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Abstract. We study rigidity of Anosov diffeomorphisms in a sufficiently small
C1 neighborhood of a linear hyperbolic automorphisms of the 3-dimensional
torus which has a pair of complex conjugate eigenvalues. In particular, we
show that two very non-algebraic (an open and dense condition) Anosov dif-
feomorphisms from this neighborhood are smoothly conjugate if and only they
have matching Jacobian periodic data.

1. Introduction

Recall that a diffeomorphism f : M ÑM is called Anosov if the tangent bundle
admits a Df -invariant splitting TM “ Es‘Eu, where Es is uniformly contracting
and Eu is uniformly expanding under f . Basic examples of Anosov diffeomorphisms
are toral hyperbolic automorphisms L : Td Ñ Td which are given by hyperbolic
matrices in GLpd,Zq, i.e., matrices whose spectrum is disjoint with the unit circle
in C.

Let f1, f2 : M Ñ M be transitive Anosov diffeomorphisms which are conjugate
via a homeomorphism h, h ˝ f1 “ f2 ˝ h. We will say that f1 and f2 have matching
periodic data if for every periodic point p “ fk1 ppq the differentials pDfk1 qp and
pDfk2 qhppq are conjugate (in particular, they have the same spectrum). By differen-
tiating the conjugacy relation one immediately sees that matching of periodic data
is a necessary assumption for the conjugacy to be C1. A weaker assumption which
we will consider here is matching of Jacobian periodic data. Namely, we say that
f1 and f2 have matching Jacobian periodic data if every periodic point p “ fk1 ppq

pJsfk1 qp “ pJ
sfk2 qhppq and pJufk1 qp “ pJufk2 qhppq

where Jsfi and Jufi stand for Jacobians of the restrictions of Dfi, i “ 1, 2, to
the stable and unstable distributions, respectively. If the equality holds only for
stable (or only for unstable) Jacobians then we will talk about matching of stable
(respectively, unstable) Jacobian periodic data.

In dimension 2 matching of periodic data implies smoothness of the conjugacy by
work of de la Llave, Marco and Moriyón [dlL87, MM87, dlL92]. In higher dimensions
a lot of work was devoted to periodic data rigidity (characterization of smooth con-
jugacy class) of hyperbolic automorphisms, see e.g., [dlL04, KS09, GKS11, DW21].

The authors were partially supported by NSF grants DMS-1955564 and DMS-1900778,
respectively.
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In particular, in dimension 3 the problem was solved for automorphisms with a pair
of complex eigenvalues by Kalinin and Sadovskaya [KS09] and for automorphisms
with real spectrum by Gogolev and Guysinsky [GG08, G17]. Further, in proximity
of automorphism with real spectrum matching of periodic data implies C1`hölder

regularity of the conjugacy on an open set of Anosov diffeomorphisms in dimension
3 and higher [GG08, G08].

In this paper we transfer some of ideas of [GRH20a] from the setting of expanding
maps to the setting of Anosov diffeomorphisms. In particular, we have open sets
of Anosov diffeomorphisms where we obtain optimal smoothness of the conjugacy
using less data, such as Jacobian periodic data, or stable Jacobian periodic data
as opposed to full periodic data which was commonly used before. To the best of
our knowledge this is the first instance when smooth (not just C1`hölder) conjugacy
classes were characterized on an open set of diffeomorphisms in dimension ą 2.

1.1. Results in dimension 3. We present the following results for Anosov diffeo-
morphisms in dimension 3.

Theorem 1.1. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Then there exists a C1 neighborhood U of L such that all Cr,
r ě 2, Anosov diffeomorphisms f1, f2 P U with matching Jacobian periodic data are
either Cr˚ conjugate or the SRB measure coincides with the measure of maximal
entropy for f1.

Above r˚ “ r if r is not integer and r˚ “ pr ´ 1q ` Lip otherwise. Note that
there is a unique topological conjugacy h which is C0 close to idT3 , h ˝ f1 “ f2 ˝ h,
coming from structural stability. The condition on matching of Jacobian periodic
data is imposed relative to this conjugacy h.

Remarks. 1. Recall that that SRB and MME measures do not coincide if and
only ´ log Juf1 is not cohomologous to a constant. This can be detected
from two periodic points with different sums of unstable Lyapunov expo-
nents. Hence the above theorem solves the smooth rigidity problem in a
C1 neighborhood of L on a C1-open and C8-dense subset. The obvious
remaining problem is to handle the case when log Juf1 is cohomologous to
a constant. It is not hard to see by perturbing L along unstable foliation
that the conjugacy is not necessarily smooth if we only assuming matching
of Jacobian periodic data. However, the problem that remains in this case is
establishing smooth of the conjugacy under assumption of matching of (full)
periodic data.

2. We can replace the assumption on C1-closeness to L by an appropriate
bunching assumption at periodic points.

3. If both f1 and f2 are volume preserving then it is enough to assume matching
of unstable Jacobian periodic data because the stable Jacobian periodic data
are given by reciprocals and, hence, match automatically.
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Given two conjugate Anosov diffeomorphisms f1 and f2, h ˝ f1 “ f2 ˝ h, and
Hölder continuous functions ϕ1, ϕ2 : M Ñ R, we say that pf1, ϕ1q is equivalent to
pf2, ϕ2q and write

pf1, ϕ1q „ pf2, ϕ2q

if there exists a continuous function u : M Ñ R such that

ϕ1 ´ ϕ2 ˝ h “ u´ u ˝ f1

Then, by the Livshits theorem [L72], pf1, ϕ1q „ pf2, ϕ2q if and only if for every
periodic point x P Fixpfn1 q

n´1
ÿ

k“0
ϕ1pf

k
1 pxqq “

n´1
ÿ

k“0
ϕ2pf

k
2 phpxqqq

Also recall that a potential ϕ : M Ñ R is called an almost coboundary over
f : M ÑM if ϕ is cohomologous to a constant, that is,

ϕ “ u´ u ˝ f ` c

for some function u and a constant c.
In fact, when f1 and f2 are C3, Theorem 1.1 is a consequence of the following

more general result.

