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Abstract. In this paper we introduce a new methodology for smooth rigidity
of Anosov diffeomorphisms based on “matching functions.” The main obser-
vation is that under certain bunching assumptions on the diffeomorphism the
periodic cycle functionals can provide such matching functions. For example
we consider a sufficiently small C1 neighborhood of a linear hyperbolic auto-
morphism of the 3-dimensional torus which has a pair of complex conjugate
eigenvalues. Then we show that two very non-algebraic (an open and dense
condition) Anosov diffeomorphisms from this neighborhood are smoothly con-
jugate if and only they have matching Jacobian periodic data. We also obtain
a similar result for certain higher dimensional codimension one Anosov diffeo-
morphisms.

1. Introduction

Recall that a diffeomorphism f : M ÑM is called Anosov if the tangent bundle
admits a Df -invariant splitting TM “ Es‘Eu, where Es is uniformly contracting
and Eu is uniformly expanding under f . Basic examples of Anosov diffeomorphisms
are toral hyperbolic automorphisms L : Td Ñ Td which are given by hyperbolic
matrices in GLpd,Zq, i.e., matrices whose spectrum is disjoint with the unit circle
in C.

Let f1, f2 : M Ñ M be transitive Anosov diffeomorphisms which are conjugate
via a homeomorphism h, h ˝ f1 “ f2 ˝ h. We will say that f1 and f2 have matching
periodic data if for every periodic point p “ fk1 ppq the differentials pDfk1 qp and
pDfk2 qhppq are conjugate (in particular, they have the same spectrum). By differen-
tiating the conjugacy relation one immediately sees that matching of periodic data
is a necessary assumption for the conjugacy to be C1. A weaker assumption which
we will consider here is matching of Jacobian periodic data. Namely, we say that
f1 and f2 have matching Jacobian periodic data if every periodic point p “ fk1 ppq

pJsfk1 qp “ pJ
sfk2 qhppq and pJufk1 qp “ pJufk2 qhppq

where Jsfi and Jufi stand for Jacobians of the restrictions of Dfi, i “ 1, 2, to
the stable and unstable distributions, respectively. If the equality holds only for
stable (or only for unstable) Jacobians then we will talk about matching of stable
(respectively, unstable) Jacobian periodic data.

The authors were partially supported by NSF grants DMS-1955564 and DMS-1900778,
respectively.
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In dimension 2 matching of periodic data implies smoothness of the conjugacy
by works of de la Llave, Marco and Moriyón [dlL87, MM87, dlL92]. In higher
dimensions a lot of work was devoted to periodic data rigidity (characterization
of smooth conjugacy class) of hyperbolic automorphisms, see e.g., [dlL04, KS09,
GKS11, DW21]. In particular, in dimension 3 the problem was solved for automor-
phisms with a pair of complex eigenvalues by Kalinin and Sadovskaya [KS09] and
for automorphisms with real spectrum by Gogolev and Guysinsky [GG08, G17].
Further, in proximity of automorphism with real spectrum matching of periodic
data implies C1`hölder regularity of the conjugacy on an open set of Anosov diffeo-
morphisms in dimension 3 and higher [GG08, G08].

In this paper we transfer some of ideas of [GRH20a] from the setting of expanding
maps to the setting of Anosov diffeomorphisms. In particular, we have open sets
of Anosov diffeomorphisms where we obtain optimal smoothness of the conjugacy
using less data, such as Jacobian periodic data, or stable Jacobian periodic data
as opposed to full periodic data which was commonly used before. To the best
of our knowledge the only prior result when C8 smooth conjugacy classes were
characterized on an open set of diffeomorphisms in dimension ą 2 is the work of
Palis and Yoccoz [PY90] which gave a complete set of invariant of smooth conjugacy
for Morse-Smale diffeomorphisms.1

Our proof is based on matching functions technique. Namely, we look at pairs of
Cr functions pΦ1,Φ2q which are defined on the local unstable leaves Wu

f1,loc
pxq and

Wu
f2,loc

phpxqq and which are matching in the sense that they satisfy the matching
relation

Φ1 “ Φ2 ˝ h

Roughly speaking, the idea of the proof is to find sufficiently many independent
matching pairs so that we can apply the inverse function theorem and conclude
that h is Cr when restricted to the local unstable leaf.

In [GRH20a] the source of matching functions was given by normalized match-
ing potentials (logarithms of Jacobians), where normalizations came from transfer
operators associated to the expanding maps. In this paper we explore different
matching functions which are given by periodic cycle functionals. Periodic cycles
functionals were originally introduced by Katok and Kononenko [KK96] in order to
study the cohomological equation over partially hyperbolic diffeomorphisms.

1.1. Results in dimension 3. We present several results for Anosov diffeomor-
phisms in dimension 3.

1It is a classical KAM theorem of Arnold and Moser that the local smooth conjugacy class
of a Diophantine translation on Td is characterized by the rotation vector. Further, the Arnold-
Moser normal form [H79, Théorème 2.2] implies that this smooth conjugacy class is codimension
d submanifold in Diff0pTdq. However it is hopeless to characterize smooth conjugacy classes in
an open neighborhood of the Diophantine translation since even topological conjugacy classes are
not understood.
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Theorem 1.1. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Then there exists a C1 neighborhood U of L such that all Cr,
r ě 2, Anosov diffeomorphisms f1, f2 P U with matching Jacobian periodic data are
either Cr˚ conjugate or the SRB measure coincides with the measure of maximal
entropy for f1.

Above r˚ “ r if r is not integer and r˚ “ pr´1q`Lip if r is an integer. Note that
there is a unique topological conjugacy h which is C0 close to idT3 , h ˝ f1 “ f2 ˝ h,
coming from structural stability. The condition on matching of Jacobian periodic
data is imposed relative to this conjugacy h.

Remarks. 1. Recall that SRB and MMEmeasures coincide if and only´ log Juf1

is cohomologous to a constant [Bow75]. By the Livshits theorem [L72], we
know that ´ log Juf1 is not cohomologous to constant if and only if there
are two periodic points with different unstable Lyapunov exponents. Hence
the property of SRB measure being different from MME measure can be
detected from two periodic points with different unstable Lyapunov expo-
nents. Hence the above theorem solves the smooth rigidity problem in a
C1 neighborhood of L on a C1-open and C8-dense subset. The obvious
remaining problem is to handle the case when ´ log Juf1 is cohomologous
to a constant. It is not hard to see by perturbing L along unstable foliation
that the conjugacy is not necessarily smooth if we only assuming matching
of Jacobian periodic data. However, the problem that remains in this case is
establishing smoothness of the conjugacy under the assumption of matching
of (full) periodic data.

2. We can replace the assumption on C1-closeness to L by an appropriate
bunching assumption and existence of a periodic points with complex con-
jugate eigenvalues.

3. If both f1 and f2 are volume preserving then it is enough to assume matching
of unstable Jacobian periodic data because the stable Jacobian periodic data
are given by reciprocals and, hence, match automatically.

Given two conjugate Anosov diffeomorphisms f1 and f2, h ˝ f1 “ f2 ˝ h, and
Hölder continuous functions ϕ1, ϕ2 : M Ñ R, we say that pf1, ϕ1q is equivalent to
pf2, ϕ2q and write

pf1, ϕ1q „ pf2, ϕ2q

if there exists a continuous function u : M Ñ R such that

ϕ1 ´ ϕ2 ˝ h “ u´ u ˝ f1

Then, by the Livshits theorem [L72], pf1, ϕ1q „ pf2, ϕ2q if and only if for every
periodic point x P Fixpfn1 q

n´1
ÿ

k“0
ϕ1pf

k
1 pxqq “

n´1
ÿ

k“0
ϕ2pf

k
2 phpxqqq
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Also recall that a potential ϕ : M Ñ R is called an almost coboundary over
f : M ÑM if ϕ is cohomologous to a constant, that is,

ϕ “ u´ u ˝ f ` c

for some function u and a constant c.
In fact, when f1 and f2 are at least C3, Theorem 1.1 is a consequence of the

following more general result.

Theorem 1.2. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues whose absolute value is greater than 1. Fix a number κ P
p 1

2 , 1s. Then there exists a C1 neighborhood U of L such that if pf1, ϕ1q „ pf2, ϕ2q,
where f1, f2 P U are Cr, r ě 2 ` κ, and ϕ1, ϕ2 P C1`κpT3q, then either h is
uniformly Cr along unstable leaves or ϕ1 is an almost coboundary over f1.

Corollary 1.3. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues of absolute value ą 1. Then there exists a C1 neighborhood
U of L such that all Cr, r ě 3, Anosov diffeomorphisms f1, f2 P U with matching
stable Jacobian periodic data are either Cr˚ conjugate or the SRB measure coincides
with the measure of maximal entropy for f´1

1 .

The next corollary established smooth conjugacy only assuming matching of full
Jacobian periodic data in the dissipative setting.

Corollary 1.4. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Fix a number κ P p 1

2 , 1s. Then there exists a C1 neighborhood
U of L such that if f1 is not volume preserving and pf1, log Jf1q „ pf2, log Jf2q,
where f1, f2 P U are Cr, r ě 2` κ, and Jfi is full Jacobian with respect to a fixed
volume form, i “ 1, 2, then f1 and f2 are Cr˚ conjugate.

To the best of our knowledge this is the first result which only uses full Jacobians
at periodic points. Analogous statement is unknown in dimension 2 and cannot be
proved with the method of this paper.

Our approach is also useful in the case of real spectrum. Namely, we can partially
improve results of [GG08] by bootstrapping regularity of the conjugacy under an
additional bunching assumption.

Theorem 1.5. Let L : T3 Ñ T3 be a hyperbolic automorphisms with real spectrum
tµ´1, λ, λαu, where 0 ă µ´1 ă 1 ă λ ă λα. Assume that α ă 1`

?
17

4 . Then there
exists a sufficiently small C1 neighborhood U of L and an open dense subset V Ă U
such that if smooth Anosov diffeomorphisms f1, f2 P V have the same Jacobian
periodic data then they are smoothly conjugate.

