Measure rigidity for Anosov flows via the factorization method

Asaf Katz

August 2020

The University of Chicago

Let M be a closed manifold. Let $g_t: M \to M$ be a smooth flow.

Definition

 g_t is Anosov if for all $x \in M$, we have a continuous splitting

 $T_{x}M=E^{s}\oplus E^{0}\oplus E^{u}$

such that there exist $C > 0, \lambda < 1$ with

$$\begin{split} \|g_t\|_{E^s}\| &\leq C \cdot \lambda^t \text{ for all } t \geq 0\\ \|g_t\|_{E^u}\| &\leq C \cdot \lambda^{|t|} \text{ for all } t \leq 0.\\ \dim E^0 &= 1. \end{split}$$

Basic Examples

We define the unstable leaf W^u by $T(W^u) = E^u$. Similarly, W^s - the stable leaf is defined by $T(W^s) = E^s$.

Main Example

 $M = T^1$ (Riemann surface) = $SL_2(\mathbb{R})/\Gamma$ for $\Gamma \leq SL_2(R)$ is a *uniform* lattice.

Then the flow defined by the action of $g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$ is an Anosov flow.

Here W^u , W^s amount to horospheres.

Assume now that M is endowed with a g_t -invariant and ergodic probability measure μ .

Theorem (Oseledets) Assume V is a vector bundle over M, then for almost every $x \in M$, there exists a g_t -equivarient splitting of V(x) and numbers $\lambda_i \in \mathbb{R}$ such that

$$V=\oplus_i V^{\lambda_i}$$

and for all $0 \neq v \in V^{\lambda_i}$ we have

$$\lim_{t\to\infty}\frac{1}{t}\log\|g_t.v\|=\lambda_i.$$

Applying the theorem to the tangent bundle *TM*, we may refine the Anosov splitting to the Oseledets splitting:

$$E^{s} \oplus E^{0} \oplus E^{u} = \oplus_{i} E^{\lambda_{i}}$$

with
$$E^s = \bigoplus_{\lambda_i < 0} E^{\lambda_i}$$
, $E^u = \bigoplus_{\lambda_i > 0} E^{\lambda_i}$ and E^0 .

We order the exponents as $\ldots < \lambda_{-1} < \lambda_0 = 0 < \lambda_1 \le \lambda_2 \le \ldots$

In general we have the backwards flag

$$0 \leq E^{\lambda_k} \leq E^{\lambda_k} \oplus E^{\lambda_{k-1}} \leq \ldots \leq \oplus_{i>\ell} E^{\lambda_i} \leq \ldots \leq TM,$$

where E^{λ_k} - most expanding subspace.

We may define distributions according to the splitting, which are leading to the fast-unstable leaf $T^1(W_{loc}^{uu}) = E^{\lambda_k}$ and the generalized fast-unstable $T^1(W_{loc}^{>1}) = \bigoplus_{i \ge 2} E^{\lambda_i}$ where $0 = \lambda_0 < \lambda_1$.

Consider the group $ASL_2 = SL_2 \rtimes G_a^2$. This group can be embedded into SL_3 as $\begin{pmatrix} a & b \times \\ c & d & y \\ 0 & 0 & 1 \end{pmatrix}$. One may form the quotient space $Y = ASL_2(\mathbb{R})/ASL_2(\mathbb{Z})$. This is a toral bundle over $SL_2(\mathbb{R})/SL_2(\mathbb{Z})$. Define $g_t = \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq ASL_2(\mathbb{R})$. Then the flow induced over Y by g_t is Anosov as

$$g_{t} \cdot \begin{pmatrix} a & b & x \\ c & d & y \\ 0 & 0 & 1 \end{pmatrix} \cdot g_{-t} = \begin{pmatrix} a & e^{2t}b & e^{t}x \\ e^{-2t}c & d & e^{-t}y \\ 0 & 0 & 1 \end{pmatrix}$$

with $E^{u} = E^{\lambda_{2}} \oplus E^{\lambda_{1}}, E^{s} = E^{\lambda_{-1}} \oplus E^{\lambda_{-2}}$

From now on, let μ be a g_t -invariant and ergodic probability measure, defined over M.