Theorem 1.2. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues whose absolute value is greater than 1. Fix a number κ P
p 1

2 , 1s. Then there exists a C1 neighborhood U of L such that if pf1, ϕ1q „ pf2, ϕ2q,
where f1, f2 P U are Cr, r ě 2 ` κ, and ϕ1, ϕ2 P C1`κpT3q, then either h is
uniformly Cr along unstable leaves or ϕ1 is an almost coboundary over f1.

Corollary 1.3. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues of absolute value ą 1. Then there exists a C1 neighborhood
U of L such that all Cr, r ě 3, Anosov diffeomorphisms f1, f2 P U with matching
stable Jacobian periodic data are either Cr˚ conjugate or the SRB measure coincides
with the measure of maximal entropy for f´1

1 .

The next corollary established smooth conjugacy only assuming matching of full
Jacobian periodic data in the dissipative setting.

Corollary 1.4. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Fix a number κ P p 1

2 , 1s. Then there exists a C1 neighborhood
U of L such that if f1 is not volume preserving and pf1, log Jf1q „ pf2, log Jf2q,
where f1, f2 P U are Cr, r ě 2` κ, and Jfi is full Jacobian with respect to a fixed
volume form, i “ 1, 2, then f1 and f2 are Cr˚ conjugate.

2. Preliminaries

We will denote by W s and Wu the stable and unstable foliations which are tan-
gent to the stable distribution Es and the unstable distribution Eu of an Anosov
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diffeomorphosm f , respectively. When it is necessary to indicate the Anosov dif-
feomorphism which is being considered we will write Esf , W s

f , etc. By W s
locpxq and

Wu
locpxq we will denote local invariant manifolds centered at x whose size is given

by the local product structure constant.

2.1. Regularity of the stable foliation. We recall the definition of the stable
bunching parameter bspfq which controls regularity of the stable foliation, which
defined in terms of exponential rates. Namely, for an Anosov diffeomorphism f

there exist constants µ` ą µ´ ą 1 and λ` ą λ´ ą 1 and C ą 0 such that

1
C
µ´n` ď }Dfnpvsq } ď Cµ´n´ } vs } and

1
C
λn´ } v

u } ď }Dfnpvuq } ď Cλn` } v
u }

for all n ě 0 and all vs P Es, vu P Eu. Then the stable bunching parameter is given
by

bspfq “
log λ´
log λ`

`
logµ´
log λ`

If bspfq is not an integer (which we can always assume) then the stable foliationW s

and the stable distribution Es are Cbs
pfq regular [HPS77, H97]. In particular, the

stable holonomy maps are Cbs
pfq. (In fact, a better point-wise version of this result

holds [H97].) Symmetrically, the unstable foliation Wu and the stable distribution
Eu are Cbu

pfq regular, where the unstable bunching parameter is given by

bupfq “
logµ´
logµ`

`
log λ´
logµ`

Note that if the Anosov automorphism L : T3 Ñ T3 has one dimensional stable
subbundle corresponding to an eigenvalue µ´1, |µ| ą 1, and a pair of complex
conjugate eigenvalues λ, λ̄, then for small perturbations f we have µ´1

´ & |µ|
´1 or

µ´ . |µ| “ |λ|2. Also we have λ´ . |λ| . λ`. Hence
log λ´
log λ`

. 1 and logµ´
log λ`

. 2

For sufficiently small perturbations f the above ratio will be close to 1 and 2,
respectively, and, hence, the stable foliation is C3´ε, where ε ą 0 can be taken
arbitrarily small by controlling the size of the perturbation. In fact, we will only
need C2`ε regularity forW s. Calculating bupfq in this setting gives C 3

2´ε regularity
of Wu.

2.2. Cohomological equation over Anosov diffeomorphisms and periodic
cycle functionals. Here we recall an alternative approach to solving the cohomo-
logical equation ϕ “ u ´ u ˝ f ` const over and Anosov diffeomorphisms f . This
approach is due to Katok and Kononenko who introduced it to study the coho-
mological equation over partially hyperbolic diffeomorphisms [KK96]. For Anosov
diffeomorphisms this approach is much easier because local accessibility property
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is automatic, however we will need to slightly refine the argument in order to rely
on a sub-collection consisting of null-homologous periodic cycle functions only.

A piecewise smooth path γ : r0, 1s ÑM is called a us-adapted path if each smooth
leg is entirely contained in a stable or unstable leaf of f . If γp1q “ γp0q then we
say that γ is a us-adapted loop.

Given a Hölder continuous function ϕ : M Ñ R the periodic cycle functionals are
defined in the following way. If γ lies entirely in a stable leaf then let

PCFγpϕq “
ÿ

ně0
ϕpfnpγp0qqq ´ ϕpfnpγp1qqq

If γ lies entirely in a stable leaf then let

PCFγpϕq “
ÿ

nă0
ϕpfnpγp1qqq ´ ϕpfnpγp0qqq

Given a us-adapted path γ “ γ1 ˚ γ2 ˚ . . . ˚ γm, with each leg γi entirely contained
in a stable or an unstable leaf let

PCFγpϕq “
m
ÿ

i“1
PCFγipϕq

Note that the value PCFγpϕq only depends on the sequence of endpoints of γi.
If ϕ “ u ´ u ˝ f ` const then, by a direct calculation PCFγpϕq “ upγp0qq ´

upγp1qq. Hence values of periodic cycle functionals on us-adapted loops provide
obstructions to solving the cohomological equation. It turns out that vanishing of
these obstructions is a sufficient condition for existence of a solution.

Proposition 2.1 (Katok-Kononenko). If f : M ÑM is an Anosov diffeomorphism
and ϕ is a Hölder continuous function such that PCFγpϕq “ 0 for every us-adapted
loop γ, then ϕ is an almost coboundary; that is, there exists a constant c and a
Hölder continuous function u such that ϕ “ u´ u ˝ f ` c.

