H-J equation

S 0S
Et"'l'H(.’II,-aTE',t)—O

which governs the dynamical phase in

¥ = Aexp (i %) ,

1<«
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FIGURE 3.6.1. The spatial oscillation rate of the wave function
Re Vg at t = const, is proportional to its z-momentum, whose
square is proportional to the kinetic energy ( K.E.=T.E.-P.E. ).

(3) Nor is the simplicity of the solution S for a particle of energy F,

S(z,t) = —Et + / * /Im(E = U@}y + 6(E)

of any help in identifying a localized trajectory ("world line") of the par-
ticle in space-time coordinatized by z and t.

What is of help is the basic implication of associating a wave function with a
moving particle, namely, it is a linear superposition of monochromatic waves, Eq.
(3.6.1), which gives rise to a travelling wave packet - a localized moving wave packet
whose history is the particle’s world line. To validate this claim we shall give two
heuristic arguements (i-ii), one application (iii), a more precise argument (iv) and
an observation (v).

(i): The most elementary superposition monochomatic waves is given by the
sum wave trains with different wavelengths

\P(Ia t) = ‘I’E(xv t) + 'I’E+AE($,t) +eee

(ii): In space-time one has the following system of level surfaces for Sg(z,t)
and SE+AE(:I:, t)

Destructive interference between different waves comprising ¥(x,t) oc-
cures everywhere except where the phase of the waves agree:

Se(x,t) = SE+ae(z,t)
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FIGURE 3.6.2. Photographic snapshot in space of two interfering
wave trains and their resulting wave packet.

At the locus of cvents satisfying this condition, the waves interfere con-
structively and wave packet has non-zero amplitude. The quantum prici-
ple says that this condition of constructive interference

Sg+age(z,t) — Sp(z,t) _ 08g(z,t)
T AE-D AFE - oF
yields a Newtonian worldline, i.e. an extremal paths.
(iii): Apply this condition to the action S(x,t) of a single particle. One
obtains the time the particle requires to travel to point x,

T fm 1 }
o=+ [ 3 (=) e

dé(FE)

oF
This condition yields the Newtonian worldline indeed. The precise argue-
ment is Lecture 13. The additional observation is on p13 Lecture 13.

with

to =
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FIGURE 3.6.3. Constructive interference represented in space-
time. The intersection of the respective isograms of Sg(z,t) and
Se+ag(z,t) locates the events (z,t) which make up the trajectory
of the particle in z-t space - the locus of constructive interference.

Lecture 13

. . 4
\j\) o2 PC( C ‘/lpj/"{) %Q’ 3.7. Constructive Interference

Our formulation of constructive interference is based on a picture in which at
each time ¢ a superposition of wave trains

Ve(z,t) + Uerare(z,t) + - = Uz, t)
yields a wave packet at time ¢. The principle of constructive interference itself,

is a condition which at each time t locates where the maximum amplitude of the
wave packet is.

It is possible to bring into much sharper focus the picture of superposed wave trains
and thereby not only identify the location of the resultant wave packet maximum,
but also width of that packet.

3.8. Spacetime History of a Wave Packet

The sharpened formulation of this picture consists of replacing a sum of super-
posed wave amplitudes with an integral of wave amplitudes

\I’(m’ t) = ”‘IIE(-'L', t) + \I’E-{'-AE(I, t) -+ e »
w -~
(3.8.1) = / f(E) e{;s.g(m.t)dE ) ‘['jf
—o0

A very instructive example is that of a superpostion of monochromatic ("single en-
ergy") wavetrains, each one weighted by the amplitude f(E) of a Gaussian window



3.8. SPACETIME HISTORY OF A WAVE PACKET 53

in the Fourier ("energy") domain,
—
(3.8.2) / F(E) = Ae~(E-Eo)*/e]
———e————————— !
The dominant contribution to this integral comes from within the window, which
is centered around the location of Ep of the Gaussian maximum and has width 2¢,
which is small for physical reasons. Consequently, it suffices to represent the phase
function as a Taylor series around that central point Eg, namely

(3.8.3)

higher

dSg(x,t) 1 62SE(x,t) 2

Se(z,t) = Sgo(z, )+ ————=| (E-Eo)+- ——=—| (E-E,)*+ order ,
° OE |g, 2 0E? g terms

and neglect the higher order terms. Keeping only the first three terms and ignoring
the remainder allows an exact evaluation of the Gaussian superposition integral.
This evaluation is based on the following formula

(3.8.4) /°° e +8z 4, = ‘/—n—e_gé .
-0 -

Applying it to the superpostion integral, Eq. (3.8.1) together with Eqs. (3.8.2) and
(3.8.3), we make the following identification