The set V will be described explicitly in the course of the proof, in particular,
L R V. It is interesting that this brings us rather close to full smooth classification
in the neighborhood of L. For full classification one of course would need to assume
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matching of complete periodic data not only Jacobians. Still some serious diffi-
culties remain, especially in the case when both stable and unstable Jacobians are
cohomologous to constants. However, the case when all three Jacobians, including
strong unstable are cohomologous to constants was already handled in [G17]. We
repeat here a restricted version of a conjecture from [G17].

Problem 1.6. In the setting of the above theorem prove that if f1, f2 P U have
matching periodic data then they are smoothly conjugate.

1.2. A codimension one result. We will call a toral automorphism L : Td Ñ Td

generic if
1. L is hyperbolic, i.e., the spectrum of L is disjoint with the unit circle in C;
2. L is irreducible, i.e., its characteristic polynomial is irreducible over Q;
3. no three eigenvalues of L have the same absolute value;
4. if two eigenvalues of L have the same absolute value then they are a pair of

complex conjugate eigenvalues.
Local C1`hölder conjugacy class of a generic automorphism L was characterized in

terms of periodic data by Gogolev-Kalinin-Sadovskaya [GKS11]. They also proved
that “most” automorphisms of Td are generic, that is, the proportion of non-generic
automorphisms of Td goes to 0 as }L } Ñ `8. The following result provides
C1`hölder conjugacy for very non-algebraic diffeomorphisms in a neighborhood of
L assuming coincidence of Jacobian periodic data. However, we need to impose
further restrictions on L — codimension one and a bunching condition.

Theorem 1.7. Let L : Td Ñ Td be a generic automorphism with one dimensional
stable subspace. Assume that

plogµq2 ´ plog ξlq2 ą logµplog ξl ´ log ξ1q

where µ´1 is the absolute value of the stable eigenvalue, ξ1 is the smallest absolute
value of the eigenvalues which are greater than 1 and ξl is the largest absolute value
of the eigenvalues of L.

Then there exists a C1 neighborhood U of L in DiffrpTdq, r ě 3, and a Cr-dense
C1-open subset V Ă U such that if f1, f2 P V have matching Jacobian periodic data
then f1 and f2 are C1`ε conjugate for some ε ą 0.

Remark 1.8. The irreducibility of L is, in fact, automatic from the codimension
1 assumption.

Remark 1.9. We remark that the new methods are employed to obtain smooth-
ness of the conjugacy along the unstable foliation, while smoothness along the
1-dimensional stable foliation is standard [dlL92]. The assumption that the stable
foliation is 1-dimensional can be replaced with some more complicated assumption
where older methods apply. For example, assumption like those in [GG08, G08] on
the stable subbundle would allow for a higher dimensional stable foliation with real
spectrum.
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The bunching assumption is a technical assumption which guarantees sufficient
regularity of the Anosov splitting (in particular, both stable and unstable distri-
butions are at least C1) and C1 regularity of periodic cycle functionals. Note that
the bunching assumption is satisfied by automorphisms which are sufficiently close
to conformal in the unstable subbundle. The set V consists of very non-algebraic
Anosov diffeomorphisms and will be explicitly described in the course of the proof.
Roughly speaking the very non-algebraic condition says that Jacobians restricted
along various invariant subbundles are not cohomologous to constants. Then, using
these Jacobians we can obtain a supply of non-trivial matching functions. This set
V will not contain any volume preserving diffeomorphisms, however we have the
following addendum.

Addendum 1.10. In the setting of the above theorem there also exists a C1 neigh-
borhood U 1 of L in the space of volume preserving diffeomorphisms DiffrvolpTdq,
r ě 3, and a Cr-dense C1-open subset V 1 Ă U 1 such that if f1, f2 P V 1 have match-
ing Jacobian periodic data then f1 and f2 are C1`ε conjugate for some ε ą 0.

1.3. Organization. The next section is devoted to background material. We begin
by setting up the notation which will be used consistently throughout the paper
and by recalling well-known results on regularity of invariant foliations for Anosov
diffeomorophisms. Then we define periodic cycle functionals which are the primary
technical tool of this paper. We explain that periodic cycle functionals provide a
complete collection of obstructions to solving the cohomological equation over an
Anosov diffeomorphism. Then we establish a technical lemma on C1 regularity of
periodic cycle functionals. The method of proof is standard, but this lemma is not
present in the literature, so we included the proof. Then we also discuss the relation
between periodic cycle functionals and Jacobians of stable holonomy maps. In the
last subsection we recall a result on non-stationary linearization which we will need
for bootstrapping regularity of the conjugacy.

Section 3 contains all the proofs for 3-dimensional Anosov diffeomorphisms with
a fixed point which has complex eigenvalues in the unstable subspace. This is the
simplest situation where our method yields new results. The proof is done in two
steps. First C1 regularity of the conjugacy along the unstable foliation is derived
from matching periodic cycle functionals. Then the second step is to bootstrap
regularity along unstable foliation using non-stationary linearization theory.

In Section 4 we prove what we call the General Matching Theorem which is a
technical statement resulting from careful study of local spaces of matching func-
tions. Specifically we obtain certain invariant sub-foliations of the unstable foliation
associated to the local spaces of matching function and obtain a number of prop-
erties of this sub-foliation.

Then in Section 5 we apply the General Matching Theorem to Anosov diffeo-
morphism on the 3-torus with real spectrum at periodic points. We are able to
(partially) improve the previous rigidity result [GG08] by bootstrapping regularity
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of the conjugacy. Besides the General Matching Theorem, the other technical ingre-
dient of this proof is that using appropriate bunching we establish some extra regu-
larity of periodic cycle functionals. Namely, we show that they are Cp5`

?
17q{p3`

?
17q

or better. This gives the same amount of extra regularity for the conjugacy which
is then sufficient to proceed with non-stationary linearization bootstrap argument.

Finally in the last Section 6 we (partially) generalize the 3-dimensional results to
Anosov diffeomorphisms on higher dimensional tori, especially for codimension one
Anosov diffeomorphisms. This generalization uses the sub-foliation of the unstable
foliation coming from the General Matching Theorem. Then the bulk of the proof
consists of analyzing all possible cases for the position of this sub-foliation relative
to the dominated splitting in the unstable subbundle. Unless, the conjugacy is C1

we show that presence of such a sub-foliation gives some extra rigidity which is not
consistent with our assumptions on Anosov diffeomorphisms.

We would like to thank the referee for many useful remarks which improved the
exposition.

2. Preliminaries

We will denote by W s and Wu the stable and unstable foliations which are tan-
gent to the stable distribution Es and the unstable distribution Eu of an Anosov
diffeomorphism f , respectively. When it is necessary to indicate the Anosov dif-
feomorphism which is being considered we will write Esf , W s

f , etc. By W s
locpxq and

Wu
locpxq we will denote local invariant manifolds centered at x whose size is given

by the local product structure constant.

2.1. Regularity of the stable foliation. We recall the definition of the stable
bunching parameter bspfq which controls regularity of the stable foliation, which
defined in terms of exponential rates. Namely, for an Anosov diffeomorphism f

there exist constants µ` ą µ´ ą 1 and λ` ą λ´ ą 1 and C ą 0 such that

1
C
µ´n` } vs } ď }Dfnpvsq } ď Cµ´n´ } vs } and

1
C
λn´ } v

u } ď }Dfnpvuq } ď Cλn` } v
u }

for all n ě 0 and all vs P Es, vu P Eu. Then the stable bunching parameter is given
by

bspfq “
log λ´
log λ`

`
logµ´
log λ`

If bspfq is not an integer (which we can always assume) then the stable foliation
W s and the stable distribution Es are Cbspfq regular [HPS77, H97]. In particular,
the stable holonomy maps are Cbspfq. (In fact, a better point-wise version of this
result holds [H97].) Symmetrically, the unstable foliation Wu and the unstable
distribution Eu are Cbupfq regular, where the unstable bunching parameter is given
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by
bupfq “

logµ´
logµ`

`
log λ´
logµ`

Note that if the Anosov automorphism L : T3 Ñ T3 has one dimensional stable
subbundle corresponding to an eigenvalue µ´1, |µ| ą 1, and a pair of complex
conjugate eigenvalues λ, λ̄, then for small perturbations f we have µ´1

´ ě |µ|´1 or
µ´ ď |µ| “ |λ|

2. Also we have λ´ ď |λ| ď λ`. Hence
log λ´
log λ`

ď 1 and logµ´
log λ`

ď 2

For sufficiently small perturbations f the above ratio will be close to 1 and 2,
respectively, and, hence, the stable foliation is C3´ε, where ε ą 0 can be taken
arbitrarily small by controlling the size of the perturbation. In fact, we will only
need C2`ε regularity forW s. Calculating bupfq in this setting gives C 3

2´ε regularity
of Wu.

2.2. Cohomological equation over Anosov diffeomorphisms and periodic
cycle functionals. Here we recall an alternative approach to solving the cohomo-
logical equation ϕ “ u ´ u ˝ f ` const over and Anosov diffeomorphisms f . This
approach is due to Katok and Kononenko who introduced it to study the coho-
mological equation over partially hyperbolic diffeomorphisms [KK96]. For Anosov
diffeomorphisms this approach is much easier because local accessibility property
always holds due to absence of the center direction, however we will need to slightly
refine the argument in order to rely on a sub-collection consisting of null-homologous
periodic cycle functionals only.

A piecewise smooth path γ : r0, 1s ÑM is called a us-adapted path if each smooth
leg is entirely contained in a stable or unstable leaf of f . If γp1q “ γp0q then we
say that γ is a us-adapted loop.

Given a Hölder continuous function ϕ : M Ñ R the chain functionals are defined
in the following way. If γ lies entirely in a stable leaf then let

PCFγpϕq “
ÿ

ně0
ϕpfnpγp0qqq ´ ϕpfnpγp1qqq

If γ lies entirely in a stable leaf then let

PCFγpϕq “
ÿ

nă0
ϕpfnpγp1qqq ´ ϕpfnpγp0qqq

Given a us-adapted path γ “ γ1 ˚ γ2 ˚ . . . ˚ γm, with each leg γi entirely contained
in a stable or an unstable leaf let

PCFγpϕq “
m
ÿ

i“1
PCFγipϕq

Note that the value PCFγpϕq only depends on the sequence of endpoints of γi. If
γ is a us-adapted loop then PCFγpϕq is called the periodic cycle functional.