Proof. Let x0 be a fixed point, fpx0q “ x0 and let c “ ϕpx0q. Given a point x PM
consider a us-adapted path γ connecting x0 to x and let upxq “ PCFγpϕq. Note
that upxq does not depend on choice of γ because a different choice would adjust
the value of upxq by a value of periodic cycle function on a loop, which is zero by
our assumption.

By a direct calculation we have

upxq ´ upfpxqq “ PCFγpϕq ´ PCFf˝γpϕq “ ϕpx0q ´ ϕpxq

Finally, it is standard to check Hölder continuity of u by checking that restrictions
to stable and unstable leaves are Hölder continuous. �

We will need a version of the above proposition which is concerned with null-
homologous us-adapted loops, i.e., loops whose homology class vanishes inH1pM,Zq.
The next proposition can be easily derived from the abelian Livshits Theorem for
Anosov flows given in [GRH20b, Theorem 3.3], however, for Anosov diffeomor-
phisms the proof is more direct and we include it here.
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Proposition 2.2. Assume that f : M Ñ M is an Anosov diffeomorphism such
that f˚n ‰ n for all non-zero n P H1pM,Zq. Assume that ϕ is a Hölder continuous
function such that PCFγpϕq “ 0 for every null-homologous us-adapted loop γ.
Then ϕ is an almost coboundary.

Proof. Let M̃ be the universal abelian cover of M , that is, the cover which corre-
sponds to the commutator subgroup rπ1M,π1M s; its group of Deck transformations
is given by H1pM,Zq. Let x0 be a fixed point for f and let x̃0 be a fixed point for
a lift f̃ : M̃ Ñ M̃ of f . Also let ϕ̃ be the lift of ϕ.

Note that homologically trivial us-adapted loops on M are precisely those loops
which correspond to elements in the commutator subgroup of π1pMq and, hence,
lift to loops on M̃ . Therefore, the preceding proof can be repeated verbatim on
M̃ . Namely, if c “ ϕ̃px̃0q and ũpxq “ PCFγpϕ̃q, where γ connects x0 to x, then we
have a solution to the cohomological equation on M̃ :

ϕ̃ “ ũ´ ũ ˝ f̃ ` c

Let w : H1pM,Zq Ñ R be given by wpT q “ ũpT px̃0qq. Then, because periodic cy-
cle functionals are invariant under Deck transformations: PCFT˝γpϕ̃q “ PCFγpϕ̃q,
T P H1pM,Zq, one can easily verify that w is a homomorphism. And also similarly,
ũ ˝ T ´ ũ “ wpT q.

Now for any T P H1pM,Zq we have

ϕ̃˝T “ ũ˝T ´ ũ˝ f̃ ˝T `c “ ũ`wpT q´ ũ˝ f̃´wpf˚pT qq`c “ ϕ̃`wpT q´wpf˚pT qq

Hence, because ϕ̃ ˝ T “ ϕ̃, we obtain that wpT q “ wpf˚pT qq or wppid´ f˚qT q “ 0
for all T . By assumption id´ f˚ has trivial kernel, hence, we conclude that w ” 0.
This means that ũ is also equivariant under the Deck group and, thus, descends to
a function u : M Ñ R and gives a solution to the cohomological equation on M :
ϕ “ u´ u ˝ f ` c. �

2.3. Regularity of simple periodic cycle functionals. The simplest PCF is
given by a quadruple of points. Here we show that under assumptions of Theo-
rem 1.2 such PCF are C1 along unstable leaves.

Let a P W spbq. Then there is a canonical holonomy map Hola,b : Wu
locpaq Ñ

Wu
locpbq which takes a to b and which is given by sliding along stable leaves. If

stable and unstable foliations have global product structure (as is the case for
Anosov diffeomorphisms on tori), then the holonomy map can be continuously
extended to a map Hola,b : Wupaq ÑWupbq in a unique way.

Let γpa, b, xq be a us-adapted loop connecting a to b, b to Hola,bpxq, to x and
then back to a. Given a potential ϕ define ρϕa,b : Wupaq Ñ R via the periodic cycle
functional of γpa, b, xq

ρϕa,bpxq “ PCFγpa,b,xqpϕq

Lemma 2.3. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Fix a number κ ą 1

2 and assume let ϕ : M Ñ R be a Hölder
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function which is uniformly C1`κ. Let f be a sufficiently small perturbation of the
automorphism L such that λ` ă µκ´. Then ρϕa,b : Wupaq Ñ R is C1 regular.

Proof. Recall that by definition

ρϕa,bpxq “
ÿ

ně0
ϕpfnpbqq ´ ϕpfnpaqq `

ÿ

ně0
ϕpfnpxqq ´ ϕpfnpHola,bpxqqq

`
ÿ

nă0
ϕpfnpxqq ´ ϕpfnpaqq `

ÿ

nă0
ϕpfnpbqq ´ ϕpfnpHola,bpxqqq

Note that the first series term is just a constant. The third series term can be
easily seen to be C1 along Wu by calculating the formal derivative and observing
that the resulting series converge uniformly and hence, by Weierstrass M-test, give
a bona fide derivative of the series. The last series term is of the same nature as
the third one, but precomposed with the holonomy map. Since Hola,b is C1, we
conclude that the last term is also C1 along Wu. Hence, it remains to analyze the
second series term.

We denote by Du the restriction of derivative to Eu and calculate the formal
derivative of the second series term:

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDuHola,bpxq

We proceed with an estimate using the triangle inequality by splitting the above
series into a sum of two series. Note that the points fnpHola,bpxqq and fnpxq are
close and we can identify unstable subspaces at these points using a finite number
of smooth charts. In this way the compositions of differentials which appear below
make sense.

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDuHola,bpxq

“
ÿ

ně0

`

Duϕpf
npxqq ´Duϕpf

npHola,bpxqqq
˘

Duf
npxq

`
ÿ

ně0
Duϕpf

npHola,bpxqqq
`

Duf
npxq ´Duf

npHola,bpxqqDuHola,bpxq
˘

We will see that both series above converge uniformly. This then implies that ρϕa,b
is indeed Du-differentiable with a continuous derivative given by the above series.

