Lecture 96 (Appendix)

Symmetry of the stress tensor: Why?
The spatial stress components form a symmetric
matrix \(T^{ij} \).

One arrives at this conclusion with the help of Newton's equation applied to the rotational
motion of a small cube of matter of volume \(V^3 \).

\(\Delta \alpha = \Delta x \)
\(\Delta y = \Delta y \)

\[\begin{align*}
\Delta x &= x \text{ face} \\
\Delta y &= y \text{ face} \\
\Delta z &= z \text{ face}
\end{align*} \]

The mass in such a cube is \(T^{00} V^3 \). The
moment of inertia of this cube is \(T^{00} L^5 \).

Newton's equation of motion applied to the
cube's rotation around the \(z \)-axis is

\[\Sigma (T^{00} L^3) = (\text{torque})^3 = (\text{\(\tau \times \Delta P \)})^3 \]

\[\begin{align*}
\Sigma L^3 &= \left[\frac{1}{2} \left(-\tau^{x} L^2 \right) + \left(\frac{1}{2} \tau^{x} L^2 \right) \right] \\
&= \left[\frac{1}{2} \left(-T^{x} L^2 \right) + \left(\frac{1}{2} T^{x} L^2 \right) \right]
\end{align*} \]

\(\text{Lower arm: y-force on lower arm x-force on} \)
\(\text{to x face x-face to x-face} \)

\(\text{Lower arm: x-force on lower arm x-force on} \)
\(\text{to y face y-face to y-face} \)

Comments:

1) Note that at \(x = \frac{L}{2} \)

\(\Delta F^y = T^{x} \Delta A_x = T^{x} L^2 \)

is a \(y \)-force exerted by the \(x \)-face on the outside
medium \((\frac{1}{2} < x) \). This is because this \(y \)-force
expresses a flow of \(y \)-momentum into the
\(+x \) direction at the \(+x \) face.

2) Equivalently:

\((-) T^{y} L^2 \)

is a \(y \)-force exerted on the \(x \)-face by the outside
medium. This expresses a flow of \(y \)-momentum
into the \(-x \) direction at the \(+x \) face.

In other words, it is the direction of the flow
of momentum that gets reversed when
one reverses the origin and the destination
of the application of a force.
c) At the -x face \(T_{x} \) also expresses a flow of y momentum into the x direction, but here it represents a y force exerted on the -x face by the outside medium (\(x = -\frac{L}{2} \)). In other words, the momentum flow \(T_{x} \) from the outside to the inside of the cube across the -x face.

As an aside, we note that the y force on the +x face can be represented in terms of the vector valued 3-form \(*T \) by

\[*T = T_{A'B'C} \] where

\[A' : (1, 0, 0) \]
\[B' : (0, 0, 1) \]
\[C' : (0, 0, 0) \]

as follows:

\[\int T_{x} \Delta A_{x} = \int T_{y} \Delta L_{y} = \int T_{y} \Delta A_{y} \cdot n \Delta s \]

\[= T_{y} \Delta A_{y} \cdot n \Delta s \Delta A_{x} (A'B'C) \]

Flow of momentum across \(\Delta A_{x} \) into negative direction (into the cube in the picture on page 10).

e) In fact, more generally, we note that the spatial components of the force \(\Delta F \) together with the energy rate ("power")

\[\sum T_{y} \Delta A_{y} = T_{x} \Delta A_{x} + T_{y} \Delta A_{y} \]

make up the components of the 4-momentum

\[e^{\mu} T^{\mu}_{x} \Delta A_{x} = \int \rho \Delta V \Delta \omega \xi \Delta \eta \] 1 \(B \Delta C \)

crossing the element of area \(\Delta A = B \times C \) during the time of the vector \(A' : (1, 0, 0) \)

By contrast the 4-momentum in the future

directed 3-volume \(V = A \times B \times C \)

\[T_{y} \Delta L_{y} = \int \rho \Delta V \Delta \omega \xi \Delta \eta \]

where \(A : (0, 0, 1) \)
\(B : (1, 0, 0) \)
\(C : (0, 1, 0) \)

are spacelike.
Back to Newton's eq'n on p.38.

After simplifying Newton's equations for cube's rotation around the z-axis (p.10), one obtains

\((S^2) = \frac{T^x y - T^x x}{T_{00}} \frac{\frac{1}{L^5}} \)

We see that if it were true that
\(T^x y - T^x x \) then

\((S^2)^2 \to \infty \) as \(L \to 0 \).

In other words, the cube of matter would be spinning with arbitrarily large angular velocities if we would consider it to be of sufficiently small volume \(L^3 \), where
\(T^{xy} = T^{yx} \).

The fact that matter does not behave this way demands that
\(T^{xy} = T^{yx} \)
or more generally
\(T^{ij} = T^{ji} \).

Summary
The stress energy tensor \(T \) has the following symmetric array of components:

\[
T = \begin{bmatrix}
T^{00} & T^{01} & T^{02} & T^{03} \\
T^{10} & T^{11} & T^{12} & T^{13} \\
T^{20} & T^{21} & T^{22} & T^{23} \\
T^{30} & T^{31} & T^{32} & T^{33}
\end{bmatrix}
\]

\(T^{00} \) is the energy density,
\(T^{ij} \) the stress,
\(T^{0j} \) the energy flux,
\(T^{ij} \) the momentum density.