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Introduction

Let A : D(A) ⊂ L2(M)→ L2(M) be an elliptic self-adjoint differential operator on M compact
manifold (ex: Dirac op, Laplacian)

The spectrum is discrete (compact Sobolev embedding):

Sp(A) = {· · · ≤ λ−n · · · ≤ λ1 ≤ λ2 ≤ . . . λn ≤ . . . } ⊂ R

with a basis of eigenvectors ψj .
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Eigenvectors/eigenvalues of Laplacian are related to:
Functional calculus: for F ∈ L∞(R), u ∈ L2

F (A)u =
∑
j

F (λj)〈u, ψj〉ψj

with ψj eigenvectors. Ex: F (x) = e itx , cos(tx) −→ long time dynamics.
Geometric invariants: heat trace invariants (curvature), Weyl asymptotics (volume)
Topological invariants: Hodge theory, analytic torsion
Trace formula and dynamical data (length of closed orbits): Selberg trace formula, Colin
de Verdière/Duistermaat-Guillemin
Quantum ergodicity: equidistributions of ψj .
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Commuting family

If A = (A1, . . . ,Aκ) is a family of commuting differential operators on M compact, with one of
them being elliptic, one can define a discrete joint spectrum:

λ = (λ1, . . . , λκ) ∈ Spec(A) ⊂ Rκ ⇐⇒ ∃ψλ ∈ L2, ∀i = 1, . . . , κ, Aiψλ = λiψλ

Functional calculus: for F ∈ L∞(Rκ), u ∈ L2,

F (A1, . . . ,Aκ)u =
∑

λ∈Spec(A)

F (λ1, . . . , λκ)〈u, ψλ〉ψλ
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Anosov Flows

X a smooth vector field with flow ϕt , and assume that there is dϕt invariant splitting

TM = RX ⊕ Eu ⊕ Es

where, ∃ν > 0, ‖dϕt |Es‖ ≤ Ce−νt for t > 0 and ‖dϕt |Eu‖ ≤ Ce−ν|t| for t < 0.

X is NOT elliptic and has non-discrete spectrum on L2 (in general).
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Ruelle resonances

There is a way to define natural discrete spectrum for X :
Ruelle, Pollicott, Butterley, Liverani, Baladi, Gouezel, Faure, Sjöstrand, Dyatlov, Zworski...:
There are family of Hilbert spaces HN (for N > 0) such that −X has only discrete spectrum
with finite multiplicity in {λ ∈ C;Re(λ) > −N}. Note: iX NOT self-adjoint on HN
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Wavefront

To get discrete spectrum in C, it is convenient to define

C−∞E∗u
(M) := {f ∈ C−∞(M);WF(f ) ⊂ E ∗u }

where E ∗u ⊂ T ∗M is the subbundle defined by

E ∗u (Eu ⊕ RX ) = 0.

The wavefront set WF(f ) describes singularities of the distribution f (decay of Fourier
transform):

Ex: let V smooth vector field non-vanishing at x ∈ M, and assume V nf ∈ L2 near x for all
n ≥ 0, then (x , ξ) 6∈WF(f ) for all ξ(V ) 6= 0

Roughly speaking: f ∈ C−∞E∗u
(M) means that f is smooth along weak-unstable derivatives.
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Then, one can show for an Anosov flow:

λ ∈ C Ruelle resonance ⇐⇒ ∃f ∈ C−∞E∗u
(M), Xf = −λf

ie. Ruelle resonances= spectrum of −X in C−∞E∗u
(M), HN approximates C−∞E∗u

(M) as N →∞.