For estimating the first series we use the fact that Duϕ is Hölder with exponent
κ ą 1{2. (Indeed, recall that Eu is C1 and ϕ is C1`κ.)

}
`

Duϕpf
npxqq ´Duϕpf

npHola,bpxqqq
˘

Duf
npxq }

ď C distpfnpxq, fnpHola,bpxqqq
κλn` ď Cµ´nκ´ λn`

Hence, because µ´κ´ λ` ă 1, the series converge uniformly.
For the second series note that Duϕ is uniformly bounded and hence, we need

to estimate Duf
npxq ´Duf

npHola,bpxqqDuHola,bpxq. To do that notice that fn ˝
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Hola,b “ Holfnpaq,fnpbq ˝ f
n. Hence

}Duf
npxq ´Duf

npHola,bpxqqDuHola,bpxq }

“ }Duf
npxq ´DuHolfnpaq,fnpbqpf

npxqqDuf
npxq }

ď } Id´DuHolfnpaq,fnpbqpf
npxqq } ¨ }Duf

npxq } ď Cµ´n´ λn`

where for the bound

} Id´DuHolfnpaq,fnpbqpf
npxqq } ď Cdistpfnpxq, fnpHola,bpxqqq ď Cµ´n´

we used the fact W s is a C2 foliation and, hence, DuHolz,y is uniformly Lipschitz
in y P W s

locpzq, z P T3, and DuHolz,z “ Id. Therefore, because λ` ă µ´, the
second series also converge uniformly. �

2.4. Relation between stable holonomy and simple periodic cycle func-
tionals. Consider a quadruple of points a, b P W spaq, x P Wupaq and Hola,bpxq

as in the preceding section. The Jacobian of Hola,b can be calculated using the
relationship fn ˝ Hola,b “ Holfnpaq,fnpbq ˝ f

n. Indeed, taking Jacobians of both
sides yields

J Hola,bpxq “
JufnpxqJ Holfnpaq,fnpbqpf

npxqq

JufnpHola,bpxqq

Recall that J Holfnpaq,fnpbq Ñ 1 as n Ñ `8 because holonomy is uniformly C1

and Holz,z “ Id, z P T3. Hence, by taking logarithms and passing to the limit as
nÑ `8 we obtain the following expression for the Jacobian of the holonomy

log J Hola,bpxq “
ÿ

ně0
log Jufpfnpxqq ´ log JufpfnpHola,bpxqqq

This formula give the relationship of the Jacobian of the holonomy to the simple
periodic functional. Namely, if ϕ “ log Juf then we have

ρϕa,bpxq “ log J Hola,bpxq ´ log J Hola,bpaq

`
ÿ

nă0
ϕpfnpxqq ´ ϕpfnpaqq `

ÿ

nă0
ϕpfnpbqq ´ ϕpfnpHola,bpxqqq

Remark 2.4. The formula above becomes much nicer if one considers the Jacobian
of holonomy relative to the conditional measures of the SRB measure of f . Recall
that the density of such conditional measure on Wupaq normalized to be equal to
1 at a, is given by

θapxq “
ź

nă0

Jufpfnpaqq

Jufpfnpxqq

Then the Jacobian of holonomy relative to the SRB conditional measures onWupaq

and Wupbq is given by

JSRBHola,bpxq “ J Hola,bpxq
θbpHola,bpxqq

θapxq

Taking logariths and using the formula for ρϕa,b we have

log JSRBHola,bpxq “ ρϕa,bpxq ` log JSRBHola,bpaq
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Hence, up to an additive constant simple PFC is the same as logarithmic Jacobian
of the holonomy relative to the conditionals of the the SRB measure.

This expression lets us establish regularity of ρϕa,b when f is merely C2. Note
that for Lemma 2.3 to apply when ϕ “ log Juf , we must have that ϕ is C1`κ,
which means that f has to be C2`κ regular.

Lemma 2.5. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Let f be a sufficiently small perturbation of the automor-
phism L and let ϕ “ log Juf . Then ρϕa,b : Wupaq Ñ R is C1 regular.

Proof. The preceding formula expresses ρϕa,b as a sum of four terms. Recall that
according to the discussion in Section 2.1 the map Hola,b is C2 (and this is why we
need f to be at least C2). Hence the first term J Hola,b is C1 regular. The second
term is just a constant. Then, C1 regularity of of the third and, similarly, the last
series term, are easy to see by observing that ϕ is C1, differentiating the series
formally with respect to x and observing exponential convergence of the resulting
series. �

2.5. Non-stationary linearization for expanding foliations. Let f : M ÑM

be a Cr, r ě 2, diffeomorphism which leaves invariant a continuous foliationW with
uniformly Cr leaves. Assume that W is an expanding foliation, that is }Dfpvq } ą
1, for all v P E where E Ă TM is the distribution tangent to W . The following
proposition on non-stationary linearization is a particular instance of the normal
form theory developed by Guysinsky and Katok [GK98] and further refined by
Kalinin and Sadovskaya [S05, KS09].

Proposition 2.6. Let f be a Cr, r ě 2, diffeomorphism and let W be an expanding
foliation as described above, E “ TW . Assume that there exist ν P r0, 1s and
γ P p0, 1q such that

} pDfn|Eq
´1 } ¨ }Dfn|E }

1`ν ď Cγn

for all n ě 1. Then for all x PM there exists Hx : Epxq ÑWupxq such that
1. Hx is a Cr diffeomorphism for all x PM ;
2. Hxp0q “ x;
3. D0Hx “ id;
4. Hfx ˝Dxf “ f ˝Hx;
5. DHx is Lipschitz along W ;
6. such family Hx, x P M , is unique among linearizations satisfying the above

properties; moreover, uniqueness still holds among linearizations which do
not necessarily obey item 5 above, but with ν-Hölder dependence of DHx

along W ;
7. if y PW pxq then H´1

y ˝Hx : Epxq Ñ Epyq is affine;
8. the map x Ñ Hx from M to ImmrpEpxq,Mq is Hölder, in particular, the

map Ĥ : E ÑM , given by Ĥpx, vq “ Hxpvq is continuous;
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Such family tHx, x P Mu is called non-stationary linearization/normal form or
affine structure along W .

