Partially hyperbolic maps with zero center Lyapunov exponents

Mauricio Poletti

Universidade Federal do Ceará (Joint work with S. Crovisier)

February, 2021

Goal: Relate 2 objects: Invariant foliations, invariant measures.

• $f: M \rightarrow M$ a Partially hyperbolic diffeomorphisms.

$$E^u \oplus E^c \oplus E^s$$

- ullet \mathcal{F}^u and \mathcal{F}^s always exists.
- f is dynamically coherent if \mathcal{F}^c exists.

ullet μ an f invariant measure.

Locally disintegrate μ with respect to \mathcal{F} .

$$\mu \mid_{\mathcal{B}} = \int_{\Sigma} \mu^{\mathcal{F}} d\mu_{\Sigma}$$

Theorem (Avila-Viana-Wilkinson)

Let $\varphi_t: T^1S \to T^1S$ be a geodesic flow on a negative curvature surface, then there exists a C^1 -neighborhood $\varphi_1 \in \mathcal{N} \subset \mathsf{Diff}^2_{vol}(T^1S)$ such that for $f \in \mathcal{N}$ either

- μ^{c} is atomic, or
- f is the time one map of an Anosov flow (μ^c is Lebesgue).

Theorem (Hertz-Hertz-Tahzibi-Ures)

Let $f: M^3 \to M^3$ be a C^{1+} partially hyperbolic diffeomorphism with compact one dimensional center leaves and accessible, then either:

- f has a unique m.m.e. with zero center Lyapunov exponent $(\mu^c$ is Lebesgue), or
- f has finite many m.m.e some with positive and some with negative exponents (μ^c is atomic).

Theorem (Buzzi-Crovisier-P.-Tahzibi)

Let $\varphi_t: M^3 \to M^3$ be a transitive Anosov flow that is not a suspension, then there exists a C^1 -neighborhood $\varphi_1 \in \mathcal{N} \subset \mathsf{Diff}^2(M^3)$ such that for $f \in \mathcal{N}$ either

- f has a unique m.m.e. and f is the time one map of an topological Anosov flow, or
- f has exactly 2 hyperbolic m.m.e. one with $\lambda^c > 0$ and one with $\lambda^c < 0$.

Analyze
$$\lambda(x, v) = \lim_{n \to \infty} \frac{1}{n} \log \|Df^n(x)v\| d\mu$$

Theorem (Avila-Viana Invariance Principle)

 $f: M \to M$ be a partially hyperbolic skew product, then $\lambda(x,v) \leq 0$ for $v \in E^c$ and μ a.e. $x \in M$ implies that μ^c is invariant under u-holonomies.

Corollary

If $\lambda^c = 0$ and μ projects on a measure with product structure then $x \mapsto \mu_x^c$ can be extended continuously to the support.

IMPORTANT: \mathcal{F}^c compact foliation and Fiber bundle.

f is **quasi isometric on the center** if there exists K, q > 0 s.t for n > 0

$$K^{-1}d^c(x,y)-q\leq d^c(f^n(x),f^n(y))\leq Kd^c(x,y)+q.$$

Theorem (Crovisier-P.)

 $f: M \to M$ a C^2 P.H. quasi isometric on the center, if $\lambda^c(x) \le 0$ then μ^c is invariant by u-holonomies.

Corollary

If $\mu \sim \mu^{cu} \times \mu^{s}$ and $\lambda^{c} = 0$ then $x \mapsto \mu_{x}^{c}$ is continuous on supp(μ).

Proof of BCPT: f close to φ_1 .Buzzi-Fisher-Tahzibi proved that either: there are two, μ_+ and μ_- or all have zero exponents. Moreover if μ m.m.e. with $\lambda^c(\mu) \leq 0$ then μ^u is a Margulis family:

- μ_x^u is h^{cs} quasi invariant.
- \bullet μ is fully supported.

$$\lambda^{c}(\mu) = 0$$
, $\mu \sim \mu^{cs} \times \mu^{u}$.

Proof of CP:

