Measure rigidity for Anosov flows via the factorization method

Asaf Katz

August 2020
The University of Chicago

Introduction

Let M be a closed manifold. Let $g_{t}: M \rightarrow M$ be a smooth flow.

Definition

g_{t} is Anosov if for all $x \in M$, we have a continuous splitting

$$
T_{x} M=E^{s} \oplus E^{0} \oplus E^{u}
$$

such that there exist $C>0, \lambda<1$ with

$$
\begin{aligned}
& \left\|\left.g_{t}\right|_{E^{s}}\right\| \leq C \cdot \lambda^{t} \text { for all } t \geq 0 \\
& \left\|\left.g_{t}\right|_{E^{u}}\right\| \leq C \cdot \lambda^{|t|} \text { for all } t \leq 0 . \\
& \operatorname{dim} E^{0}=1
\end{aligned}
$$

Basic Examples

We define the unstable leaf W^{u} by $T\left(W^{u}\right)=E^{u}$. Similarly, W^{s} - the stable leaf is defined by $T\left(W^{s}\right)=E^{s}$.

Main Example
$M=T^{1}($ Riemann surface $)=S L_{2}(\mathbb{R}) / \Gamma$ for $\Gamma \leq S L_{2}(R)$ is a uniform lattice.
Then the flow defined by the action of $g_{t}=\left(\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right)$ is an
Anosov flow.

Here W^{u}, W^{s} amount to horospheres.

Oseledets theorem

Assume now that M is endowed with a g_{t}-invariant and ergodic probability measure μ.
Theorem (Oseledets)
Assume V is a vector bundle over M, then for almost every $x \in M$, there exists a g_{t}-equivarient splitting of $V(x)$ and numbers $\lambda_{i} \in \mathbb{R}$ such that

$$
V=\oplus_{i} V^{\lambda_{i}}
$$

and for all $0 \neq v \in V^{\lambda_{i}}$ we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left\|g_{t} \cdot v\right\|=\lambda_{i}
$$

Oseledets splitting

Applying the theorem to the tangent bundle TM, we may refine the Anosov splitting to the Oseledets splitting:

$$
E^{s} \oplus E^{0} \oplus E^{u}=\oplus_{i} E^{\lambda_{i}}
$$

with $E^{s}=\oplus_{\lambda_{i}<0} E^{\lambda_{i}}, E^{u}=\oplus_{\lambda_{i}>0} E^{\lambda_{i}}$ and E^{0}.
We order the exponents as $\ldots<\lambda_{-1}<\lambda_{0}=0<\lambda_{1} \leq \lambda_{2} \leq \ldots$

Cont.

In general we have the backwards flag

$$
0 \leq E^{\lambda_{k}} \leq E^{\lambda_{k}} \oplus E^{\lambda_{k-1}} \leq \ldots \leq \oplus_{i>\ell} E^{\lambda_{i}} \leq \ldots \leq T M
$$

where $E^{\lambda_{k}}$ - most expanding subspace.
We may define distributions according to the splitting, which are leading to the fast-unstable leaf $T^{1}\left(W_{\text {loc }}^{u u}\right)=E^{\lambda_{k}}$ and the generalized fast-unstable $T^{1}\left(W_{\text {loc }}^{>1}\right)=\oplus_{i \geq 2} E^{\lambda_{i}}$ where $0=\lambda_{0}<\lambda_{1}$.

Basic examples - Cont.

Consider the group $\mathrm{ASL}_{2}=\mathrm{SL}_{2} \rtimes \mathrm{G}_{a}^{2}$. This group can be embedded into SL_{3} as $\left(\begin{array}{ccc}a & b & x \\ c & y \\ 0 & y & 1 \\ 0 & 0 & 1\end{array}\right)$.
One may form the quotient space $Y=A S L_{2}(\mathbb{R}) / A S L_{2}(\mathbb{Z})$.
This is a toral bundle over $S L_{2}(\mathbb{R}) / S L_{2}(\mathbb{Z})$.
Define $g_{t}=\left(\begin{array}{ccc}e^{t} & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0\end{array}\right) \leq A S L_{2}(\mathbb{R})$.
Then the flow induced over Y by g_{t} is Anosov as

$$
g_{t} \cdot\left(\begin{array}{lll}
a & b & x \\
c & d & y \\
0 & 0 & 1
\end{array}\right) \cdot g_{-t}=\left(\begin{array}{ccc}
a & e^{2 t} b & e^{t} x \\
e^{-2 t} c & d & e^{-t} y \\
0 & 0 & 1
\end{array}\right)
$$

with $E^{u}=E^{\lambda_{2}} \oplus E^{\lambda_{1}}, E^{s}=E^{\lambda_{-1}} \oplus E^{\lambda_{-2}}$

u-Gibbs states and SRB measures

From now on, let μ be a g_{t}-invariant and ergodic probability measure, defined over M.