If ϕ “ u ´ u ˝ f ` const then, by a direct calculation PCFγpϕq “ upγp0qq ´
upγp1qq. Hence values of periodic cycle functionals on us-adapted loops provide
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obstructions to solving the cohomological equation. It turns out that vanishing of
these obstructions is a sufficient condition for existence of a solution.

Proposition 2.1 (Katok-Kononenko). If f : M ÑM is an Anosov diffeomorphism
and ϕ is a Hölder continuous function such that PCFγpϕq “ 0 for every us-adapted
loop γ, then ϕ is an almost coboundary; that is, there exists a constant c and a
Hölder continuous function u such that ϕ “ u´ u ˝ f ` c.

Proof. Assume that f has a fixed point x0, fpx0q “ x0 and let c “ ϕpx0q. Given
a point x P M consider a us-adapted path γ connecting x0 to x and let upxq “
PCFγpϕq. Note that upxq does not depend on choice of γ because a different choice
would adjust the value of upxq by a value of periodic cycle function on a loop, which
is zero by our assumption.

By a direct calculation we have

upxq ´ upfpxqq “ PCFγpϕq ´ PCFf˝γpϕq “ ϕpx0q ´ ϕpxq

It is standard to check Hölder continuity of u by checking that restrictions to stable
and unstable leaves are Hölder continuous.

In general, it in not known whether every Anosov diffeomorphism has a fixed
point. However, every Anosov diffeomorphism has a periodic point fnpx0q “ x0.
Applying the same argument to fn we can obtain

ϕpx0q ´ ϕpxq “ upxq ´ upfnpxqq “
n´1
ÿ

i“0
upf ipxqq ´

n
ÿ

i“1
upf ipxqq “ Upxq ´ Upfpxqq

where U “
řn´1
i“0 u ˝ f

i. Hence we still that ϕ is an almost coboundary. �

We will need a version of the above proposition which is concerned with null-
homologous us-adapted loops, i.e., loops whose homology class vanishes inH1pM,Zq.
The next proposition can be easily derived from the abelian Livshits Theorem for
Anosov flows given in [GRH20b, Theorem 3.3], however, for Anosov diffeomor-
phisms the proof is more direct and we include it here.

Proposition 2.2. Assume that f : M ÑM is an Anosov diffeomorphism such that
fk˚n ‰ n for all non-zero n P H1pM,Zq and all k ě 1. Assume that ϕ is a Hölder
continuous function such that PCFγpϕq “ 0 for every null-homologous us-adapted
loop γ. Then ϕ is an almost coboundary.

Proof. Let M̃ be the universal abelian cover of M , that is, the cover which corre-
sponds to the commutator subgroup rπ1M,π1M s; its group of Deck transformations
is given by H1pM,Zq. Assume that x0 is a fixed point for f (otherwise we can use a
periodic point to show that ϕ is an almost coboundary over fk for some k, then the
same trick as in the proof Proposition 2.1 yields that ϕ is also an almost cobound-
ary over f). And let x̃0 be a fixed point for a lift f̃ : M̃ Ñ M̃ of f . Also let ϕ̃ be
the lift of ϕ.
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Note that homologically trivial us-adapted loops on M are precisely those loops
which correspond to elements in the commutator subgroup of π1pMq and, hence,
lift to loops on M̃ . Therefore, the preceding proof can be repeated verbatim on
M̃ . Namely, if c “ ϕ̃px̃0q and ũpxq “ PCFγpϕ̃q, where γ connects x0 to x, then we
have a solution to the cohomological equation on M̃ :

ϕ̃ “ ũ´ ũ ˝ f̃ ` c

Let w : H1pM,Zq Ñ R be given by wpT q “ ũpT px̃0qq. Then, because periodic cy-
cle functionals are invariant under Deck transformations: PCFT˝γpϕ̃q “ PCFγpϕ̃q,
T P H1pM,Zq, one can easily verify that w is a homomorphism. And also similarly,
ũ ˝ T ´ ũ “ wpT q.

Now for any T P H1pM,Zq we have

ϕ̃˝T “ ũ˝T ´ ũ˝ f̃ ˝T `c “ ũ`wpT q´ ũ˝ f̃´wpf˚pT qq`c “ ϕ̃`wpT q´wpf˚pT qq

Hence, because ϕ̃ ˝ T “ ϕ̃, we obtain that wpT q “ wpf˚pT qq or wppid´ f˚qT q “ 0
for all T . By assumption id´ f˚ has trivial kernel, hence, we conclude that w ” 0.
This means that ũ is also equivariant under the Deck group and, thus, descends to
a function u : M Ñ R and gives a solution to the cohomological equation on M :
ϕ “ u´ u ˝ f ` c. �

2.3. Regularity of simple periodic cycle functionals. The simplest PCF is
given by a quadruple of points. Here we show that under assumptions of Theo-
rem 1.2 such PCF is C1 along unstable leaves.

Let a P W spbq. Then there is a canonical holonomy map Hola,b : Wu
locpaq Ñ

Wu
locpbq which takes a to b and which is given by sliding along stable leaves. If

stable and unstable foliations have global product structure (as is the case for
Anosov diffeomorphisms on tori), then the holonomy map can be continuously
extended to a continuous map Hola,b : Wupaq ÑWupbq in a unique way.

Let γpa, b, xq be a us-adapted loop with four legs connecting a to b, b toHola,bpxq,
to x and then back to a. Given a potential ϕ define ρϕa,b : Wupaq Ñ R via the
periodic cycle functional of γpa, b, xq

ρϕa,bpxq “ PCFγpa,b,xqpϕq

We will call such PCF a simple PCF.

Lemma 2.3. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Fix a number κ ą 1

2 and assume let ϕ : T3 Ñ R is C1`κ. Let
f be a sufficiently small perturbation of the automorphism L such that λ` ă µκ´.
Then ρϕa,b : Wupaq Ñ R is C1 regular.
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Proof. Recall that by definition

ρϕa,bpxq “
ÿ

ně0
ϕpfnpbqq ´ ϕpfnpaqq `

ÿ

ně0
ϕpfnpxqq ´ ϕpfnpHola,bpxqqq

`
ÿ

nă0
ϕpfnpxqq ´ ϕpfnpaqq `

ÿ

nă0
ϕpfnpbqq ´ ϕpfnpHola,bpxqqq

Note that the first series term is just a constant. The third series term can be
easily seen to be C1 along Wu by calculating the formal derivative and observing
that the resulting series converge uniformly and hence, by Weierstrass M-test, give
a bona fide derivative of the series. The last series term is of the same nature as
the third one, but precomposed with the holonomy map. Since Hola,b is C1, we
conclude that the last term is also C1 along Wu. Hence, it remains to analyze the
second series term.

We denote by Duf the restriction of derivative Df to Eu and calculate the
formal derivative of the second series term:

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDHola,bpxq

We proceed with an estimate using the triangle inequality by splitting the above
series into a sum of two series. Note that the points fnpHola,bpxqq and fnpxq

are close and we can identify unstable subspaces at these points using the global
coordinates on T3. In this way the compositions of differentials which appear below
make sense.

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDHola,bpxq

“
ÿ

ně0

`

Duϕpf
npxqq ´Duϕpf

npHola,bpxqqq
˘

Duf
npxq

`
ÿ

ně0
Duϕpf

npHola,bpxqqq
`

Duf
npxq ´Duf

npHola,bpxqqDHola,bpxq
˘

We will see that both series above converge uniformly. This then implies that ρϕa,b
is indeed differentiable with a continuous derivative given by the above series.

For estimating the first series we use the fact that Duϕ is Hölder with exponent
κ ą 1{2. (Indeed, recall that Eu is C1 and ϕ is C1`κ.)

}
`

Duϕpf
npxqq ´Duϕpf

npHola,bpxqqq
˘

Duf
npxq }

ď C distpfnpxq, fnpHola,bpxqqq
κλn` ď Cµ´nκ´ λn`

Hence, because µ´κ´ λ` ă 1, the series converge uniformly.
To handle the second series note that Duϕ is uniformly bounded and hence, we

need to estimate Duf
npxq ´Duf

npHola,bpxqqDHola,bpxq. To do that notice that
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fn ˝Hola,b “ Holfnpaq,fnpbq ˝ f
n. Hence

}Duf
npxq ´Duf

npHola,bpxqqDHola,bpxq }

“ }Duf
npxq ´DHolfnpaq,fnpbqpf

npxqqDuf
npxq }

ď } Id´DHolfnpaq,fnpbqpf
npxqq } ¨ }Duf

npxq } ď Cµ´n´ λn`

where for the bound

} Id´DHolfnpaq,fnpbqpf
npxqq } ď Cdistpfnpxq, fnpHola,bpxqqq ď Cµ´n´

we used the factW s is a C2 foliation and, hence, DHolz,y is uniformly Lipschitz in
y P W s

locpzq, z P T3, and DHolz,z “ Id. Therefore, because λ` ă µ´, the second
series also converge uniformly.