Same applies to the Lie derivative LX = ιXd + dιX acting on differential k−forms, we call
Ruelle resonances on k-forms the spectrum of LX on C−∞E∗u

(M; ΛkT ∗M)
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Applications of the theory

Butterley-Liverani: SRB measures are the eigen(co)vectors at λ = 0 and there is no Ruelle
resonance for X in Re(λ) > 0.
Dolgopyat, Liverani, Tsujii, Faure-Tsujii, Nonnenmacher-Zworski: contact Anosov flows
have a spectral gap, resonances Res(X ) ⊂ {0} ∪ {Re(λ) > −ε}. Exponential mixing.
Giulietti-Liverani-Pollicott, Dyatlov-Zworski, Dyatlov-G: (twisted) Ruelle zeta function
ζρ(λ) =

∏
γ det(1− ρ(γ)e−λ`(γ)) admits meromorphic extension to C, zeros/poles are the

resonances on (twisted) forms
Dyatlov-Zworski, Dang-G-Riviere-Shen: in dim 3, multiplicities of Ruelle resonances for LX
on forms are Betti numbers, and ζρ(0) is Reidemeister torsion if ρ : π1(M)→ U(m)
unitary representation – Fried conjecture.
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Anosov Rκ actions

A ' Rκ Abelian group, τ : A→ Diffeo(M) locally free action. Let

X : a→ C∞(M;TM), XA := ∂t |t=0(τ(etA)).

If A1, . . . ,Aκ basis of a = lie(A), one has [XAj
,XAk

] = 0.

Anosov: there exists a transversely hyperbolic element A1 ∈ a: ie. there is dϕ
XA1
t invariant

splitting
TM = E0 ⊕ Es ⊕ Eu

with E0 = span(XA1 , . . . ,XAκ), and ‖dϕXA1
t |Es‖ ≤ Ce−νt for t > 0 and ‖dϕXA1

t |Eu‖ ≤ Ce−ν|t|

for t < 0.
Define the positive Weyl chamber (is convex open cone)

W := {A ∈ a;XA transversely hyp with same splitting as XA1}
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Examples, rigidity

Main examples: Weyl chamber flows on Γ\G/M, G = KAN with A of rank κ > 1, Γ ⊂ G
co-compact, M = stabK (A)

Conjecture (Katok-Spatzier): such actions (without rank-1 factor) are smoothly conjugate to
Weyl chamber flows and variations of those. Proved locally near algebraic cases. See Vinhage’s
talk.
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Joint spectrum

Question: ∃ discrete natural joint spectrum for the family of vector fields XA1 , . . . ,XAκ ?

Definition: say that λ ∈ a∗C ' Cκ is a joint Ruelle resonance if there is f ∈ C−∞E∗u
(M) non-zero

such that for all A ∈ a
XAf = −λ(A)f .

Theorem (Guedes Bonthonneau-G-Hilgert-Weich 2020)

If τ is an Abelian Anosov action, the set of joint Ruelle resonances is discrete, with finite
multiplicity and contained in ⋂

A∈W
{λ ∈ a∗C;Re(λ(A)) ≤ 0}.

Rem: the proof strongly uses the notion of Taylor joint spectrum and Koszul complexes.
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Taylor spectrum of X

Define an exterior derivative in the direction E0 as follows:

dX : C∞(M)⊗ Λka∗ → C∞(M)⊗ Λk+1a∗

(dXu)(A) := XAu, , dX (u ⊗ ω) := (dXu) ∧ ω(
or equivalently dX (u e∗i1 ∧ . . . e

∗
ik

) =
k∑

j=1

(XAj
u)e∗j ∧ e∗i1 ∧ . . . e

∗
ik

)
.

if u ∈ C∞(M), ω ∈ Λka∗ and (e∗j )j basis of a∗C dual to (Aj)j . It satisfies

dX ◦ dX = 0

Same, for λ ∈ a∗C, we define d(X−λ), satisfies d(X−λ) ◦ d(X−λ) = 0
Definition: λ is not in Taylor joint spectrum of X on functional space H iff for each
k = 0, . . . , κ, the cohomology of Taylor complex is trivial

ker d(X−λ)|H⊗Λka∗C
= Imd(X−λ)|H⊗Λk−1a∗C
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Taylor spectrum

Remark: the cohomology of degree 0 is non-trivial for λ iff ker dX−λ 6= 0, ie. there is u ∈ H so
that

(XA1 − λ(A1))u = 0, . . . , (XAκ − λ(Aκ))u = 0

ie. usual notion of joint spectrum.