:=E-Ey; dz=dFE,

1 il &Sg(x,t)| _ 1 )
“=T@tR: T oEr |- el
1€ _2l+io
o l-ic  1+0?’
11 8%Sg(z,t) 2
(3.8.5) S — ,
2h  OE? |p,
_i 3?Sg(z,t)
h OE? |
Inserting these expressions into the righthand side of the formula (3.8.4), one obtains
dS(z.t) \ 2
1+io 1 %E—'-l 9 {1+ic  Sg,(z.t)
= A — —_— e - | —t—
T(z,t) Ve 752 1 ( = € 1+02) e

iSg, (x.8)

+
Alz,t) e .

rapidly
varying

slowly
trarying

This is a rapidly oscillating function
ot Seo(x.t)/h

modulated by a slowly varying amplitude A(z,£). For each time ¢ this product
represents a wave packet. The location of the maximum of this wave packet is
given implicitly by

dSe(x,t)

=0.
oF Eo

(3.8.6)
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As t changes, the z-location of the maximum changes. Thus we have curve in
z-t space of the locus of those events where the slowly varying amplitude A has
a maximum. In other words, this wave packet maximum condition locates those
events (= points in spacetime) where constructive interference takes place.

A wave packet has finite extent in space and in time. This extent is governed
by its squared modulus, i.e. the squared magnitude of its slowly varying amplitude,

955(z.)
e 1

1 E )
2 A% = A%4e2 - — :
(3.8.7) |¥(z,t)|° = |A|®° = A®ne Tt exp 2 /it ol K2

~ /

E(z.t)

We see that this squared amplitude has nonzero value even if the condition for
constructive interference, Eq.(3.8.6), is violated. This violation is responsible for
the finite width of the wave packet. More precisely, its shape is controlled by the
exponent E(x, 1),

asagz,ql 2
€2 1 9E  |g,
E(z,t) = -3 #0.

2 he
2 92Sp(z,t)

The spacetime evolution of this shape is exhibited in Figure 3.8.1 on the next

page. Thus the worldline of the particle is not a sharp one, but instead has a slight
spread in space and in time. How large is this spread?
The magnitude of the wave mechanical (“non-classical”) spread in the world line is
the width of the Gaussian wave packet. This spread is Az, the amount by which one
has to move away from the maximum in order that the amplitude profile change
by the factor e} from the maximum value. Let us calculate this spread under
the circumstance where the effect due to dispersion is a minimum, i.e. when o is
neglegibly small. In that case the condition that E(z + Az,t) = —1 becomes

€ 9Sg(z + Az, t)
h oF

=1.

Eq

Expand the left hand side to first order, make use of the fact that (z,t) is a point
in spacetime where the wavepacket profile has a maximum, i.e. satisfies Eq.(3.8.6).

One obtains
88

GmAx =h
or, in light of 8Sg(z,t)/0z = p(z, t; E),
Op
Ea—EAI = h y

and hence
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Time E(x,t)=-1
(1)

History of wave
packet maximum
= particle worldline

fixed

X=

Space
(x)

FIGURE 3.8.1. Spacetime particle trajectory (“the E(z,t) = 0 iso-
gram”) and the dispersive wave packet amplitude histories sur-
rounding it. The two mutually diverging ones (both characterized
by E(z,t) = —1) in this figure refer to the front and the back end
of the wave packet at each instant ¢t = fized, or to the beginning
and the end of the wave disturbance passing by a fixed location
z = fized. The particle and the wave packet maximum are moving

. Lo ASg(x.t
with a velocity given by the slope of the E(z,t) =0 = %’—l £

isogram, which is the locus of constructive interference exhibited
in Figure 3.6.3

On the other hand, the convergence and subsequent divergence
(“dispersion”) of the wave packet is controlled (and expressed math-

2
ematically) by the behavior of the second derivative, ajsﬂégﬂl & of
0

the dynamical phase Sg(z,t). Whereas the behavior of its first
derivative characterizes the difference in the motion of particles
launched with difference initial conditions, its second derivative
characterizes the intrinsically wave mechanical aspects of each of
these particles.

IN

55
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Similarly the temporal extent At, the amount by which one has to wait (at
fixed z) for the wave amplitude profile to decrease by the factor e=!/2 from its
maximum value, satisfics the condition

€ dSg(z,t + Ot)

R 0E g |
which become
8°Sg
€ 3Eat £ At| =h
OF
C(—)-a? £ At —fl

or

AEAt =h|.