Definition

- The measure μ is called an SRB measure if its conditionals $\mu \mid w^{u}$ are a.c.
- The measure μ is called a (generalized) u-Gibbs state if its conditionals $\left.\mu\right|_{W_{\text {boc }}^{u c}}\left(\left.\mu\right|_{W_{\text {boc }}^{>1}}\right)$ are a.c.

Sinai and Pesin (~ 82) gave a construction of u-Gibbs states by averaging densities over W^{u}. One may show that u-Gibbs states are weak-ぇ closed and convex.

Measure classification

It is clear that every $S R B$ measure is a u-Gibbs state.

Question - Is the other direction true?

Answer - In general, NO! (i.e. for $A S L_{2}$, consider the measure coming from the Haar measure on $\left.S L_{2}(\mathbb{R}) / S L_{2}(\mathbb{Z})^{1}\right)$.
${ }^{1}$ or any orbit supported on the set torsion points of some CM-curve, c.f. Elkies-McMullen.

Measure classification

Theorem (K.)
Let $\left(M, g_{t}, \mu\right)$ be an Anosov system. Assume that μ is a (generalized) u-Gibbs state, with simple least positive Lyapunov exponent, satisfying $Q N I$, then μ is $S R B$.

QNI - Quantitative Non-Integrability condition.

Morally - the measure is not supported over g_{t}-invariant embedded submanifolds. Such submanifolds form obvious obstructions to measure classification, due to Pesin-Sinai.

QNI

QNI - There exists a positive measure set of generic points q such that for many points $q^{\prime} \in W^{s}(q)$ with $d\left(q, q^{\prime}\right) \approx L$, there are generic points $u . q \in W_{\text {loc }}^{u u}(q)$ with $d(q, u . q) \approx L$ such that the deviation of the central-stable projection from the fast unstable is polynomial in L.

Standing assumptions

Assume from now (for simplicity) M is 4-dimensional, with the following Lyapunov spectrum

$$
\lambda_{-}<0<\lambda_{1}<\lambda_{2} .
$$

We denote $W_{\text {loc }}^{u u}=W_{\text {loc }}^{>1}$ by $T\left(W_{\text {loc }}^{u \mu}\right)=E^{\lambda_{2}}$.

The Eskin-Mirzakhani Scheme

Fix some auxiliary $\epsilon>0$. Assume that all
 points in this diagram are generic.
Consider the conditional measure $\left.\mu\right|_{w^{u}}$.
Gives a function f_{1} by $x \mapsto \mu_{x}^{u}$. We get:

$$
\begin{aligned}
f_{1}\left(q_{2}\right) & =f_{1}\left(g_{\ell} \cdot u \cdot g_{-t} \cdot q_{3}\right) \\
& =e^{\lambda_{\star}\left(u \cdot q_{1}, \ell\right)} \cdot e^{-\lambda_{\star}\left(q_{1}, t\right)} \cdot f_{1}\left(q_{3}\right)
\end{aligned}
$$

Hence for suitable choice of ℓ, t, we get $f_{1}\left(q_{3}\right)=f_{1}\left(q_{2}\right)$ and similarly $f_{1}\left(q_{3}^{\prime}\right)=f_{1}\left(q_{2}^{\prime}\right)$.
But we have that $q_{2} \approx u_{1} . q_{2}^{\prime}$ with $\operatorname{dist}\left(q_{2}, q_{2}^{\prime}\right) \approx \epsilon$ in the direction of $E^{\lambda_{1}}$!

Problems

1. ϵ is an external parameter - so it is not dynamically defined. How to ensure all points are generic?

Answer - FACTORIZATION.
2. How to choose suitable q^{\prime} ?

Answer - ENTROPY.
3. W^{u} does not carry an homogeneous structure???

Answer - Normal forms coordinates over W^{u} (Kalinin-Sadovaskaya).

Idea of Eskin-Mirzakhani

Assume that there exists a magical linear operator

$$
A(q, u, \ell, t): E^{s}(q) \rightarrow \mathbb{R}
$$

which measures the distance between $g_{t} \cdot u \cdot q_{1}$ and $g_{t} \cdot u \cdot q_{1}^{\prime}$ in the Eskin-Mirzakhani scheme. This leads to a factorization of the E-M scheme by considering $A(q, u, \ell, t) \cdot v_{q^{\prime}}$.
One can define the stopping time of the scheme as

$$
\tau(q, u, \ell)=\sup \left\{t \geq 0 \mid\|A(q, u, \ell, t)\|_{o p} \leq \epsilon\right\}
$$

Magic(Eskin-Mirzakhani): τ is bilipschitz in ℓ. Hint $-A(q, u, \ell+r, t+s)=g_{s} \cdot A(q, u, \ell, t) \cdot g_{r}$

Choice of points

By the ergodic theorem, if q_{1} is generic, for many times t (=positive density) the points $q_{2}=g_{t} \cdot u \cdot q_{1}$ are in a good set.