The cohomology of degree κ is trivial if for each f ∈ H, there is u1, . . . , uκ ∈ H st

(XA1 − λ(A1))u1 + · · ·+ (XAκ − λ(Aκ))uκ = f .

Remark: In finite dimension, this notion of joint spectrum is equivalent to the usual one.

But it has deeper content in infinite dimension (functional calculus).
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We say that λ is not in essential Taylor spectrum if the cohomologies

ker d(X−λ)|H⊗Λka∗C
/Imd(X−λ)|H⊗Λk−1a∗C

are finite dimensional.

V. Muller: The Taylor spectrum, in region where it is not essential, is an analytic submanifold
of Ck .
J. Taylor: there is a functional calculus for commuting families A1, . . .Ak of bounded operators
on Hilbert space H.

Definition: λ ∈ a∗C is a Ruelle-Taylor resonance if there is k

ker d(X+λ)|C−∞
E∗u

(M)⊗Λka∗C
6= Imd(X+λ)|C−∞

E∗u
(M)⊗Λk−1a∗C

Note: Ruelle joint resonances ⊂ Ruelle-Taylor resonances (a priori)
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Theorem (Bonthonneau-G-Hilgert-Weich 2020)

The set of joint Ruelle-Taylor resonances for an Anosov abelian action is discrete and equal to
the set of Ruelle joint resonances. More precisely, for each N > 0 there are Hilbert spaces HN

so that the Taylor spectrum of X on HN is discrete outside⋂
A∈W
{λ ∈ a∗C;Re(λ(A)) ≤ −N}

and these discrete joint eigenvalues are the Ruelle-Taylor resonances.
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The resonance λ = 0 - Physical measure

Definition: µ is called physical measure if there is a smooth Lebesgue type measure ω s.t. for
any proper open a cone C ⊂ W

µ(f ) = lim
T→∞

1
Vol(CT )

∫
CT

∫
M
f (ϕ−XA

1 (x))dω(x)dA

for all f ∈ C 0(M), where
CT := {A ∈ C; |A| ≤ T}.

ie. µ is the weak Cesaro limit (Birkhoff average) of a Lebesgue measure.

Remark: For Anosov flows, physical measures are SRB measures.
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Theorem (Bonthonneau-G-Hilgert-Weich 2020)

If µ is a smooth invariant measure with full support, then

dim ker dX |C−∞
E∗u

(M)⊗Λja∗C
/ImdX |C−∞

E∗u
(M)⊗Λj−1a∗C

=

(
κ

j

)
The space of physical measures has dimension dim ker dX |C−∞

E∗u
(M) ≥ 1, the dimension of

joint Ruelle resonant states at λ = 0.
The physical measures are the invariant measures µ with WF(µ) ⊂ E ∗s .
Assume there is a unique physical measure µ then the following are equivalent:
1) the only joint Ruelle resonance on ia∗ is 0
2) there is A ∈ a, s.t. ϕXA

t is weak-mixing
3) for all A ∈ W, ϕXA

t is strong-mixing
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SRB measures

The physical measures are SRB measures:

there is B ⊂M of positive Lebesgue measure such that for all f ∈ C 0(M), all proper open
subcones C ⊂ W and all x ∈ B ,

µ(f ) = lim
T→∞

1
Vol(CT )

∫
A∈CT ,

f (e−XA(x))dA.

and their Rohlin diseintegrations along stable manifolds are absolutely continuous wrt Lebesgue.