3. Proofs of results in dimension 3

For all the proofs in this section we will assume that L has one real eigenvalue of
absolute value ă 1 and a pair of complex eigenvalues of absolute value ą 1. If the
real eigenvalue has absolute value ą 1 then one can consider inverses and conclude
the same results.

3.1. Theorem 1.2 implies Theorem 1.1 with a caveat. The caveat is that we
need to make an additional assumption that fi are at least C2`κ regular. Under
this assumption we explain that Theorem 1.2 applies in the setting of Theorem 1.1.

Fix a Riemannian metric on T3 and let ϕi “ log Jufi, i “ 1, 2. Because unstable
Jacobian periodic data match we have pf1, ϕ1q „ pf2, ϕ2q. In order to apply Theo-
rem 1.2 we also need to check that ϕi P C1`κpT3q with κ ą 1

2 . Note that this is not
immediate because the unstable subbundle is merely C 3

2´ε. However, because the
stable foliation W s

i is C2 we can pick C2- coordinate charts on T3 such that W s
i

is “horizontal” with respect to these charts. Then the differential Dfi has upper
triangular form in these charts. Taking the determinant of Dfi yields the following
relation

ϕi “ log Jufi “ log Jfi ´ log Jsfi

We have log Jfi P C1`κpT3q because we have assumed that fi are C2`κ. And
log Jsfi is also C1`κ because the stable subbundle Esi is C2. Therefore ϕi are
indeed C1`κ.

Applying Theorem 1.2 we obtain that log Jufi is cohomologous to a constant or
the conjugacy h is uniformly Cr along the unstable foliation. In the former case we
conclude that the equilibrium state for ´ log Jufi coincides with the equilibrium
state for the constant, which precisely means that the SRB measure coincides with
the measure of maximal entropy for fi.

In the case when h is uniformly Cr along the unstable foliation we need to refer
to classical arguments [dlL92] to conclude that h is Cr˚ . Indeed, from matching of
stable Jacobian periodic data de la Llave concludes that h sends the SRB measure
for f´1

1 to the SRB measure for f´1
2 . Same is true for conditional measures of

these SRB measures along the stable leaves. Further, de la Llave argues that these
conditionals are Cr smooth. And because the stable foliation is one dimensional we
can conclude that h is uniformly Cr`1 along stable foliation by integrating. Finally,
given that h is uniformly Cr along both the stable and the unstable foliation, one
employs the Journé’s Lemma [J88], to conclude that h is a Cr˚ diffeomorphism.

3.2. Proofs of Corollaries. Here we explain how Corollaries 1.3 and 1.4 follow
from Theorem 1.2.
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Proof of Corollary 1.3. Let ϕi “ log Jsfi, i “ 1, 2. Then, from regularity of Es

we have ϕi P C2pT3q and by the matching assumption pf1, ϕ1q „ pf2, ϕ2q. Thus
Theorem 1.2 applies and we have that either h is Cr along the unstable foliation,
and we further get that h is Cr˚ as explained in Section 3.1, or ϕ1 is cohomologous
to a constant. In the latter case, the equilibrium state for ϕ1 “ ´ log Jupf´1

1 q,
which is the SRB measure for f´1

1 coincides with MME.
Proof of Corollary 1.4. Here we can apply Theorem 1.2 to full Jacobians ϕi “
log Jfi. Diffeomorphism f1 being dissipative implies that ϕ1 is not cohomologous
to a constant. Hence, Theorem 1.2 implies that h is Cr along unstable foliation,
which in turn implies that h is Cr˚ is the same way as before.

3.3. Outline of the proof of Theorem 1.2 (and Theorem 1.1). By the as-
sumption pf1, ϕ1q „ pf2, ϕ2q we have that ϕ1 is cohomologous to ϕ2 ˝ h over f1.
Because periodic cycle functionals vanish on coboundaries we have that

PCFγpϕ1q “ PCFγpϕ2 ˝ hq

for every us-adapted loop γ for f1. Now we focus on simple PCFs given by four
legs and associated functions ρϕa,b : Wupaq Ñ R as defined in the Section 2.3. The
above equality of PFCs can be written in the following way

ρϕ1
a,b “ ρϕ2˝h

a,b “ ρϕ2
hpaq,hpbq ˝ h|Wu

f1
paq

We call such relation matching of functions ρϕ1
a,b and ρ

ϕ2
hpaq,hpbq. This relation holds

for all a P T3 and b PW spaq.
Now the proof splits into two cases. The first case is when all simple PCFs ρϕ1

a,b

are constant. In this case, we have, in fact, that ρϕ1
a,b ” 0 because we always have

ρϕ1
a,bpaq “ 0. We will deduce that such vanishing implies that all PCFs on null-

homotopic us-adapted loops vanish. Then Proposition 2.2 allows us to conclude
that ϕ1 is an almost coboundary, which completes the proof in this case.

The second case in when ρϕ1
a,b is non-constant for some a and b. Denote by

p a fixed point of f1 such that Df1 has a pair of (non-real) complex conjugate
eigenvalues. Such a point exists in proximity of 0 P T3 because we have assumed
that f1 is sufficiently close to L in C1 topology and L has a pair of complex conjugate
eigenvalues. Recall that by Lemma 2.3 ρϕ1

a,b is C1. Using minimality of the stable
foliation, we can adjust the locations of the points a and b the stable manifold such
that a P Wu

f1
ppq and ρϕ1

a,b is has non-zero differential at p. Note that dynamics
produces another matching relation as follows

