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Introduction

Let M be a closed manifold. Let gt : M → M be a smooth
flow.

Definition
gt is Anosov if for all x ∈ M , we have a continuous splitting

TxM = E s ⊕ E 0 ⊕ E u

such that there exist C > 0, λ < 1 with

‖gt |E s‖ ≤ C · λt for all t ≥ 0

‖gt |Eu‖ ≤ C · λ|t| for all t ≤ 0.

dimE 0 = 1.
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Basic Examples

We define the unstable leaf W u by T (W u) = E u. Similarly,
W s - the stable leaf is defined by T (W s) = E s .

Main Example

M = T 1(Riemann surface) = SL2(R)/Γ for Γ ≤ SL2(R) is a
uniform lattice.

Then the flow defined by the action of gt =

(
et 0
0 e−t

)
is an

Anosov flow.

Here W u,W s amount to horospheres.
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Oseledets theorem

Assume now that M is endowed with a gt-invariant and
ergodic probability measure µ.

Theorem (Oseledets)
Assume V is a vector bundle over M , then for almost every
x ∈ M , there exists a gt-equivarient splitting of V (x) and
numbers λi ∈ R such that

V = ⊕iV
λi

and for all 0 6= v ∈ V λi we have

lim
t→∞

1
t

log‖gt .v‖ = λi .
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Oseledets splitting

Applying the theorem to the tangent bundle TM , we may
refine the Anosov splitting to the Oseledets splitting:

E s ⊕ E 0 ⊕ E u = ⊕iE
λi

with E s = ⊕λi<0E
λi , E u = ⊕λi>0E

λi and E 0.

We order the exponents as . . . < λ−1 < λ0 = 0 < λ1 ≤ λ2 ≤ . . ..
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Cont.

In general we have the backwards flag

0 ≤ Eλk ≤ Eλk ⊕ Eλk−1 ≤ . . . ≤ ⊕i>`E
λi ≤ . . . ≤ TM ,

where Eλk - most expanding subspace.

We may define distributions according to the splitting, which
are leading to the fast-unstable leaf T 1(W uu

loc) = Eλk and the
generalized fast-unstable T 1(W>1

loc ) = ⊕i≥2E
λi where

0 = λ0 < λ1.
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Basic examples - Cont.

Consider the group ASL2 = SL2 oG2
a. This group can be

embedded into SL3 as
(

a b x
c d y
0 0 1

)
.

One may form the quotient space Y = ASL2(R)/ASL2(Z).
This is a toral bundle over SL2(R)/SL2(Z).

Define gt =
(

et 0 0
0 e−t 0
0 0 1

)
≤ ASL2(R).

Then the flow induced over Y by gt is Anosov as

gt .

a b x

c d y

0 0 1

 .g−t =

 a e2tb etx

e−2tc d e−ty

0 0 1


with E u = Eλ2 ⊕ Eλ1 , E s = Eλ−1 ⊕ Eλ−2
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u-Gibbs states and SRB measures

From now on, let µ be a gt-invariant and ergodic probability
measure, defined over M .

Definition

• The measure µ is called an SRB measure if its
conditionals µ |W u are a.c.

• The measure µ is called a (generalized) u-Gibbs state if
its conditionals µ |W uu

loc
(µ |W>1

loc
) are a.c.

Sinai and Pesin (∼ 82) gave a construction of u-Gibbs states
by averaging densities over W u. One may show that u-Gibbs
states are weak-? closed and convex.
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Measure classification

It is clear that every SRB measure is a u-Gibbs state.

Question - Is the other direction true?

Answer - In general, NO! (i.e. for ASL2, consider the measure
coming from the Haar measure on SL2(R)/SL2(Z)1).

1or any orbit supported on the set torsion points of some CM-curve, c.f.
Elkies-McMullen.
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Measure classification

Theorem (K.)
Let (M , gt , µ) be an Anosov system. Assume that µ is a
(generalized) u-Gibbs state, with simple least positive
Lyapunov exponent, satisfying QNI, then µ is SRB.

QNI - Quantitative Non-Integrability condition.

Morally - the measure is not supported over gt-invariant
embedded submanifolds. Such submanifolds form obvious
obstructions to measure classification, due to Pesin-Sinai.
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QNI

QNI - There exists a positive measure set of generic points q
such that for many points q′ ∈ W s(q) with d(q, q′) ≈ L, there
are generic points u.q ∈ W uu

loc(q) with d(q, u.q) ≈ L such that
the deviation of the central-stable projection from the fast
unstable is polynomial in L.

W u(q)

W u(q′)

q

q′

u.q

Pr c−s
q,q ′ (u.q)

L

Lα
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Standing assumptions

Assume from now (for simplicity) M is 4-dimensional, with the
following Lyapunov spectrum

λ− < 0 < λ1 < λ2.