We remark that to have C2 stable foliation we strongly rely on the fact that
f is close to L and, hence, is close to conformal along the unstable subbundle as
discussed in detail in Section 2.1. �

2.4. Relation between the stable holonomy and simple periodic cycle
functionals. Consider a quadruple of points a, b PW spaq, x PWupaq andHola,bpxq
as in the preceding section. The Jacobian of Hola,b can be calculated using the
relationship fn ˝ Hola,b “ Holfnpaq,fnpbq ˝ f

n. Indeed, taking Jacobians of both
sides yields

J Hola,bpxq “
JufnpxqJ Holfnpaq,fnpbqpf

npxqq

JufnpHola,bpxqq

Recall that J Holfnpaq,fnpbq Ñ 1 as n Ñ `8 because holonomy is uniformly C1

and Holz,z “ Id, z P T3. Hence, by taking logarithms and passing to the limit as
nÑ `8 we obtain the following expression for the Jacobian of the holonomy

log J Hola,bpxq “
ÿ

ně0
log Jufpfnpxqq ´ log JufpfnpHola,bpxqqq

This formula gives the relationship between the Jacobian of the holonomy and the
simple periodic cycle functional. Namely, if ϕ “ log Juf then we have

ρϕa,bpxq “ log J Hola,bpxq ´ log J Hola,bpaq

`
ÿ

nă0
ϕpfnpxqq ´ ϕpfnpaqq `

ÿ

nă0
ϕpfnpbqq ´ ϕpfnpHola,bpxqqq

Remark 2.4. The formula above becomes much nicer if one considers the Jacobian
of holonomy relative to the conditional measures of the SRB measure of f . Recall
that the density of such conditional measure on Wupaq normalized to be equal to
1 at a, is given by

θapxq “
ź

nă0

Jufpfnpaqq

Jufpfnpxqq

Then the Jacobian of holonomy relative to the SRB conditional measures onWupaq

and Wupbq is given by

JSRBHola,bpxq “ J Hola,bpxq
θbpHola,bpxqq

θapxq
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Taking logariths and using the formula for ρϕa,b we have

log JSRBHola,bpxq “ ρϕa,bpxq ` log JSRBHola,bpaq

Hence, up to an additive constant simple PCF is the same as logarithmic Jacobian
of the holonomy relative to the conditionals of the SRB measure.

Note that for Lemma 2.3 to apply when ϕ “ log Juf , we must have that ϕ is
C1`κ, which means that f has to be C2`κ regular. However we will also need to
have C1 regularity of ρϕa,b when f is merely C2. The above formula for ρϕa,b in terms
of Jacobian of holonomy allows to do that.

Lemma 2.5. Let L : T3 Ñ T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Let f be a C2 diffeomorphism which is a sufficiently C1 small
perturbation of the automorphism L and let ϕ “ log Juf . Then ρϕa,b : Wupaq Ñ R
is C1 regular.

Proof. The preceding formula expresses ρϕa,b as a sum of four terms. Recall that
according to the discussion in Section 2.1 the map Hola,b is C2 (and this is why
we need f to be at least C2). Hence the first term J Hola,b is C1 regular. The
second term is just a constant. Then, C1 regularity of the third and, similarly, the
last series term, are easy to see by observing that ϕ is C1, differentiating the series
formally with respect to x and observing exponential convergence of the resulting
series. �

2.5. Non-stationary linearization for expanding foliations. Let f : M ÑM

be a Cr, r ě 2, diffeomorphism which leaves invariant a continuous foliationW with
uniformly Cr leaves. Assume that W is an expanding foliation, that is }Dfpvq } ą
} v } , for all non-zero v P E where E Ă TM is the distribution tangent to W .
The following proposition on non-stationary linearization is a special case of the
normal form theory developed by Guysinsky and Katok [GK98] and further refined
by Kalinin and Sadovskaya [S05, KS09].

Proposition 2.6. Let f be a Cr, r ě 2, diffeomorphism and let W be an expanding
foliation as described above, E “ TW . Assume that there exist ν P r0, 1s and
γ P p0, 1q such that

} pDfn|Eq
´1 } 1`ν ¨ }Dfn|E } ď Cγn

for all n ě 1. Then for all x PM there exists Hx : Epxq ÑWupxq such that
1. Hx is a Cr diffeomorphism for all x PM ;
2. Hxp0q “ x;
3. D0Hx “ id;
4. Hfx ˝Dxf “ f ˝Hx;
5. DHx is Lipschitz along W ;
6. such family Hx, x P M , is unique among linearizations satisfying the above

properties; moreover, uniqueness still holds among linearizations which do
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not necessarily obey item 5 above, but with ν-Hölder dependence of DHx

along W ;
7. if y PW pxq then H´1

y ˝Hx : Epxq Ñ Epyq is affine;
8. the map x Ñ Hx from M to ImmrpEpxq,Mq is Hölder, in particular, the

map Ĥ : E ÑM , given by Ĥpx, vq “ Hxpvq is continuous;

Such family tHx, x P Mu is called non-stationary linearization/normal form or
affine structure along W .

3. Proofs of results in dimension 3

For all the proofs in this section we will assume that L has one real eigenvalue
of absolute value ă 1 and a pair of complex conjugate eigenvalues of absolute value
ą 1. If the real eigenvalue has absolute value ą 1 then one can consider inverses
and conclude the same results.

3.1. Theorem 1.2 implies Theorem 1.1 with a caveat. The caveat is that we
need to make an additional assumption that fi are at least C2`κ regular. Under
this assumption we explain that Theorem 1.2 applies in the setting of Theorem 1.1.

Fix a Riemannian metric on T3 and let ϕi “ log Jufi, i “ 1, 2. Because unstable
Jacobian periodic data match we have pf1, ϕ1q „ pf2, ϕ2q. In order to apply Theo-
rem 1.2 we also need to check that ϕi P C1`κpT3q with κ ą 1

2 . Note that this is not
immediate because the unstable subbundle is merely C 3

2´ε. However, because the
stable foliation W s

i is C2 we can pick C2- coordinate charts on T3 such that W s
i

is “horizontal” with respect to these charts. Then the differential Dfi has upper
triangular form in these charts. Taking the determinant of Dfi yields the following
relation

ϕi “ log Jufi “ log Jfi ´ log Jsfi
We have log Jfi P C1`κpT3q because we have assumed that fi are C2`κ. And
log Jsfi is also C1`κ because the stable subbundle Esi is C2. Therefore ϕi are
indeed C1`κ.

Applying Theorem 1.2 we obtain that log Jufi is cohomologous to a constant or
the conjugacy h is uniformly Cr along the unstable foliation. In the former case we
conclude that the equilibrium state for ´ log Jufi coincides with the equilibrium
state for the constant, which precisely means that the SRB measure coincides with
the measure of maximal entropy for fi.

In the case when h is uniformly Cr along the unstable foliation we need to refer
to classical arguments [dlL92] to conclude that h is Cr˚ . Indeed, from matching of
stable Jacobian periodic data de la Llave concludes that h sends the SRB measure
for f´1

1 to the SRB measure for f´1
2 . Same is true for conditional measures of

these SRB measures along the stable leaves. Further, de la Llave argues that
these conditional measures have Cr´1 densities. And because the stable foliation
is one dimensional we can conclude that h is uniformly Cr along stable foliation
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by integrating. Finally, given that h is uniformly Cr along both the stable and the
unstable foliation, one employs the Journé’s Lemma [J88], to conclude that h is a
Cr˚ diffeomorphism.

3.2. Proofs of Corollaries. Here we explain how Corollaries 1.3 and 1.4 follow
from Theorem 1.2.
Proof of Corollary 1.3. Let ϕi “ log Jsfi, i “ 1, 2. Then, from regularity of
Es we have ϕi P C2pT3q and by the matching assumption pf1, ϕ1q „ pf2, ϕ2q.
Thus Theorem 1.2 applies and we have that either h is Cr along the unstable
foliation, and we further get that h is Cr˚ as explained in Section 3.1, or ϕ1 is
cohomologous to a constant. In the latter case, the equilibrium state for ϕ1 “

log Jsf1 “ ´ log Jupf´1
1 q, which is the SRB measure for f´1

1 coincides with the
equilibrium state for a constant which is the MME.
Proof of Corollary 1.4. Here we can apply Theorem 1.2 to full Jacobians ϕi “
log Jfi. Diffeomorphism f1 being dissipative implies that ϕ1 is not cohomologous
to a constant. Hence, Theorem 1.2 implies that h is Cr along unstable foliation.
Now we have matching of full Jacobian and matching of the unstable Jacobian.
Hence, the stable Jacobian also matches and we can coclude that h is Cr˚ in the
same way as before.

3.3. Outline of the proof of Theorem 1.2 (and Theorem 1.1). By the as-
sumption pf1, ϕ1q „ pf2, ϕ2q we have that ϕ1 is cohomologous to ϕ2 ˝ h over f1.
Because periodic cycle functionals vanish on coboundaries we have that

PCFγpϕ1q “ PCFγpϕ2 ˝ hq

for every us-adapted loop γ for f1. Now we focus on simple PCFs given by four
legs ρϕa,b : Wupaq Ñ R as defined in the Section 2.3. The above equality of PFCs
can be written in the following way

ρϕ1
a,b “ ρϕ2˝h

a,b “ ρϕ2
hpaq,hpbq ˝ h|Wu

f1
paq

We call such relation matching of functions ρϕ1
a,b and ρ

ϕ2
hpaq,hpbq. This relation holds

for all a P T3 and b PW spaq.
Now the proof splits into two cases. The first case is when all simple PCFs ρϕ1

a,b

are constant. In this case, we have, in fact, that ρϕ1
a,b ” 0 because ρϕ1

a,bpaq “ 0.
We will deduce that such vanishing implies that all PCFs on null-homotopic us-
adapted loops vanish. Then Proposition 2.2 allows us to conclude that ϕ1 is an
almost coboundary, which completes the proof in this case.

The second case in when ρϕ1
a,b is non-constant for some a and b. Denote by

p a fixed point of f1 such that Df1 has a pair of (non-real) complex conjugate
eigenvalues. Such a point exists in proximity of 0 P T3 because we have assumed
that f1 is sufficiently close to L in C1 topology and L has a pair of complex conjugate
eigenvalues. Recall that by Lemma 2.3 ρϕ1

a,b is C1. Using minimality of the stable
foliation, we can adjust the locations of the points a and b on the stable manifold
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such that a PWu
f1
ppq and ρϕ1

a,b is has non-zero differential at p. Note that dynamics
produces another matching relation as follows

ρϕ1
a,b ˝f1|Wu

f1
ppq “ ρϕ2

hpaq,hpbq ˝h|Wu
f1
ppq ˝f1|Wu

f1
ppq “ pρ

ϕ2
hpaq,hpbq ˝f2|Wu

f2
phppqqq ˝h|Wu

f1
ppq

Hence we have another matching pair pρϕ1
a,b ˝ f1|Wu

f1
ppq, ρ

ϕ2
hpaq,hpbq ˝ f2|Wu

f2
phppqqq. The

differential Dpρϕ1
a,b˝f1|Wu

f1
ppqq is also non-zero at p and has a kernel which is linearly

independent from the kernel of Dρϕ1
a,b. This is because Df1ppq is an “expanding ro-

tation” and doesn’t have any real eigenvalues. Hence we have two independent
matching relations on the neighborhood of of p in Wuppq, which makes it possible
to apply the Inverse Function Theorem to conclude that h|Wu

f1
ppq is a C1 diffeomor-

phism on a small neighborhood of p. Then we can use C1 regularity of the stable
holonomy to spread this regularity everywhere and conclude that h is uniformly C1

along the unstable foliation Wu
f1
. The last step in the proof is to use uniqueness of

the normal form for the unstable foliation to bootstrap regularity along Wu
f1

from
C1 to Cr. Then concluding that h is a Cr˚ diffeomorphism was already explained
at the end of Section 3.1.