ρϕ1
a,b ˝f1|Wu

f1
ppq “ ρϕ2

hpaq,hpbq ˝h|Wu
f1
ppq ˝f1|Wu

f1
ppq “ pρ

ϕ2
hpaq,hpbq ˝f2|Wu

f2
phppqqq ˝h|Wu

f1
ppq

The differential Dpρϕ1
a,b ˝ f1|Wu

f1
ppqq is also non-zero at p and has a kernel which

is linearly independent from the kernel of Dρϕ1
a,b. This is because Df1ppq is a

“expanding rotation” and doesn’t have any real eigenvalues. Hence we have two
independent matching relations on the neighborhood of of p inWuppq, which makes
it possible to apply the Inverse Function Theorem to conclude that h|Wu

f1
ppq is a
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C1 diffeomorphism on a small neighborhood of p. Then we can use C1 regularity
of the stable holonomy to spread this regularity everywhere and conclude that h
is uniformly C1 along the unstable foliation Wu

f1
. The last step in the proof is to

use uniqueness of the normal form for the unstable foliation to bootstrap regularity
along Wu

f1
from C1 to Cr. Then concluding that h is a Cr˚ diffeomorphism was

already explained at the end of Section 3.1.
In the following three sections we fill in the details for the above outline.

Remark 3.1. The proof of Theorem 1.1 is exactly the same working with the
specific potentials ϕi “ log Jufi, i “ 1, 2, to conclude that h is Cr along the
unstable foliation. The only difference is that due to possible lack of regularity of
fi one has to invoke Lemma 2.5 instead of Lemma 2.3.

3.4. Case I: vanishing of simple PCFs. We begin the proof of Theorem 1.2 by
considering the case when simple PCFs ρϕ1

a,b ” 0 for all a P T3 and b P W spaq. We
will prove, using induction, that PCFγpϕ1q “ 0 for all null-homologous us-adapted
loops γ, which handles this case by applying Proposition 2.2 and concluding that
ϕ1 is an almost coboundary.

Because γ null-homologous, it lifts to a loop γ̃ on the universal cover R3 and
we have PCFγ̃pϕ̃1q “ PCFγpϕ1q, where ϕ̃1 is the lift of ϕ1 and the PCF on the
universal cover is defined in the same way using the lifted dynamics. The advantage
of working on the universal cover is that the lifted foliations W̃ s and W̃u have global
product structure because they are close to the linear foliations for L. In particular,
the space of unstable leaves is homeomorphic to R and, hence, is linearly ordered.
We will denote by Upxq the R-coordinate of W̃upxq, x P R3 (and similarly for
R-coordinates of paths which are entirely contained in unstable leaves).

We will write γ̃ “ γ1 ˚ γ2 ˚ . . . ˚ γ2k and we can assume that the legs γi are
contained in unstable leaves for even i and contained in stable leaves for odd i;
indeed, if there are two consecutive legs in the same stable (or unstable) leaf we
can just combine them into a single leg. We will run induction on k. If k “ 2 then
the corresponding PCF is simple and vanishes by the assumption.

Now assume vanishing for all γ̃ with 2k ´ 2 legs or less. Pick a maximal leg
γ2i, that is, a leg such that Upγ2iq ě Upγ2jq for all j “ 1, . . . k. We can cyclically
relabel the legs if needed so that 2i ‰ 2k. By maximality we have Upγ2i´1p0qq ă
Upγ2iq and Upγ2i`1p1qq ă Upγ2iq. For concreteness, also assume that Upγ2i´1p0qq ě
Upγ2i`1p1qq (the other case is symmetric). Then, by global product structure the
leaf W̃upγ2i´1p0qq intersects the leaf W spγ2i`1p1qq at a unique point q with q P

γ2i`1. We use point q to subdivide γ2i`1 into two legs γ2i`1 “ δ1 ˚ δ2. Also
consider a path ε : r0, 1s Ñ W̃upγ2i´1p0qq which connects γ2i´1p0q to q and let ε̄ be
the same path with reversed orientation which connects q to γ2i´1p0q. By adding
the legs ε and ε̄ we can “decompose” γ̃ into two us-adapted loops

α “ γ2i´1 ˚ γ2i ˚ δ1 ˚ ε̄
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and

β “ γ1 ˚ . . . ˚ pγ2i´2 ˚ εq ˚ δ2 ˚ γ2i`2 ˚ . . . γ2k

Note that α has only 4 legs and β has 2k´ 2 legs (or 2k´ 4 if δ2 is a point). Hence
by the induction hypothesis PCFαpϕ1q “ PCFβpϕ1q “ 0. Also recall that from
the definition of periodic cycle functionals we have PCFε̄pϕ1q “ ´PCFεpϕ1q. It
follows that

PCFγ̃pϕ1q “ PCFγ̃pϕ1q ` PCFεpϕ1q ` PCFε̄pϕ1q “ PCFαpϕ1q ` PCFβpϕ1q “ 0

Remark 3.2. For convenience we made use of global product structure and one-
dimensionality of W s. However, this is not essential. A more tedious argument,
which relies on local product structure only, can show that for any null-homologous
γ the corresponding PCF can be written us a sum of simple PCFs corresponding
to loops of small diameter and, hence, vanishes.

3.5. Case II: non-constant simple PCF. Recall that the simple PCFs are C1 by
Lemma 2.3. We assume now that there exists a P T3, b PW s

f1
paq and x0 PW

uf1paq

such that Dρϕ1
a,bpx0q ‰ 0. Then for any x in a sufficiently small neighborhood B of

x0 we also have Dρϕ1
a,bpxq ‰ 0.