Definition

- The measure μ is called an *SRB measure* if its conditionals $\mu \mid_{W^u}$ are a.c.
- The measure μ is called a (generalized) u-Gibbs state if its conditionals μ |_{W^{uu}_{loc}} (μ |_{W^{>1}_{loc}}) are a.c.

Sinai and Pesin (\sim 82) gave a construction of *u*-Gibbs states by averaging densities over W^u . One may show that *u*-Gibbs states are weak-* closed and convex. It is clear that every SRB measure is a *u*-Gibbs state.

Question - Is the other direction true?

Answer - In general, NO! (i.e. for ASL_2 , consider the measure coming from the Haar measure on $SL_2(\mathbb{R})/SL_2(\mathbb{Z})^1$).

¹or any orbit supported on the set torsion points of some *CM*-curve, c.f. Elkies-McMullen.

Theorem (K.) Let (M, g_t, μ) be an Anosov system. Assume that μ is a (generalized) u-Gibbs state, with simple least positive Lyapunov exponent, satisfying QNI, then μ is SRB.

QNI - Quantitative Non-Integrability condition.

Morally - the measure is *not supported* over g_t -invariant embedded submanifolds. Such submanifolds form obvious obstructions to measure classification, due to Pesin-Sinai.

QNI

QNI - There exists a positive measure set of generic points q such that for many points $q' \in W^s(q)$ with $d(q, q') \approx L$, there are generic points $u.q \in W^{uu}_{loc}(q)$ with $d(q, u.q) \approx L$ such that the deviation of the central-stable projection from the fast unstable is polynomial in L.

Assume from now (for simplicity) M is 4-dimensional, with the following Lyapunov spectrum

$$\lambda_- < 0 < \lambda_1 < \lambda_2.$$

We denote $W_{loc}^{uu} = W_{loc}^{>1}$ by $T(W_{loc}^{uu}) = E^{\lambda_2}$.

The Eskin-Mirzakhani Scheme

Fix some auxiliary $\epsilon > 0$. Assume that all points in this diagram are generic. Consider the conditional measure $\mu \mid_{W^u}$. Gives a function f_1 by $x \mapsto \mu_x^u$. We get:

$$egin{aligned} f_1(q_2) &= f_1(g_\ell.u.g_{-t}.q_3) \ &= e^{\lambda_\star(u.q_1,\ell)} \cdot e^{-\lambda_\star(q_1,t)}.f_1(q_3). \end{aligned}$$

Hence for suitable choice of ℓ , t, we get $f_1(q_3) = f_1(q_2)$ and similarly $f_1(q'_3) = f_1(q'_2)$. But we have that $q_2 \approx u_1 \cdot q'_2$ with $dist(q_2, q'_2) \approx \epsilon$ in the direction of E^{λ_1} !

Problems

1. ϵ is an external parameter - so it is not dynamically defined. How to ensure all points are generic?

```
Answer - FACTORIZATION.
```

2. How to choose suitable q'?

```
Answer - ENTROPY.
```

3. W^u does not carry an homogeneous structure???

Answer - Normal forms coordinates over W^u (Kalinin-Sadovaskaya).

Assume that there exists a magical linear operator

$$A(q, u, \ell, t) : E^{s}(q) \to \mathbb{R}$$

which measures the distance between $g_t.u.q_1$ and $g_t.u.q'_1$ in the Eskin-Mirzakhani scheme. This leads to a factorization of the E-M scheme by considering $A(q, u, \ell, t).v_{q'}$.

One can define the stopping time of the scheme as

 $\tau(q, u, \ell) = \sup \left\{ t \ge 0 \mid \|A(q, u, \ell, t)\|_{op} \le \epsilon \right\}.$

Magic(Eskin-Mirzakhani): τ is bilipschitz in ℓ .