The two boxed equation are called the Heisenberg indeterminacy relation.
Even though we started with the dynamical phase S (see page 38) with ¥ ~ et
to arrive at the extremal path in spacetime, the constant /i ("quantum of action")
never appearcd in the final result for the spacetime trajectory. The reason is that
in the limit

_—— 00

I3
the location of the wave packet reduces to the location of the wave crest. Once
one knows the dynamical phase S(z,£) of the system, the condition of construc-
tive interference gives without approzimation the location of the sharply defined
Newtonian world line, the history of this wave crest, an extremal path through
spacetime.

3.9. Hamilton’s Equations of Motion

To validate the claim that constructive interference leads to the extremal paths
determined by the E-L equations, one must first recast them into a form that
involves only ¢* and p; instead of g'and ¢’. Holding off that validation until Sec-
tion 3.11 on page 59, we achieve the transition from (¢¢, ¢’) to (¢*,p;) as follows:
The Lagrangian is a function of q‘and ¢*. Consequently,

dL = E d +Z—d‘

which may be rewritten as

dL =Y pide' + > pidd’,

where
_ oL
Pi = a_q‘
and
oL

ﬁi:a_q‘
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by the E-L equations. Using the fact that
pidd' = d(pi') — ¢'dp; ,
one obtains, after a sign reversal, an expression which depends only on ¢' and p;:

(3.9.1) d (Z pig' — L) ==Y pidd +)_i'dpi.
i i i

H
Introduce the Hamiltonian of the system

H(p,qt)=) pi - L.
Compare its differential

OH ,. OH y
dH = 5-(1—‘({(]‘ + b;dpt + zero X dqz
with the one given above by Eq.(3.9.1). Recall that two differentials are equal if and
only if the coefficients of the (arbitrary) coordinate differences (i.e. dq',--- ,dg*, dp,,--- ,dps

) are equal. Consequently, one has

_om o
e opi’ ' ogq

These are the Hamilton’s or the canonical equations of motion. They are equivalent
to those of E-L. Comment 1: The fact that H does not depend on ¢ follows directly

from
oH oL

Comment 2: a) It follows from Hamilton’s equations of motion that

dH  OH, OH,L 0OH
@ Tt Tt e
oH
ot
In other words, if H is independent of any explicit time dependence, i.e. time then
H is a constant along the trajectory of the evolving system.
Comment 2: b.) If H is independent of the generalized coordinate g*, then
dp*
i 0
i.e. pr s a constant for the evolving system.

3.10. The Phase Space of a Hamiltonian System
The 2s-dimentional spaced is spanned by the coordinates
l¢'-++ 1", p1,+ - , D]
is called the phase space of the system. In this phase space, the curve
[¢' (1), pi(t)]
is an integral curve of the Hamiltonian or phase path vector field

(.22
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FIGURE 3.10.1. Hamiltonian vector field of a simple harmonic os-
cillator (s.h.0.) of mass m and spring constant k. The ellipses are
integral curves whose tangents at each point are the vectors of that
field. The major axis, ‘/ %, and the minor axis, v2mFE, of each

ellipse are determined by the energy E of the s.h.o. The area of
any particular ellipse is 27 E 3},

In other words, the tangents to this curve are given by
" o oH
(q »Pi) = ('azs_a_q‘)
Example: For the simple harmonic oscilator
the Lagarangian is:

_1l .2 1, 9
L= 2m:t 2k:r
and the Hamiltonian is:

H—E-!- k:r =

a) The phase space of this system is spanned by 2 and p.
The Hamiltonian vector field is

CRONCES

b) The area of one of the phase-path ellipses is

area = / pdx and it has the dimension of "action"

According to quantum mechanics the action of a periodic system must obey the

Bohr quantization condition

(3.10.1) /pdx = (n + %) h, n=12-..
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FIGURE 3.10.2. The shaded difference between the areas of
adjacent. phase space ellipses, Eq.(3.10.1), is precisely h =
6.27% 10~ ?"erg sec, which is one quantum of action.

Thus, as depicted in Figure 3.10.2, the quantum mechanically allowed phase space
ellipses differ in area from one another by precisely h = 6.27x10~*7erg sec, which
is one quantum of action.

For the simple harmonic oscilator the area of one of these ellipses is [ pdx =
m/?mE\f% =2nE\/T = 211'%. Thus the Bohr quantization condition yields

E 1
2,.; = (n+§) h

or with 5= = frequency

1
E=(n+ E)h x frequency

3.11. Consturctive interference = Hamilton’s Equations

The principle of constructive interference provides the bridge between particle
and wave mechagqiics. This fact is validatede by the following theorem.

THEOREM. Constructive interference conditions imply the Hamilton's equan-
tions of motion and hence determine the existence of an extremal path.