In the following three sections we fill in the details for the above outline.

Remark 3.1. The proof of Theorem 1.1 is exactly the same working with the
specific potentials ϕi “ log Jufi, i “ 1, 2, to conclude that h is Cr along the
unstable foliation. The only difference is that due to possible lack of regularity of
fi one has to invoke Lemma 2.5 instead of Lemma 2.3.

3.4. Case I: vanishing of simple PCFs. We begin the proof of Theorem 1.2 by
considering the case when simple PCFs ρϕ1

a,b ” 0 for all a P T3 and b P W spaq. We
will prove, using induction, that PCFγpϕ1q “ 0 for all null-homologous us-adapted
loops γ, which handles this case by applying Proposition 2.2 and concluding that
ϕ1 is an almost coboundary.

Because γ null-homologous, it lifts to a loop γ̃ on the universal cover R3 and
we have PCFγ̃pϕ̃1q “ PCFγpϕ1q, where ϕ̃1 is the lift of ϕ1 and the PCF on the
universal cover is defined in the same way using the lifted dynamics. The advantage
of working on the universal cover is that the lifted foliations W̃ s and W̃u have global
product structure because they are close to the linear foliations for L. In particular,
the space of unstable leaves is homeomorphic to R and, hence, is linearly ordered.
We will denote by Opxq the R-coordinate of W̃upxq, x P R3 (and similarly for
R-coordinates of paths which are entirely contained in unstable leaves).

We will write γ̃ “ γ1 ˚ γ2 ˚ . . . ˚ γ2k and we can assume that the legs γi are
contained in unstable leaves for even i and contained in stable leaves for odd i;
indeed, if there are two consecutive legs in the same stable (or unstable) leaf we
can just combine them into a single leg. We will run induction on k. If k “ 2 then
the corresponding PCF is simple and vanishes by the assumption.

Now assume vanishing for all γ̃ with 2k ´ 2 legs or less. Pick a maximal leg
γ2i, that is, a leg such that Opγ2iq ě Opγ2jq for all j “ 1, . . . k. We can cyclically
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ε

W̃u(γ2i(0))

γ2i

γ2i+1

γ2i−1

q

W̃u(γ2i(0))

W̃u(γ2i−1(0))

Figure 1. Induction.

relabel the legs if needed so that 2i ‰ 2k. By maximality we have Opγ2i´1p0qq ă
Opγ2iq and Opγ2i`1p1qq ă Opγ2iq. For concreteness, also assume that Opγ2i´1p0qq ě
Opγ2i`1p1qq (the other case is symmetric). Then, by global product structure the
leaf W̃upγ2i´1p0qq intersects the leaf W̃ spγ2i`1p1qq at a unique point q with q P

γ2i`1. We use point q to subdivide γ2i`1 into two legs γ2i`1 “ δ1 ˚ δ2. Also
consider a path ε : r0, 1s Ñ W̃upγ2i´1p0qq which connects γ2i´1p0q to q and let ε̄ be
the same path with reversed orientation which connects q to γ2i´1p0q. By adding
the legs ε and ε̄ we can “decompose” γ̃ into two us-adapted loops

α “ γ2i´1 ˚ γ2i ˚ δ1 ˚ ε̄

and
β “ γ1 ˚ . . . ˚ pγ2i´2 ˚ εq ˚ δ2 ˚ γ2i`2 ˚ . . . γ2k

Note that α has only 4 legs and β has 2k´ 2 legs (or 2k´ 4 if δ2 is a point). Hence
by the induction hypothesis PCFαpϕ1q “ PCFβpϕ1q “ 0. Also recall that from
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the definition of periodic cycle functionals we have PCFε̄pϕ1q “ ´PCFεpϕ1q. It
follows that

PCFγ̃pϕ1q “ PCFγ̃pϕ1q ` PCFεpϕ1q ` PCFε̄pϕ1q “ PCFαpϕ1q ` PCFβpϕ1q “ 0

Remark 3.2. For convenience we made use of global product structure and one-
dimensionality of W s. However, this is not essential. A more tedious argument,
which relies on local product structure only, can show that for any null-homologous
γ the corresponding PCF can be written us a sum of simple PCFs corresponding
to loops of small diameter and, hence, vanishes.

3.5. Case II: non-constant simple PCF. Recall that the simple PCFs are C1 by
Lemma 2.3. We assume now that there exists a P T3, b P W s

f1
paq and x0 P W

u
f1
paq

such that Dρϕ1
a,bpx0q ‰ 0. Then for any x in a sufficiently small neighborhood B of

x0 we also have Dρϕ1
a,bpxq ‰ 0.

Let p be a fixed point of f1 such thatDf1|Eu
f1
ppq has (non-real) complex conjugate

eigenvalues. Such point exists for all f1 which are sufficiently close to L in C1

topology. By minimality property of W s
f1

we have T3 “ YxPBW
s
f1
pxq. Hence, we

can pick x P B such that p PW s
f1
pxq. The local stable holonomy Holx,p : Wu

locpxq Ñ

Wu
locppq uniquely extends to a global holonomy Holx,p : Wu

f1
pxq Ñ Wu

f1
ppq and we

let c “ Holx,ppaq. The point configuration is illustrated on Fifure 2. The following
relation can be verified directly from the definition of PCFs

ρϕ1
c,b ´ ρ

ϕ1
c,a “ ρϕ1

a,b ˝ pHolx,pq
´1

Recall that Dρϕ1
a,bpxq ‰ 0. Because Holx,p is a C1 diffeomorphism and p “

Holx,ppxq, the above relation implies that either Dρϕ1
c,bppq ‰ 0 or Dρϕ1

c,appq ‰ 0
(or both). These two cases are fully analogous and, for concreteness, we assume
that Dρϕ1

c,bppq ‰ 0.
Note that the leaf Wu

f1
ppq is fixed by f1. Using the conjugacy relation we now

have matching pairs
ρϕ1
c,b “ ρϕ2

hpcq,hpbq ˝ h|Wu
f1
ppq

and
ρϕ1
c,b ˝ f1|Wu

f1
ppq “ pρ

ϕ2
hpcq,hpbq ˝ f2|Wu

f2
phppqqq ˝ h|Wu

f1
ppq

Further the differentials Dρϕ1
c,b|Euf1

ppq and Dpρϕ1
c,b ˝ f1|Wu

f1
ppqq|Eu

f1
ppq are linearly in-

dependent because Df1|Eu
f1
ppq does not have real eigenvalues. It follows that the

map
P
ϕ1
c,b “ pρ

ϕ1
c,b, ρ

ϕ1
c,b ˝ f1|Wu

f1
ppqq

has a full-rank differential at p and, hence, is a C1 diffeomorphism when restricted
to a sufficiently small neighborhood U of p. We also define

P
ϕ2
hpcq,hpbq “ pρ

ϕ2
hpcq,hpbq, ρ

ϕ2
hpcq,hpbq ˝ f2|Wu

f2
phppqqq

and by the matching relations we have

P
ϕ1
c,b “ P

ϕ2
hpcq,hpbq ˝ h
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Wu
loc(p)

Wu
loc(a)

Wu
loc(b)

pc

a

b

W s
f1
(p)

W s
f1
(a)

x0

x

B

Figure 2. Point configuration.

Taking the inverse, we obtain the following formula for the restriction

h´1|hpUq “ pP
ϕ1
c,bq

´1 ˝ Pϕ2
hpcq,hpbq

By using a symmetric argument (and passing to an even smaller neighborhood U
if needed) we also have that h|U is C1 and, hence, h|U is a C1 diffeomorphism.

Now let q P W s
f1
ppq and let Uq be the image of U under the stable holonomy

Holp,q : Wu
locppq ÑWu

locpqq. Then, because h preserves the stable foliation we have
that

h|Uq “ Holp,q ˝ h|U ˝ pHolp,qq
´1

and, hence, is also a C1 diffeomorphism.
Finally, we will use minimality of the stable foliation to conclude that h is uni-

formly C1 along Wu
f1
. Indeed, neighborhoods Uq, q P W s

f1
ppq, sweep out the whole

torus, so h is C1 along Wu
f1
. To see uniformity, note that minimality actually

implies that
T3 “

ď

qPW spp,Rq

Uq

where W spp,Rq is an segment of radius R in W sppq relative to the intrinsic metric.
Because the family of holonomies Holp,q, q PW spp,Rq, is uniformly C1 we, indeed,
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can conclude that the same is true for h|Uq , q P W spp,Rq, yielding uniform C1

smoothness along Wu
f1

on the whole T3.

3.6. A bootstrap argument. Denote by Hi
x, the affine structure for fi along the

unstable foliation Wu
fi
, i “ 1, 2. The idea for bootstrap is to use uniqueness of the

normal form. Indeed, since we have that h is uniformly C1 along unstable foliation
we can consider non-stationary linearization for f1 given by H1

x
1
“ ph|Wu

f1
pxqq

´1 ˝

H2
x ˝ Dh|Euf1

pxq. Then, if the normal form for Wu
f1

were unique, we would have
H1
x
1
“ H1

x and conclude that h|Wu
f1
pxq “ H2

x ˝ Dh|Euf1
pxq ˝ pH1

xq
´1 is Cr. This

however, does not work so easily because the uniqueness guaranteed by item 6 of
Proposition 2.6 requires DH1

x
1 to be Hölder with respect to x along the unstable

leaves. We do not have such regularity because h is merely C1 along unstable
leaves. However, using this idea we can still establish smoothness along the leaf
with conformal fixed point and then finish using denseness of this leaf.