Hint - $A(q, u, \ell + r, t + s) = g_s.A(q, u, \ell, t).g_r$

Choice of points

By the ergodic theorem, if q_1 is generic, for many times t (=positive density) the points $q_2 = g_t . u. q_1$ are in a good set.

Bilipschitz estimate gives that many points $q = g_{-\ell} \cdot q_1$ are in a good set.

Stopping time for $q_3 = g_t \cdot q_1$ is defined by cocycle with q_2 , hence again many points are in a good set, by bilipschitz estimate.

Second idea of Eskin-Mirzakhani Choosing q' amounts to choosing a "good vector" $v \in E^s(q)$ such that

$$A(q, u, \ell, t).v \approx ||A(q, u, \ell, t)||_{op}.$$

Done by entropy considerations similar to the low entropy technique (à la Einsiedler-Lindenstrauss). a.k.a Case 1. a.k.a not Case 2. While all the involved manifolds are smooth, the W^u foliation is in general *only Hölder-continuous* (c.f. Hasselblatt-Wilkinson).

Hence the map $Proj_{q'_1}^{c-s}(u.q_1)$ is not smooth but only Hölder.

Factorization overcomes this issue, by approximating it (polynomially), as-long as we have an a-priori upper-bound over the stopping time (due to QNI). This makes the construction of the operator $A(q, u, \ell, t)$ pretty complicated in the non-homogeneous case.

Examples

Example I - $ASL_2(\mathbb{R})/ASL_2(\mathbb{Z})$ - the space of affine lattices

Consider
$$Y = ASL_2(\mathbb{R})/ASL_2(\mathbb{Z})$$
. Define $g_t = \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
Then g_t is Anosov, $\lambda_1 = e^t, \lambda_2 = e^{2t}$ with $W^{\lambda_2} = \begin{pmatrix} 1 & \star & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ and $W^{\lambda_1} = \begin{pmatrix} 1 & 0 & \star \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

So *u*-Gibbs state means W^{λ_2} -invariant. One may show that if $h_{\mu}(g_1) > 3$, then μ is QNI, as the leafwise measure through $W^{\lambda_{-1}}$ is non-trivial.

Example II - Borel-Smale constructions

Let $\{N_i\}_{i=1,2}$ be two copies of the Heisenberg group, $Lie(N_i) = span\{x_i, y_i, z_i\}$ with $[x_i, y_i] = z_i$. [Borel-Smale] There exists a rationally-defined map $A : Lie(N_1 \times N_2) \rightarrow Lie(N_1 \times N_2)$ such that

$$A\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_2 \end{pmatrix} = \begin{pmatrix} \lambda^a . x_1 & \lambda^{-a} . x_2 \\ \lambda^b . y_1 & \lambda^{-b} . y_2 \\ \lambda^{a+b} . z_1 & \lambda^{-(a+b)} . z_2 \end{pmatrix}$$

A is clearly Anosov diffeo if $a, b, a + b \neq 0$. Consider M - the suspension of $N_1 \times N_2/\Gamma$.

Take a = 3, b = -2. Notice that $h_{\mu}(A) \ge 5 \ln(\lambda)$ for every generalized *u*-Gibbs state μ . One may show (by entropy considerations) that *every u*-Gibbs state is QNI.

A system (admitting a dominant splitting) is HQNI if every generalized *u*-Gibbs state is QNI.

Theorem (K.) Assume (M, μ, g_t) is HQNI, where $W^{>1} \subset W^u$ is isomorphic to \mathbb{R}^n (by means of its subresonant group, i.e. narrow-band spectrum). Then for every $x \in M$, for almost every $u.x \in W^{>1}(x)$ we have that $\frac{1}{T} \int_{t=0}^{T} \delta_{g_t.u.x} dt \rightarrow \mu$ in the weak-* topology, where μ is some SRB measure on M.

Analogous to results of Eskin-Chaika (Translation surfaces) and Kleinbock-Shi-Weiss (Homogeneous dynamics).

Related to a conjecture of Gogolev about convergence of push-forwards of u-Gibbs states.