Proof: Step 1.) Consider a complete integral of the H-J equation

5= Sff‘filr“ G Oy o pleg)
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i.e. a solution which has as many arbitrary constants as there are independent
coordinates®. The constructive interference conditions are
as
Bor =0 k=1,---,s
They determine implicitly a trajectory ¢* = ¢'(t), i=1,.--,s.
Step 2.) Take the total derivative and obtain
d 98 s S dg
E@ = Mooy,  Oqg*day dt
_ —iH(q a5(t,q,0) 028 E
ogxt 7 8¢'0ay. dt

0 =

Bon t) +
_ 6_H 9’8 + %S gg:
Op; a0 Oqiday dt
9*s (d¢t OH
Boydq’ (E B a_m) '
which implies the 1st half of Hamilton’s equations,
dq’ _oH
dt ~ ap;’

. o%s . .
provided z:=5- is non-singular.
Step 3.) Differentiate both sides of the H-J equation

a [asS a8
0 = a—qf['a?“”("’a—q")]

- pos, oy s ol
- 0tdg ' Opx/, 090" * g »
_ 0095 dd* 8 (2§)+ 3_H)
Bt dgt  dt dq* \ Ogt g/,
d OH
= a—tpi + 5_(1-‘-
which is the 2nd half of Hamilton’s equation’s,
dp; _ OH
dt ~ dq

QED. Thus the two Hamilton’s equations of motion are implied by the principle of
constructive interference indeed.

Lecture 14

3.12. Applications

Two of the most important applications of Hamilton-Jacobi theory are found
in

4Such independence is expressed mathematically by the fact that
as

— | #0.

dq*da; #
This _condition would be violated if the dependence on two constants were of the form
S(t,q*, flar,a2), a3, ,a,).

det
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(i) the motion of bodies on the astronomical scale, for example, space craft,
comets, or planets moving in a gravitational field, and in.

(ii) the motion of bodies on the atomic scale, for example, a charged particle
{clectron) moving in the potential of an atomic nucleus or in th electromagnetic
field of a pulsed laser.

The mathematical procedure for these and numerous other examples is routine
and always the same:

(i) Construct the Hamiltonian for the system

(ii) Write down and solve the H-J equation

(iii) Apply the conditions of constructive interference to obtain the trajectories of
the body.

Let us describe how this three step procedure is done in practice.

3.12.1. H-J Equation Relative to Curvilinear Coordinates. In con-
structing the Hamiltonian one must choose some specific set of ccordinates. For a
single particle it is is difficult to find an easier way of writing down the H-J equation
than the way whose starting point is the element of arclength

(ds)? = dz? + dy® + d2* (Cartesian coordinates)

(3.12.1) = gijdz*ds’ (curvilinear coordinates)

This element of arclength is the best starting point because it is related so closely
to the Lagrangian of the system. Indeed, one has

L=%ma‘:‘-:?:—U
1 dz\?  (dy\? [dz\®
=3™m (zf) *(E) +(E) -v
1 dat dx?
=3~V

In other words, the Lagrangian is constructed relative to curvilinear coordinates by
inspection. The steps leading to the H-J equation are now quite routine.
The momenta are

Let g*7be the inverse of g;i: ¢*7g;; = 6F so that

1 .
X RPN | e
* mg bj

and

) 1 ..
H=pj# —L=o—g"pipj +U
Thus the Hamilton-Jacobi equation is
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FIGURE 3.12.1. Rotationally symmetric potential as the sum a
dipole potential (12232) plus a monopole potential (—£).

a5 _ 1 ;08505
ot~ 2m? orioo

in terms of the inverse metric.

3.12.2, Separation of Variables. The most important way of solving the H-
J equation is by the method of sep[aration of variables. To illustrate this, consider
the following

Example (Particle in a dipole potential). Consider the motion of a particle
in the potential of a combined dipole and monopole field. Relative to spherical
coordinates the metric is

(ds)? = dr? + r2d6? + r? sin? 0 d¢®

and that potential has the form

cosf k

72 r

Ur,0)=pn

Its equipotential surfaces are rotationally symmetric around the z-axis
The Lagrangian is
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L = Kinetic Energy — Potential Energy

1 fied
= §m9iﬂ'q] -U(q"'.¢%.¢%
. . k
= %m (72 +1%6% + 1% 5in® ¢2) ~ ucc;_zO +-
The corresponding Hamilto-Jacobi equation is

as
0= _6—t+H

as 1 ;0888
+ _g + U(ql’qzs q3)

ot " om 6q an
_05 L [(9s\', 1 a5\t 1 (08\]  ocost k
ot 2m |\ Or r2 \ 99 r2sin’ @ \ ¢ b 5