Bilipschitz estimate gives that many points $q=g_{-\ell .} q_{1}$ are in a good set.

Stopping time for $q_{3}=g_{t} . q_{1}$ is defined by cocycle with q_{2}, hence again many points are in a good set, by bilipschitz estimate.

Choice of q^{\prime}

Second idea of Eskin-Mirzakhani

Choosing q^{\prime} amounts to choosing a "good vector" $v \in E^{s}(q)$ such that

$$
A(q, u, \ell, t) \cdot v \approx\|A(q, u, \ell, t)\|_{o p} .
$$

Done by entropy considerations similar to the low entropy technique (à la Einsiedler-Lindenstrauss).
a.k.a Case 1.
a.k.a not Case 2.

Major Issue - Construction of $A(q, u, \ell, t)$

While all the involved manifolds are smooth, the W^{u} foliation is in general only Hölder-continuous (c.f. Hasselblatt-Wilkinson).

Hence the map $\operatorname{Proj}_{q_{1}^{1}}^{c-s}\left(u . q_{1}\right)$ is not smooth but only Hölder.

Factorization overcomes this issue, by approximating it (polynomially), as-long as we have an a-priori upper-bound over the stopping time (due to QNI). This makes the construction of the operator $A(q, u, \ell, t)$ pretty complicated in the non-homogeneous case.

Examples

Example I-ASL $(\mathbb{R}) / A S L_{2}(\mathbb{Z})$ - the space of affine lattices

Consider $Y=A S L_{2}(\mathbb{R}) / A S L_{2}(\mathbb{Z})$. Define $g_{t}=\left(\begin{array}{ccc}e^{t} & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & 1\end{array}\right)$.
Then g_{t} is Anosov, $\lambda_{1}=e^{t}, \lambda_{2}=e^{2 t}$ with $W^{\lambda_{2}}=\left(\begin{array}{ccc}1 & \left.\begin{array}{l}0 \\ 0\end{array}\right) \\ 0 & 0 \\ 0 & 1 & 1\end{array}\right)$ and $W^{\lambda_{1}}=\left(\begin{array}{ccc}1 & 0 & \star \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

So u-Gibbs state means $W^{\lambda_{2}}$-invariant. One may show that if $h_{\mu}\left(g_{1}\right)>3$, then μ is QNI, as the leafwise measure through $W^{\lambda_{-1}}$ is non-trivial.

Example II - Borel-Smale constructions

Let $\left\{N_{i}\right\}_{i=1,2}$ be two copies of the Heisenberg group,
$\operatorname{Lie}\left(N_{i}\right)=\operatorname{span}\left\{x_{i}, y_{i}, z_{i}\right\}$ with $\left[x_{i}, y_{i}\right]=z_{i}$.
[Borel-Smale] There exists a rationally-defined map $A: \operatorname{Lie}\left(N_{1} \times N_{2}\right) \rightarrow \operatorname{Lie}\left(N_{1} \times N_{2}\right)$ such that

$$
A\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2} \\
z_{1} & z_{2}
\end{array}\right)=\left(\begin{array}{cc}
\lambda^{a} \cdot x_{1} & \lambda^{-a} \cdot x_{2} \\
\lambda^{b} \cdot y_{1} & \lambda^{-b} \cdot y_{2} \\
\lambda^{a+b} \cdot z_{1} & \lambda^{-(a+b)} \cdot z_{2}
\end{array}\right)
$$

A is clearly Anosov diffeo if $a, b, a+b \neq 0$. Consider M - the suspension of $N_{1} \times N_{2} / \Gamma$.

Take $a=3, b=-2$. Notice that $h_{\mu}(A) \geq 5 \ln (\lambda)$ for every generalized u-Gibbs state μ. One may show (by entropy considerations) that every u-Gibbs state is QNI.

Application to equidistribution

A system (admitting a dominant splitting) is HQNI if every generalized u-Gibbs state is QNI.

Theorem (K.)
Assume $\left(M, \mu, g_{t}\right)$ is $H Q N I$, where $W^{>1} \subset W^{u}$ is isomorphic to \mathbb{R}^{n} (by means of its subresonant group, i.e. narrow-band spectrum). Then for every $x \in M$, for almost every $u . x \in W^{>1}(x)$ we have that $\frac{1}{T} \int_{t=0}^{T} \delta_{g_{t} . u . x} d t \rightarrow \mu$ in the weak-ᄎ topology, where μ is some SRB measure on M.

Analogous to results of Eskin-Chaika (Translation surfaces) and Kleinbock-Shi-Weiss (Homogeneous dynamics).

Related to a conjecture of Gogolev about convergence of push-forwards of u-Gibbs states.