We will begin by bootsrtapping h from C1 to Cr along the leaf with conformal
dynamics. We state the following proposition in somewhat more general context
for the sake of future reference, in particular, in the next section.

Proposition 3.3. Let fi : M Ñ M be Cr, r ě 2, diffeomorphisms which admit
2-dimensional expanding foliations Wi and satisfy assumptions of Proposition 2.6,
i “ 1, 2, Ei “ TWi. Assume that f1 and f2 are conjugate, h ˝ f1 “ f2 ˝ h, and
hpW1q “ W2. Assume that p is a fixed point for f1 such that Df1|E1ppq does not
have real eigenvalues. Assume that h|W1ppq is differentiable at p. Then h|W1ppq is
Cr.

Proof. Denote by Hi
x, x P M , the affine structures for pfi,Wiq given by Proposi-

tion 2.6. To prove the proposition we will show that h|W1ppq “ H2
hppq ˝Dh|E1ppq ˝

pH1
pq
´1, which is clearly Cr. For that we need the following elementary lemma.

Lemma 3.4. Let H : CÑ C be a continuous map of the complex plane C. Assume
that D0H exists. Assume that there is λ P C, be such that |λ| ą 1 and Hpλzq “
λHpzq for every z P C. Then Hpzq “ D0Hpzq for every z P C.

Proof. First note that Hp0q “ Hpλ0q “ λHp0q, hence, Hp0q “ 0. Let ni Ñ `8

such that λni |λ|´ni Ñ σ, |σ| “ 1. Then, since H is differentiable at 0, for every
z P C we have

Hp|λ|´nizq

|λ|´ni
Ñ D0Hpzq

as ni Ñ `8. On the other hand,

Hp|λ|´nizq

|λ|´ni
“

λ´ni

|λ|´ni
H

`

λni |λ|´niz
˘

Ñ σ´1Hpσzq, ni Ñ `8

Therefore σ´1Hpσzq “ D0Hpzq for every z P C and hence Hpzq “ σD0Hpσ
´1zq

for every z P C which implies that Hpzq “ D0Hpzq. �
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Because eigenvalues of Df1|E1ppq are complex, we can identify E1ppq with C so
that Df1 : E1ppq Ñ E1ppq becomes z ÞÑ λz. Note that |λ| ą 1. Let H : E1ppq Ñ

E1ppq be given by H “ pH1
pq
´1 ˝ ph|W1ppqq

´1 ˝H2
hppq ˝Dh|E1ppq. We check the main

assumption of the above lemma

H ˝ pz ÞÑ λzq “ pH1
pq
´1 ˝ ph|W1ppqq

´1 ˝H2
hppq ˝ pDh|E1ppq ˝Df1|E1ppqq

“ pH1
pq
´1 ˝ ph|W1ppqq

´1 ˝ pH2
hppq ˝Df2|E2ppqq ˝Dh|E1ppq

“ pH1
pq
´1 ˝ pph|W1ppqq

´1 ˝ f2|W2ppqq ˝H2
hppq ˝Dh|E1ppq

“ ppH1
pq
´1 ˝ f1|W1ppqq ˝ ph|W1ppqq

´1 ˝H2
hppq ˝Dh|E1ppq

“ Df1|E1ppq ˝ pH
1
pq
´1 ˝ ph|W1ppqq

´1 ˝H2
hppq ˝Dh|E1ppq “ pz ÞÑ λzq ˝H

Also recall that DHi
x “ idEipxq and hence D0H “ idC. Therefore, by the lemma

H “ idC, which precisely means that h|W1ppq “ H2
hppq ˝Dh|E1ppq ˝ pH1

pq
´1. �

By applying Proposition 3.3 in our setting for unstable foliations, we have
h|Wu

f1
ppq “ H2

hppq ˝ Dh|Euf1
ppq ˝ pH1

pq
´1. We would like to show a similar formula

h|Wu
f1
pxq “ H2

hpxq˝Cpxq˝pH
1
xq
´1 for all x P T3. To do that we can exploit denseness

ofWu
f1
ppq. Given a point x0 P T3 let xn PWu

f1
ppq be a sequence of points converging

to x0 as nÑ8. For x PWu
f1
ppq we have

h|Wu
f1
pxq “ H2

hppq ˝Dh|Euf1
ppq ˝ pH1

pq
´1

“ H2
hpxq ˝ ppH

2
hpxqq

´1 ˝H2
hppq ˝Dh|Euf1

ppq ˝ pH1
pq
´1 ˝H1

xq ˝ pH1
xq
´1

and letting

Cpxq “ pH2
hpxqq

´1 ˝H2
hppq ˝Dh|Euf1

ppq ˝ pH1
pq
´1 ˝H1

x

we obtain h|Wu
f1
pxq “ H2

hpxq ˝ Cpxq ˝ pH
1
xq
´1 for x P Wu

f1
ppq. By item 7 of Propo-

sition 2.6 maps Cpxq : Euf1
pxq Ñ Euf2

phpxqq are affine. One can easily check that
Cpxqp0q “ 0 and hence Cpxq, x P T3, are, in fact, linear maps.

Now we would like to take a limit as xn Ñ x0 of

h|Wu
f1
pxnq “ H2

hpxnq
˝ Cpxnq ˝ pH1

xnq
´1

We left-hand-side converges to h|Wu
f1
px0q, however, in order to be able to take the

limit of the right-hand-side we also need the norm and conorm of Cpxnq to be
uniformly bounded. If that is the case, then from uniqueness of the limit we have
that Cpxnq converges to an invertible linear map Cpx0q, which has the same bounds
on the norm and conorm, and

h|Wu
f1
px0q “ H2

hpx0q
˝ Cpx0q ˝ pH1

x0
q´1

Then from continuity property (item 8) of Proposition 2.6 and uniform bounds on
Cpxq, x P T3, we can conclude that h is uniformly Cr along unstable foliation.

Thus, it remains to prove the following lemma.
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Lemma 3.5. There exists a constant C ą 0 such that for every x P Wu
f1
ppq, the

linear maps Cpxq : Euf1
pxq Ñ Euf2

phpxqq defined above satisfy the following bounds

}Cpxq } ď C, } pCpxqq´1 } ď C

Proof. Note that this lemma is not very obvious because the norm of pH1
pq
´1 ˝H1

x

could explode as x goes to infinity inside the leaf Wu
f1
ppq.

We shall bound uniformly }Cpxq } , x P T3. The bound on the norm of Cpxq´1

follows from the same argument by interchanging the roles of f1 and f2 and working
with h´1.

Notice that Cpxq “ pH2
hpxqq

´1 ˝ h|Wupxq ˝ H1
x. If there is no uniform bound on

}Cpxq } , then there exist sequences xn PWupp1q and vn P Eu1 pxnq with } vn } Ñ 0
and such that }Cpxnqvn } “ 1. Taking a subsequence if necessary, we have x8 “
lim xn P T3 and w8 “ limCpxnqvn P E

u
2 phpx8qq, }w8 } “ 1. Let zn “ H1

xnpvnq,

then zn Ñ H1
x8p0q “ x8. So we obtain that hpznq Ñ hpx8q and

H2
hpxnq

pCpxnqvnq Ñ H2
hpx8q

pw8q ‰ H2
hpx8q

p0q “ hpx8q

On the other hand,

H2
hpxnq

pCpxnqvnq “ h
`

H1
xnpvnq

˘

“ hpznq Ñ hpx8q

yielding a contradiction. �

Remark 3.6. Once Proposition 3.3 is established one could argue in a more ad
hoc, but quicker way, using holonomies along the stable foliation, that

h|Wupxq “ Holhpxpq,hpxq ˝ h|Wuppq ˝Holx,xp

where xp P W spxq XWuppq. Hence h|Wupxq is uniformly C2 for every x P T3 due
to C2 regularity of holonomies. After that one can use uniqueness of normal forms
as outlined at the beginning of this section to further bootstrap to Cr.

4. The General Matching Theorem

We state a general matching theorem, which is a higher dimensional version of
Theorem 1.2. Recall the notation for hyperbolicity rates and the defintions of the
stable and unstable bunching parameters from Section 2.1.

Theorem 4.1. Let fi : Mi Ñ Mi, i “ 1, 2, be topologically conjugate Cr, r ě 2,
transitive Anosov diffeomorphisms, h ˝ f1 “ f2 ˝ h. Fix a number κ P p0, 1s.
Assuming that both fi satisfy the following condition on the hyperbolicity rates and
bunching parameters

µ
´mintκ,κbupfiq,bspfiq´1u
´ λ` ă 1

Then there exist C1 regular, Dfi-invariant distributions Ei, such that
1. distributions Ei integrate to fi-invariant foliations Wi;
2. we have dimEi P r0, . . .dimEufis, Ei Ă Eufi and Wi subfoliates Wu

fi
;

3. the distribution Esfi ‘ Ei integrates to an fi-invariant C1 regular foliation
which is subfoliated by both W s

fi
and Wi;
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4. conjugacy h maps W1 to W2;
5. the restrictions of h to the unstable leaves are uniformly C1 transversely to

W1;
6. for any C1`κ functions ϕi : M Ñ R such that pf1, ϕ1q „ pf2, ϕ2q the corre-

sponding simple PCF ρϕia,b : Wu
fi,loc

paq Ñ R vanish on Wi,locpaq Ă Wu
fi,loc

paq

for all a PMi and b PW s
fi
paq.

Remark 4.2. The condition on the rates is used to establish property 6. Notice
that it implies that µ´ ą λ` and bspfiq ą 1. Also note that µ´ ą λ` implies
asymmetry of stable and unstable Lyapunov spectra and dimEs ă dimEu.