This equation can be solved by the method of separation of variables. This method
is condensed into the following three definitions and propositions

(1) Definition (Separable variables). The variables ¢',42%,--- ,4° in the H-J
equation

_ 2§ . 88 as ; oS
O_E-i-H( a]) H(t Bt’q’aJ)

are said to be separable if it has a “complete” solution of the form
(3.12.2) S = So(t, o) + Si(q*, @0, 1) + S2(¢?, o, a1, @2) + Sa(¢®, g, 1, 9, a3)

where each S; depends only on £ and ¢* respectively.
(2) Definition (Complete solution). A solution is said to be complete if

2
95 144
S dq?
Remark 1: We saw (in Lecture 13) in the context of reconstructing the
classical trajectories of a Hamiltonian system from the principle of con-
structive interference it was essential that the matrix [825/8a;8¢’] be
non-singular.
Remark 2: The solution, Eq.(3.12.2), is complete indeed, because

det

1 2 3 — 7

* 0 0 0

detlaa 57| = det | x + 0| #0 1
* x % 2

!

i

and its diagonal elements are not zero.
(3) Definition (separability condition). The Hamilton-Jacobi equation is said
to satisfy the separability criterion if its Hamiltonianis is of the form

a5 o8 as as a8 as
H(t 6t’q’33)=f3<f2(fl(fo( ),lh,a—ql) 25?‘),3’8(])
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( for s = 3 degrees of freedom ). This functional form is said satisfy the
condition of scparability because the solution to this first order p.d.e. has
the separated form, Eq.(3.12.2). In other words, the claim is

Proposition: Definition 3 implies Definition 1.
Proof: Step 1.) According to Definition 3 the H-J equation is

(3123)  fs (fz (fl (fo (t, aa—f) . g—j) &, g—;) &, g_;) 0.

The method of solution via separation of variables starts by solving for fo. One
finds

o5\ _ . . 1 o9 g 08 88 s
Jo (t, 3t) = anexpression involving ¢, ¢°, ¢°, g’ qu’and R

Assume the solution to have the form
(3.12.4) S=T(t)+S'(¢", 4% d%).

This assumption is the first step towards success because the resulting common
value of

dT(t , .
Jo (t, —d—i—z) = anexpression that depends only ong!, ¢2, q"‘
Se————— indepelzaent of t

independent
ofg',q% ¢

is independent of all variables. This common independence implies that fo is a
constant, say, ao:
dT(t)
Jo (t, T) =
Solving for T'(¢), one obtains

(3.12.5) T(t) = So(t, ).
Step 2.) Using this function in Eq.(3.12.4) and introduce S into Eq.(3.12.3), which

now becomes
a8’ as’ a5’
1 Yo 2 2= 322 ) -
f3 (fZ(f! (ao,q.aql),fl 1aq2)v(I!6q3) 0.

Solving for f; one finds

y 98’ e ., 3 08 08
N (ao,q , B—ql‘) = an expression involving ¢, ¢°, a—qz,andgq—a .
Let
S =0Qi(¢") +5"(d% ¢%).
Consequently,
N (ao, q', %&ql)) = anexpression that dependsonly on ¢, ¢° .
‘ L independentof q} ’
independent

of ¢%,¢
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This common independence implies that fi is a constant, say, a;:
d 1

fl (GOsqls _Qqu(lq—)') =
Solving for @1(q!), one obtains
(3.12.6) Qi(g") = Si(g", ).
Consequently, the solution, Eq.(3.12.4), to the H-J equation has the form

S =T(t) + Qu(¢") + $"(¢*.¢%).
Step 3.) Repeat Step 2.) two more times to obtain
sz(Qz))
2
ap,01,9°, =aq
J2 ( 0014 = 2

d 3
f3 (QOvalva21q31 ?i:gz )) =aQ3.

Notice, however, that the H-J Eq.(3.12.3) implies that a3 = 0, always. Conse-
quently, there are only three independent separation constants, (oo, a1, as), while
the number of independent variables, (t,q!,q2,¢%) , is four. It follows that

S =T(t) + Qi(q") + Q2(¢®) + Q3(¢®)
and hence wth Eqs.(3.12.5), (3.12.6), etc.
= So(t, a0) + S1(t, ¢, a0, 1) + Sa(t, ¢%, a0, a1, a2) + Sa(t, ¢°, a0, 1, 02,03 = 0).

Thus the dynamical phase S has indeed the separated form whenever its H-J cqua-
tion has the form (3.12.3)