Let p be a fixed point of f1 such that Df1|Eu
f1
ppq has complex (non-real) eigenval-

ues. Such point exists for all f1 which are sufficiently close to L in C1 topology. By
minimality property of W s

f1
we have T3 “ YxPBW

s
f1
pxq. Hence, we can pick x P B

such that p P W s
f1
pxq. The local stable holonomy Holx,p : Wu

locpxq Ñ Wu
locppq

uniquely extends to a global holonomy Holx,p : Wu
f1
pxq Ñ Wu

f1
ppq and we let

c “ Holx,ppaq. The following relation can be verified directly from definition of
PCFs

ρϕ1
c,b ´ ρ

ϕ1
c,a “ ρϕ1

a,b ˝ pHolx,pq
´1

Recall that Dρϕ1
a,bpxq ‰ 0. Because Holx,p is a C1 diffeomorphism and p “

Holx,ppxq, the above relation implies that either Dρϕ1
c,bppq ‰ 0 or Dρϕ1

c,appq ‰ 0
(or both). These two cases are fully analogous and, for concreteness, we assume
that Dρϕ1

c,bppq ‰ 0.
Note that the leaf Wu

f1
ppq is fixed by f1. Using the conjugacy relation we now

have matching pairs

ρϕ1
c,b “ ρϕ2

hpcq,hpbq ˝ h|Wu
f1
ppq

and

ρϕ1
c,b ˝ f1|Wu

f1
ppq “ pρ

ϕ2
hpcq,hpbq ˝ f2|Wu

f2
phppqqq ˝ h|Wu

f1
ppq

Further the differentials Dρϕ1
c,b|Eu

f1
ppq and Dpρϕ1

c,b ˝ f1|Wu
f1
ppqq|Eu

f1
ppq are linearly in-

dependent because Df1|Eu
f1
ppq does not have real eigenvalues. It follows that the

map

P
ϕ1
c,b “ pρ

ϕ1
c,b, ρ

ϕ1
c,b ˝ f1|Wu

f1
ppqq



14 ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

has a full-rank differential at p and, hence, is a C1 diffeomorphism when restricted
to a sufficiently small neighborhood U of p. We also define

P
ϕ2
hpcq,hpbq “ pρ

ϕ2
hpcq,hpbq, ρ

ϕ2
hpcq,hpbq ˝ f2|Wu

f2
phppqqq

and by the matching relations we have

P
ϕ1
c,b “ P

ϕ2
hpcq,hpbq ˝ h

Taking the inverse, we obtain the following formula for the restriction

h´1|hpUq “ pP
ϕ1
c,bq

´1 ˝ Pϕ2
hpcq,hpbq

By using a symmetric argument (and passing to an even smaller neighborhood U
if needed) we also have that h|U is C1 and, hence, h|U is a C1 diffeomorphism.

Now let q P W s
f1
ppq and let Uq be the image of U under the stable holonomy

Holp,q : Wu
locppq ÑWu

locpqq. Then, because h preserves the stable foliation we have
that

h|Uq “ Holp,q ˝ h|U ˝ pHolp,qq
´1

and, hence, is also a C1 diffeomorphism.
Finally, we will use minimality of the stable foliation to conclude that h is uni-

formly C1 along Wu
f1
. Indeed, neighborhoods Uq, q P W s

f1
ppq, sweep out the whole

torus, so h is C1 along Wu
f1
. To see uniformity, note that minimality actually

implies that
T3 “

ď

qPW spp,Rq

Uq

where W spp,Rq is an segment of radius R in W sppq relative to the intrinsic metric.
Because the family of holonomies Holp,q, q PW spp,Rq, is uniformly C1 we, indeed,
can conclude that the same is true for h|Uq , q P W spp,Rq, yielding uniform C1

smoothness along Wu
f1

on the whole T3.

3.6. A bootstrap argument. Denote by Hi
x, the affine structure for fi along the

unstable foliation Wu
fi
, i “ 1, 2. The idea for bootstrap is to use uniqueness of the

normal form. Indeed, since we have that h is uniformly C1 along unstable foliation
we can consider non-stationary linearization for f1 given by H1

x
1
“ ph|Wu

f1
pxqq

´1 ˝

H2
x ˝ Dh|Eu

f1
pxq. Then, if the normal form for Wu

f1
is unique, we get H1

x
1
“ H1

x

and conclude that h|Wf1 pxq
“ H2

x ˝ Dh|Eu
f1
pxq ˝ pH1

xq
´1 is Cr. This however, does

not work so easily because the uniqueness guaranteed by item 6 of Proposition 2.6
requires DH1

x
1 to be Hölder with respect to x along the unstable leaves. We do not

have such regularity because h merely C1 along unstable leaves. However, using
this idea we can still establish smoothness along the leaf with conformal fixed point
and then finish using denseness of this leaf.

We will begin by bootsrapping h from C1 to Cr along the conformal leaf. We
state the following proposition in somewhat more general context for the sake of
future use and reference.
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Proposition 3.3. Let fi : M Ñ M be Cr, r ě 2, diffeomorphisms which admit
2-dimensional expanding foliations Wi and satisfy assumptions of Proposition 2.6,
i “ 1, 2, Ei “ TWi. Assume that f1 and f2 are conjugate, h ˝ f1 “ f2 ˝ h, and
hpW1q “ W2. Assume that p is a fixed point for f1 such that Df1|E1ppq does not
have real eigenvalues. Assume that h|W1ppq is differentiable at p. Then h|W1ppq is
Cr.

Proof. Denote by Hi
x, x P M , the affine structures for pfi,Wiq given by Proposi-

tion 2.6. To prove the proposition we will show that h|W1ppq “ H2
hppq ˝Dh|E1ppq ˝

pH1
pq
´1, which is clearly Cr. For that we need the following elementary lemma.

Lemma 3.4. Let H : CÑ C be a continuous map of the complex plane C. Assume
that D0H exists. Assume that there is λ P C, be such that |λ| ą 1 and Hpλzq “
λHpzq for every z P C. Then Hpzq “ D0Hpzq for every z P C.