Remark 4.3. Recall that Brin and Manning [B77, BM81] proved that Anosov
diffeomorphism lives on an infranilmanifold if at least one of the following pinching
assumptions is satisfied

1` log λ´
log λ`

ą
logµ`
logµ´

, or 1` logµ´
logµ`

ą
log λ`
log λ´

Our bunching assumption does not imply any of the Brin’s pinching assumptions.
For example take λ` “ pλ´q2, µ´ “ pλ´q3 and µ` “ pλ´q6. Then both of Brin’s
conditions are violated, bs “ 2, bu “ 2{3 and, hence, our condition is satisfied for
any κ P p1{2, 1s. Hence, at least in the current state of art, the above result is
indeed on abstract transitive Anosov diffeomorphisms.

We proceed with the proof of the matching theorem.

4.1. The construction. We will fix a regularity constant k ě 1, k ď r. The
foliations subordinate to the unstable foliations which will construct will depend
on the choice of this regularity constant. Later, for the proof of Theorem 1.2, we
will set k “ 1.

We will consider matching Ck functions on local unstable leaves. Namely, given
a point x PM1 consider the space of pairs

V kx “ tpϕ1, ϕ2q : ϕ1 : Upϕ1q Ñ R, x P Upϕ1q ĂWu
f1,locpxq, ϕ1 “ ϕ2˝h, ϕ1, ϕ2 P C

ku

where Upϕ1q are open neighborhoods of x in Wu
f1,loc

pxq. Also denote by V kx,i the
projections of V k to the i-th coordinate, i “ 1, 2. Define

Eipxq “
č

ϕPV k
x,i

ker dxϕ

Denote mipxq “ dimEipxq and let mi “ minxPMi
mipxq. Note that if ϕi P V kx,i

then the restriction of ϕi to a smaller open set which contains x is also in V kx,i.
From this observation and also using the conjugacy relation h ˝ f1 “ f2 ˝ h, it is
straightforward to verify the first of the following properties.

1. DfipEipxqq “ Eipfipxqq, x PMi i “ 1, 2;
2. functions mi : Mi Ñ Z` are upper semi-continuous on unstable leaves;
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3. on the open set (with respect to the intrinsic topology of the unstable folia-
tion) tx : mipxq “ miu where mi achieves its minimum the distribution Ei
is integrable to a foliation with Ck charts.

To check the second property, first notice that if pϕ1, ϕ2q P V
k
x and y P Upϕ1q,

the domain of ϕ1, then pϕ1, ϕ2q P V
k
y as well. The linear space Eipxq can be written

as a finite intersection of codimension 1 subspaces ker dxϕji , ϕ
j
i P V

k
x,i. Because ϕji

are at least C1 we have that ker dyϕji depend continuously on y and the intersection
Xj ker dxϕji have equal or bigger dimension (the dimension could be bigger if some
of the kernels at x coincide) as Xj ker dyϕji for all y which are sufficiently close to x.
For all y PWu

fi,loc
pxq which are sufficiently close to x we have Eipyq Ă Xj ker dyϕji ,

hence dimEipyq ď dimEipxq, i.e., the dimension function is upper semi-continuous
on unstable leaves. In particular, the set tx : mipxq “ miu is open on each unstable
leaf.

Now, to check the third property take any x such that mipxq “ mi. We can
further refine the collection ϕji (if needed) so that the collection of differentials
tdxϕ

j
i u
d´mi
j“1 is linearly independent. Here d “ dimEufi . Then, by the above discus-

sion (and minimality of the dimension function at x) we have

Eipyq “
d´mi
č

j“1
ker dyϕji

for all y P U ĂWu
fi,loc

pxq. We can see now that that

Φi,x “ pϕ1
i , ϕ

2
i , . . . ϕ

d´mi
i q

is a foliation chart on an open neighborhood of x, U . Indeed, by linear independence
of tdyϕji u

d´mi
j“1 , y P U , the map Φi,x is a submersion, the level sets Φi,x “ const

have dimension mi and are tangent to Ei.
Note that the assumption µ´κ´ λ` ă 1 implies that bspfiq ą 1.

Lemma 4.4. If k ď mintbspf1q, b
spf2qu then mipxq “ mi for all x PMi, i “ 1, 2.

Proof. Let y P W s
fi
pxq and denote by Holx,y : Wu

fi,loc
pxq Ñ Wu

fi,loc
pyq the stable

holonomy map. By the assumption on k this map is at least Ck diffeomorphism.
Because the conjugacy h sendsW s

f1
toW s

f2
, it respects the holonomy maps. Namely,

h ˝Holx,y “ Holhpxq,hpyq ˝ h.
Now let pϕ1, ϕ2q P V

k
x . Then

ϕ2 ˝Hol
´1
hpxq,hpyq ˝ h “ ϕ2 ˝ h ˝Hol

´1
x,y “ ϕ1 ˝Hol

´1
x,y

Hence
´

ϕ1 ˝Hol
´1
x,y, ϕ2 ˝Hol

´1
hpxq,hpyq

¯

P V ky . Similarly, if pψ1, ψ2q P V ky then
`

ψ1 ˝Holx,y, ψ2 ˝Holhpxq,hpyq
˘

P V kx . It immediately follows thatDHolx,ypEipxqq “

Eipyq and, in particular, mipxq “ mipyq. We can conclude that the set tx : mipxq “

miu is saturated by the stable leaves ofW s
fi
. Recall, that the stable foliation is min-

imal, hence, mipxq “ mi for all x. �



RIGIDITY FOR VERY NON-ALGEBRAIC ANOSOV DIFFEOMORPHISMS 25

By property 3 we conclude that Ei integrates to a Ck foliation Wi Ă Wu
fi

(that
is, Wi is Ck when restricted to an unstable leaf).

Lemma 4.5. Foliations Wi and W s
fi

integrate together to an fi-invariant foliation.

Proof. Let Φi,y : Uy Ñ Rd´mi be a foliation chart for Wi as explained before.
Then Φi,y ˝ Holx,y (cf. the proof of Lemma 4.4) is a foliation chart for Wi on a
neighborhood of x. This implies that Holx,y takes local leaves of Wi in Hol´1

x,ypUyq

to local leaves of Wi in Uy, which implies that Wi and W s
fi

integrate together to
a Ck foliation (provided that k ă bspfiq). The invariance is immediate from the
invariance of Wi and W s

fi
. �

Lemma 4.6. Foliations W1 and W2 have the same dimension and hpW1q “W2.

Proof. Let Φ1,x “ pϕ1
1, ϕ

2
1, . . . ϕ

d´m1
1 q be a chart for W1 centered at x. Then we

can express the local leaf through x as the intersection of level sets

W1,locpxq “
d´m1
č

j“1
pϕj1q

´1pϕj1pxqq “
d´m1
č

j“1
h´1ppϕj2q

´1pϕj2phpxqqqq

“ h´1

˜

d´m1
č

j“1
pϕj2q

´1pϕj2phpxqqq

¸

Ą h´1

¨

˝

č

ϕPV kx,2

ϕ´1pϕphpxqqq

˛

‚

“ h´1pW2,locphpxqqq

Similarly, using a chart at hpxq we also have W2,locphpxqq Ą hpW1,locpxqq. Hence
hpW1q “W2 and, by Invariance of Domain, m1 “ m2. �

Lemma 4.7. The restrictions of h to the unstable leaves are uniformly Ck, trans-
versely to W1.

Proof. Recall that Wi is Ck when restricted to unstable leaves and, by Lemma 4.6,
locally, h induces a homeomorphism h̄ on the space of leaves of Wi. We need to
prove that these local homeomorphisms h̄ are uniformly Ck.

Consider a foliation chart Φ1,x “ pϕ
1
1, ϕ

2
1, . . . ϕ

d´m1
1 q for W1 centered at x and

chart Ψ2,hpxq “ pψ
1
2 , ψ

2
2 , . . . ψ

d´m1
2 q for W2 centered at hpxq, which come from the

spaces V k1,x and V k2,x, respectively. Then the induced homeomorphism h̄ can be
expressed in charts as

h̄pϕ1
1pyq, ϕ

2
1pyq, . . . ϕ

d´m1
1 pyqq “ pψ1

2phpyqq, ψ
2
2phpyqq, . . . ψ

d´m1
2 phpyqqq

Recall that ψj2 ˝ h “ ψj1 for some Ck functions ψj1. Therefore,

h̄pϕ1
1pyq, ϕ

2
1pyq, . . . ϕ

d´m1
1 pyqq “ pψ1

1pyq, ψ
2
1pyq, . . . ψ

d´m1
1 pyqq

which implies that h̄ is Ck because Φ1,x is a Ck submersion. Symmetric argument
yields Ck regularity of h̄´1. Finally it is easy to see uniformity (provided that k ď
mintbspf1q, b

spf2qu) of the Ck regularity by using finitely many unstable plaques
which are sufficiently dense and observing that Ck regularity holds uniformly on
all plaques related to chosen ones via short stable holonomies. �
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4.2. Proof of Theorem 4.1. We apply the construction described above with
k “ 1. Note that the preceding lemmas yield all the conclusions of Theorem 4.1
except for the last one. The proof of the last property is based on the following
variant of the lemma about regularity of simple periodic cycle functionals. Recall
the definition of simple PCF ρϕa,b from Section 2.4. We will need the following
variant of Lemma 2.3.

Lemma 4.8. If ϕ P C1`κpM,Rq and f : M Ñ M is an Anosov diffeomorphism
satisfying such that

µ
´mintκ,κbupfiq,bspfiq´1u
´ λ` ă 1

then ρϕa,b : Wu
locpaq Ñ R is C1 regular.

Now the proof of property 6 follows easily. Recall that ϕi P C1`κpMq and
pf1, ϕ1q „ pf2, ϕ2q. Therefore pρϕ1

a,b, ρ
ϕ2
hpaq,hpbqq P V

1
a because PCFs provide invariants

for cohomology (see discussion at the beginning of Section 2.2) and by the above
lemma these functions are C1. Now, from construction of the foliation W1 we
conclude that ρϕ1

a,b is constant on local leaves of W1. Hence ρϕ1
a,b|W1,locpaq “ 0 and

ρϕ2
hpaq,hpbq|W2,locphpaqq “ 0.
Thus it remains to establish Lemma 4.8. Note that ρϕa,b is only defined on the

local unstable manifold due to possible lack of global product structure.