We denote W uu
loc = W>1

loc by T (W uu
loc) = Eλ2 .
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The Eskin-Mirzakhani Scheme

W uu(q1)

W uu(q ′1 )

O(1)

O
(
e−λC ·`

)

O(ε)

q q′

q1 q′1

q3 q′3

u.q1

q2

q′2
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W uu(q1)

W uu(q ′1 )

O(1)

O
(
e−λC ·`

)

O(ε)

q q′

q1 q′1

q3 q′3

u.q1

q2

q′2

Fix some auxiliary ε > 0. Assume that all
points in this diagram are generic.
Consider the conditional measure µ |W u .
Gives a function f1 by x 7→ µu

x . We get:

f1(q2) = f1(g`.u.g−t .q3)

= eλ?(u.q1,`) · e−λ?(q1,t).f1(q3).

Hence for suitable choice of `, t, we get
f1(q3) = f1(q2) and similarly
f1(q′3) = f1(q′2).
But we have that q2 ≈ u1.q

′
2 with

dist(q2, q
′
2) ≈ ε in the direction of Eλ1!
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Problems

1. ε is an external parameter - so it is not dynamically
defined. How to ensure all points are generic?

Answer - FACTORIZATION.

2. How to choose suitable q′?

Answer - ENTROPY.

3. W u does not carry an homogeneous structure???

Answer - Normal forms coordinates over W u

(Kalinin-Sadovaskaya).
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Idea of Eskin-Mirzakhani

Assume that there exists a magical linear operator

A(q, u, `, t) : E s(q)→ R

which measures the distance between gt .u.q1 and gt .u.q
′
1 in

the Eskin-Mirzakhani scheme. This leads to a factorization of
the E-M scheme by considering A(q, u, `, t).vq′ .

One can define the stopping time of the scheme as

τ(q, u, `) = sup {t ≥ 0 | ‖A(q, u, `, t)‖op ≤ ε} .

Magic(Eskin-Mirzakhani): τ is bilipschitz in `.

Hint - A(q, u, ` + r , t + s) = gs .A(q, u, `, t).gr

17



Choice of points

W uu(q1)

q

q1

q3

u.q1

q2 By the ergodic theorem, if q1 is generic, for
many times t (=positive density) the points
q2 = gt .u.q1 are in a good set.

Bilipschitz estimate gives that many points
q = g−`.q1 are in a good set.

Stopping time for q3 = gt .q1 is defined by
cocycle with q2, hence again many points
are in a good set, by bilipschitz estimate.
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Choice of q′

Second idea of Eskin-Mirzakhani
Choosing q′ amounts to choosing a “good vector” v ∈ E s(q)

such that
A(q, u, `, t).v ≈ ‖A(q, u, `, t)‖op.

Done by entropy considerations similar to the low entropy
technique (à la Einsiedler-Lindenstrauss).
a.k.a Case 1.
a.k.a not Case 2.
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Major Issue - Construction of A(q, u, `, t)

While all the involved manifolds are smooth, the W u foliation
is in general only Hölder-continuous (c.f. Hasselblatt-Wilkinson).

Hence the map Projc−s
q′1

(u.q1) is not smooth but only Hölder.

Factorization overcomes this issue, by approximating it
(polynomially), as-long as we have an a-priori upper-bound over the
stopping time (due to QNI). This makes the construction of the
operator A(q, u, `, t) pretty complicated in the non-homogeneous
case.
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Examples



Example I - ASL2(R)/ASL2(Z) - the space of affine
lattices

Consider Y = ASL2(R)/ASL2(Z). Define gt =
(

et 0 0
0 e−t 0
0 0 1

)
.

Then gt is Anosov, λ1 = et , λ2 = e2t with W λ2 =
(

1 ? 0
0 0 1
0 0 1

)
and

W λ1 =
(

1 0 ?
0 1 0
0 0 1

)
.

So u-Gibbs state means W λ2-invariant. One may show that if
hµ(g1) > 3, then µ is QNI , as the leafwise measure through
W λ−1 is non-trivial.
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Example II - Borel-Smale constructions

Let {Ni}i=1,2 be two copies of the Heisenberg group,
Lie(Ni) = span{xi , yi , zi} with [xi , yi ] = zi .

[Borel-Smale] There exists a rationally-defined map
A : Lie(N1 × N2)→ Lie(N1 × N2) such that

A

x1 x2

y1 y2

z1 z2

 =

 λa.x1 λ−a.x2

λb.y1 λ−b.y2

λa+b.z1 λ−(a+b).z2

 .

A is clearly Anosov diffeo if a, b, a + b 6= 0. Consider M - the
suspension of N1 × N2/Γ.

Take a = 3, b = −2. Notice that hµ(A) ≥ 5 ln(λ) for every
generalized u-Gibbs state µ. One may show (by entropy
considerations) that every u-Gibbs state is QNI.
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Application to equidistribution

A system (admitting a dominant splitting) is HQNI if every
generalized u-Gibbs state is QNI .

Theorem (K.)
Assume (M , µ, gt) is HQNI, where W>1 ⊂ W u is isomorphic
to Rn (by means of its subresonant group, i.e. narrow-band
spectrum). Then for every x ∈ M , for almost every
u.x ∈ W>1(x) we have that 1

T

´ T

t=0 δgt .u.xdt → µ in the
weak-? topology, where µ is some SRB measure on M .

Analogous to results of Eskin-Chaika (Translation surfaces)
and Kleinbock-Shi-Weiss (Homogeneous dynamics).

Related to a conjecture of Gogolev about convergence of
push-forwards of u-Gibbs states.
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