Proof. First note that Hp0q “ Hpλ0q “ λHp0q, hence, Hp0q “ 0. Let ni Ñ `8

such that λni |λ|´ni Ñ σ, |σ| “ 1. Then, since H is differentiable at 0, for every
z P C,

Hp|λ|´nizq

|λ|´ni
Ñ D0Hpzq

as ni Ñ `8. On the other hand,

Hp|λ|´nizq

|λ|´ni
“

λ´ni

|λ|´ni
H

`

λni |λ|´niz
˘

Ñ σ´1Hpσzq, ni Ñ `8

Hence σ´1Hpσzq “ D0Hpzq for every z P C and hence Hpzq “ σD0Hpσ
´1zq for

every z P C which implies that Hpzq “ D0Hpzq. �

Because eigenvalues Df1|E1ppq are complex, we can identify E1ppq with C so that
Df1 : E1ppq Ñ E1ppq becomes z ÞÑ λz. Note that |λ| ą 1. Let H : E1ppq Ñ E1ppq

be given by H “ pH1
pq
´1 ˝ ph|W1ppqq

´1 ˝ H2
hppq ˝ Dh|E1ppq. We check the main

assumption of the above lemma

H ˝ pz ÞÑ λzq “ pH1
pq
´1 ˝ ph|W1ppqq

´1 ˝H2
hppq ˝ pDh|E1ppq ˝Df1|E1ppqq

“ pH1
pq
´1 ˝ ph|W1ppqq

´1 ˝ pH2
hppq ˝Df2|E2ppqq ˝Dh|E1ppq

“ pH1
pq
´1 ˝ pph|W1ppqq

´1 ˝ f2|W2ppqq ˝H2
hppq ˝Dh|E1ppq

“ ppH1
pq
´1 ˝ f1|W1ppqq ˝ ph|W1ppqq

´1 ˝H2
hppq ˝Dh|E1ppq

“ Df1|E1ppq ˝ pH
1
pq
´1 ˝ ph|W1ppqq

´1 ˝H2
hppq ˝Dh|E1ppq “ pz ÞÑ λzq ˝H

Also recall that DHi
x “ idEipxq and hence D0H “ idC. Therefore, by the lemma

H “ idC, which precisely means that h|W1ppq “ H2
hppq ˝Dh|E1ppq ˝ pH1

pq
´1. �

By applying Proposition 3.3 in our setting for unstable foliations, we have
h|Wu

f1
ppq “ H2

hppq ˝ Dh|Eu
f1
ppq ˝ pH1

pq
´1. We would like to show a similar formula

h|Wu
f1
pxq “ H2

hpxq˝Cpxq˝pH
1
xq
´1 for all x P T3. To do that we can exploit denseness



16 ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

of Wu
f1
ppq. Given a point x P T3 let xn PWu

f1
ppq be a sequence of points converging

to x as nÑ8. Then for x PWu
f1
ppq we have

h|Wu
f1
pxq “ H2

hppq ˝Dh|Eu
f1
ppq ˝ pH1

pq
´1

“ H2
hpxq ˝ ppH

2
hpxqq

´1 ˝H2
hppq ˝Dh|Eu

f1
ppq ˝ pH1

pq
´1 ˝H1

xq ˝ pH1
xq
´1

and letting

Cpxq “ pH2
hpxqq

´1 ˝H2
hppq ˝Dh|Eu

f1
ppq ˝ pH1

pq
´1 ˝H1

x

we obtain h|Wu
f1
pxq “ H2

hpxq ˝ Cpxq ˝ pH
1
xq
´1 for x P Wu

f1
ppq. By item 7 of Propo-

sition 2.6 maps Cpxq : Euf1
pxq Ñ Euf2

phpxqq are affine. One can easily check that
Cpxqp0q “ 0 and hence Cpxq, x P T3, are, in fact, linear maps.

Now we would like to take a limit as xn Ñ x of

h|Wu
f1
pxnq “ H2

hpxnq
˝ Cpxnq ˝ pH1

xn
q´1

We left-hand-side converges to h|Wu
f1
pxq, however, in order to be able to take the

limit of the right-hand-side we also need the norm and conorm of Cpxnq to be
uniformly bounded. If that is the case, then from uniqueness of the limit we have
that Cpxnq converges to an invertible linear map Cpxq, which has the same bounds
on the norm and conorm, and

h|Wu
f1
pxq “ H2

hpxq ˝ Cpxq ˝ pH
1
xq
´1

Then from continuity property (item 8) of Proposition 2.6 and uniform bounds on
Cpxq, x P T3, we can conclude that h is uniformly Cr along unstable foliation.

Thus, it remains to prove the following lemma.

Lemma 3.5. There exists a constant C ą 0 such that for every x P Wu
f1
ppq, the

linear maps Cpxq : Euf1
pxq Ñ Euf2

phpxqq defined above satisfy the following bounds

}Cpxq } ď C, } pCpxqq´1 } ď C

Proof. Note that this lemma is not very obvious because the norm of pH1
pq
´1 ˝H1

x

could explode as x goes to infinity inside the leaf Wu
f1
ppq.

We shall bound uniformly }Cpxq } , x P T3. The bound on the norm of Cpxq´1

follows from the same argument by interchanging the roles of f1 and f2 and working
with h´1.

Notice that Cpxq “ pH2
hpxqq

´1 ˝ h|Wupxq ˝ H1
x. If there is no uniform bound on

}Cpxq } , then there exist sequences xn PWupp1q and vn P Eu1 pxnq with } vn } Ñ 0
and such that }Cpxnqvn } “ 1. Taking a subsequence if necessary, we have x8 “
lim xn P T3 and w8 “ limCpxnqvn P E

u
2 phpx8qq, }w8 } “ 1. Let zn “ H1

xn
pvnq,

then zn Ñ H1
x8p0q “ x8. So we obtain that hpznq Ñ hpx8q and

H2
hpxnq

pCpxnqvnq Ñ H2
hpx8q

pw8q ‰ H2
hpx8q

p0q “ hpx8q

On the other hand,

H2
hpxnq

pCpxnqvnq “ h
`

H1
xn
pvnq

˘

“ hpznq Ñ hpx8q
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yielding a contradiction. �

Remark 3.6. Once Proposition 3.3 is established one could argue in a more ad
hoc, but quicker way using holonomies along stables that

h|Wupxq “ Holhpxpq,hpxq ˝ h|Wuppq ˝Holx,xp

where xp P W spxq XWuppq. Hence h|Wupxq is uniformly C2 for every x P T3 due
to C2 regularity of holonomies. After that one can use uniqueness of normal forms
as outlined at the beginning of this section to further bootstrap to Cr.
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