In progress: µ should be obtained in terms of measures on periodic tori (Bowen type formula).
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Applications in mind

Classical/Quantum correspondance for locally symmetric spaces
Exponential mixing under certain assumptions via spectral gap. Apply to local rigidity to
more general classes (such as contact case for rank 1).
Use SRB measures for rigidity problem.
Counting periodic orbits/tori
Trace formula, zeta functions ?
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Ideas of proof

First step: For A0 ∈ W, construct parametrix Q(λ) : C∞(M)⊗ Λa∗ → C∞(M)⊗ Λa∗ so that

d(X+λ)Q(λ) + Q(λ)d(X+λ) = Id + K (λ)

s.t. there is a Hilbert space C∞(M) ⊂ HN ⊂ C−∞(M) with

Q(λ) : HN ⊗ Λa∗ → HN ⊗ Λa∗ bounded

K (λ) : HN ⊗ Λa∗ → HN ⊗ Λa∗ compact1

when Re(λ(A0)) > −N.
Let Π0 be the (finite rank) spectral projector at 0 of Id + K (λ). Then

u 7→ Π0u

factors to an isomorphism

ker d(X+λ)|HN⊗Λa∗/Im d(X+λ)|HN⊗Λa∗ → ker d(X+λ)|ImΠ0/Im d(X+λ)|ImΠ0

1or more generally if ress(K(λ)) < 1
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Conclusion: all λ with Re(λ(A0)) > −N} is not in the essential Taylor spectrum.

Second step: Assume Q1, . . .Qκ are continuous operators on C∞(M), commuting one to each
other and commuting with XAj

. Define the divergence

δQ(u e∗i1 ∧ · · · ∧ e∗ik ) =
k∑

j=1

(−1)j(Qiju)e∗i1 ∧ · · · ∧ ê∗ij ∧ . . . e
∗
ik

for u ∈ C∞(M), e∗i fixed basis of a∗. Then

d(X+λ)δQ + δQd(X+λ) = −
κ∑

j=1

((XAj
+ λj)Qj)⊗ Id.

Proposition

If the remainder −
∑κ

j=1((XAj
+ λj)Qj) = 1 + K (λ) for some K (λ) compact on HN near

λ = λ0, then the Taylor spectrum is discrete near λ0.
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Let Aj ⊂ W basis of a and χ ∈ C∞c (R) equal to 1 near 0. Set

Q ′j (λ) :=

∫ ∞
0

χ(t)e
−t(XAj

+λj )dt, Rj(λ) :=

∫ ∞
0

χ′(t)e
−t(XAj

+λj )dt,

cummuting with each other and with XAk
. Then set

Qj(λ) := (−1)jQ ′j (λ)

j−1∏
k=1

Rj(λ).

We get, with Q(λ) = (Q1(λ), . . . ,Qκ(λ))

d(X+λ)δQ(λ) + δQ(λ)d(X+λ) = (Id− K (λ))⊗ Id

where the remainder K (λ) is quasi-compact on HN in Reλ(A0) > −N and given by

K (λ)u = (−1)κ
∫ ∞

0
· · ·
∫ ∞

0
(e

∑κ
j=1 tj (XAj

+λj )u)χ′(t1) . . . χ′(tκ)dt1 . . . dtκ
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Quasi-compact means: the essential spectrum is contained in a disc of radius r < 1.

Where does compactness come from ?

1) smoothing in the directions XAj
due to integration in t

2) smoothing in E ∗u and E ∗s directions due to the action of e−tXAj on the anisotropic Sobolev
space HN . This space allows for: HN regularity far from E ∗u and H−N regularity in an open
cone near E ∗u .
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Physical measures: The spectral projector of K (0) at eigenvalue 1 (which is the leading one)
can be obtained as limit K (0)n as n→∞. This amounts to study the operator

K (0)n =
κ∏

j=1

∫
R
e
−tjXAjψ∗

n
(tj)dtj

as n→∞, where ψ(x) = −χ′(x) is a non-negative bump function supported near x = 1.
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Merci!
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