Proof of Lemma 4.8. The proof goes in the same way as the proof of Lemma 2.3 by
considering the formal derivative of the series and proving exponential convergence.
However the estimate for the following term in the formal derivative is more delicate
(the other terms of the formal derivative can be seen to converge easily)

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDHola,bpxq

Recall that we identify tangent spaces at nearby points using finitely many smooth
charts. As before we split the sum into two sums and use the triangle inequality.

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDHola,bpxq

“
ÿ

ně0

`

Duϕpf
npxqq ´Duϕpf

npHola,bpxqqq
˘

Duf
npxq

`
ÿ

ně0
Duϕpf

npHola,bpxqqq
`

Duf
npxq ´Duf

npHola,bpxqqDHola,bpxq
˘

For the terms in the first sum we have

}
`

Duϕpf
npxqq ´Duϕpf

npHola,bpxqqq
˘

Duf
npxq }

ď C distpEupfnpxqq, EupfnpHola,bpxqqqq
κλn`

ď C distpfnpxq, fnpHola,bpxqqq
κmintbu,1uλn` ď Cµ

´nκmintbu,1u
´ λn`

which converges by our assumption µ´κmintbu,1u
´ λ` ă 1.
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Now we use the fact that Duϕ is uniformly bounded and also the commutation
relation between holonomy and dynamics to derive the following bound on the
terms of the second series

}Duϕpf
npHola,bpxqqq

`

Duf
npxq ´Duf

npHola,bpxqqDHola,bpxq
˘

}

ď C }Duf
npxq ´DHolfnpaq,fnpbqDuf

npxq }

Pick a unit vector v P Eupxq, let vn “ Dfnpvq, vHol “ DHola,bpvq and vHoln “

DfnpvHolq. Also let wn “ vn{ } vn } and wHoln “ vHoln { } vn } . Note that after
normalization we still have wHoln “ DHolfnpaq,fnpbqpwnq.

We have

}Duf
npxq ´DHolfnpaq,fnpbqDuf

npxq } “ sup
vPEupxq, } v }“1

} vn ´ v
Hol
n }

ď Cλn` sup
wnPEupfnxq, }wn }“1

}wn ´ w
Hol
n }

Let W̄u be a foliation in a neighborhood of fnpxq which is uniformly smooth
(uniformly in n) and such that W̄upfnpxqq “ Wupfnpxqq. Note that the angle
between W̄u and Wu is Cbu -Hölder function of the point.

Accordingly consider the pseudo stable holonomy map given by sliding along the
leaves of W̄u which we denote by Hol : Wu

locpf
npxqq Ñ W̄upHolfnpaq,fnpbqpf

npxqqq

and define w̄Holn “ DHolfnpaq,fnpbqpwnq. Then, because W̄u is smooth and W s is
Cb

s we have that DHol is Cmintbs´1,1u Hölder along the stable leaf W spfnpxqq and
hence,

}wn ´ w̄
Hol
n } ď C distpfnpxq, fnpHola,bpxqqq

mintbs´1,1u ď C µ
´nmintbs´1,1u
´

Vectors wHoln and w̄Holn are based at the same point and have length very close to
1 because wn is a unit vector. Hence by Hölder continuity of Eu we have

}wHoln ´ w̄Holn } ď C]pwHoln , w̄Holn q ď Cdistpfnpxq, fnpHola,bpxqqq
mintbu,1u

ď C µ
´nmintbu,1u
´

Hence, using the triangle inequality we estimate the terms of the second series as
follows

}Duf
npxq ´DHolfnpaq,fnpbqDuf

npxq } ď Cλn`pµ
´nmintbs´1,1u
´ ` µ

´nmintbu,1u
´ q

which also converges exponentially by our assumptions on the rates and bunching
parameters. �

5. Proof of Theorem 1.5

We begin by calculating stable and unstable bunching parameters for L

bspLq “ 1` 2
α
ą 1` 8

?
17` 1

ą 2, bupLq “ 1` 1
1` α ą 1` 4

?
17` 2

ą 1

The eigenvalues µ´1 ă λ ă λα correspond to the partially hyperbolic splitting
TT3 “ EsL ‘ EwuL ‘ EuuL . Also recall the notation for exponential bounds λ` and
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µ´ introduced in Section 2.1. We fix a number η P pα, 1`
?

17
4 q and a small δ ą 0

such that pλ` δqα ă pλ´ δqη. We consider a sufficiently small C1 neighborhood U
of L such that

1. f P U are Anosov;
2. the partially hyperbolic splitting persists;
3. bspfq ą 2;
4. bupfq ą 1;
5. λ` ă pλ` δqα;
6. λ´ ą λ´ δ ą 1;
7. µ´1

´ λ` ă pλ´ δq
´1

We will denote the partially hyperbolic splitting for f by Esf ‘ Ewuf ‘ Euuf and
write Jσf , σ “ s, wu, uu, for corresponding Jacobians.

Define V in the following way.

V “ tf P U : log Jf, log Jwuf and log Juuf are not cohomologous to constantsu

This is indeed an open condition, because a Jacobian not being cohomologous to a
constant can always be detected from a pair of periodic points.

Remark 5.1. Alternatively we can consider a different set V.

V “ tf P U : log Jsf, log Jwuf and log Juuf are not cohomologous to constantsu

The proof would work in the same way.

We apply Theorem 4.1 to f1 and f2 with κ “ 1. However we have to apply the
construction of Section 4.1 rather than Theorem 4.1 per se. Namely, we use spaces
of matching functions V kx with regularity

k “
2η ` 2
2η ` 1

This construction yields invariant distributions Ei Ă Eufi which integrate to Ck

foliations Wi. The strategy of the proof now is to obtain posited regularity in the
case when dimEi “ 0 and rule out the case dimEi ą 0.

5.1. Case I: dimEi “ 0. Recall that by Lemma 4.7 restrictions of h to the unstable
leaves are uniformly Ck, transversely to W1. In this case, it means that h is
uniformly Ck along unstable leaves. We will now apply a bootstrap argument
using normal forms to gain optimal regularity.

Denote by Hi
x, the affine structure for fi along the unstable foliationWu

fi
, i “ 1, 2.

Also consider non-stationary linearization for f1 given by H1
x
1
“ ph|Wu

f1
pxqq

´1 ˝H2
x ˝

Dh|Eu
f1
pxq. Note that H11 is Ck´1 along the unstable leaves. Now we would like to

use uniqueness of normal form given by item 6 of Proposition 2.6 for the expanding
foliation and conclude that H1 “ H1

1. Recall that according to Proposition 2.6 in
order for uniqueness to hold we need

} pDfn1 |Euf1
q´1 } k ¨ }Dfn|Eu

f1
} ď Cγn
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for some C ą 0 and γ ă 1. We have

} pDfn1 |Euf1
q´1 } k ¨ }Dfn|Eu

f1
} ď Cpλ´k´ q

npλ`q
n

ď Cppλ´ δq´kpλ` δqαqn ď Cppλ´ δqη´kqn

Hence we need to have k ą η which is equivalent to

2η2 ´ η ´ 2 ă 0

It is easy to see what this inequality holds because η ă 1`
?

17
4 . Hence we obtain

H1
x
1
“ H1

x which means that h|Wu
f1
pxq “ H2

x ˝ Dh|Euf1
pxq ˝ pH1

xq
´1. Hence h is as

smooth as diffeomorphisms fi along the unstable foliation.
The proof in this case completes in the usual way. The matching of stable

Jacobian gives smoothness of h along W s
f1

and then we can apply Journé Lemma
to finish.

5.2. Case II: dimEi “ 1. Recall that the integral foliation W1 of the distribution
E1 is a Ck sub-foliation of Wu

f1
which integrates together with W s

f1
. From invari-

ance of W1 we have that either W1 “ Wwu
f1

or W1 “ Wuu
f1

. If W1 “ Wwu
f1

then
by [G12, Lemma 3] Lipschitz property of Wwu

f1
implies that the strong unstable

Jacobian Juuf1 is cohomologous to a constant, which contradicts to f1 P V. If
W1 “ Wuu

f1
then a similar result [GS20] implies that the weak unstable Jacobian

Jwuf1 is cohomologous to a constant contradicting to f1 P V again. (In the proof of
Theorem 1.7 in the next section we will explain how arguments from [G12, GS20]
work in higher dimensional setting as well; see also [GS].)

5.3. Case III: dimEi “ 2. We will need an improved version of Lemma 2.3.

Lemma 5.2. If f P U and ϕ P C2pT3q then ρϕa,b : Wupaq Ñ R is Ck.

We postpone the proof of this lemma until the end of the section and complete
elimination of this case first.

Let ϕi “ log Jfi. Then we have pϕ1, f1q ” pϕ2, f2q and because PCFs are
cohomology invariants (see Section 3.3) we have the matching relations

ρϕ1
a,b “ ρϕ2

hpaq,hpbq ˝ h|Wu
f1
paq

By Lemma 5.2 both ρϕ1
a,b and ρhpaq,hpbq are Ck. Hence pρϕ1

a,b, ρhpaq,hpbqq P V
k
1 and

item 6 of Theorem 4.1 applies and yields vanishing of ρϕ1
a,b on W1,locpaq “ Wu

f1,loc
.

Now exactly the same arguments as in Section 3.4 apply and give vanishing of all
null-homotopic PCFs for ϕ1, which, by Proposition 2.2, gives that ϕ1 “ log Jf1 is
an almost coboundary contradicting to f1 P V again.

Thus it remains to prove Lemma 5.2.
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5.4. Proof of Lemma 5.2. While the setting is different (real eigenvalues rather
than complex) the proof of Lemma 2.3 with κ “ 1 applies without any change to
give uniform C1 regularity of ρϕa,b. Hence we need to gain additional regularity by
establishing Hölder property of Dρϕa,b with Hölder exponent k ´ 1 “ 1{p2η ` 1q.

Recall that ρϕa,bpxq is a sum of four terms, the first being a constant and the third
one easily seen to be smooth. The forth term has the same nature as the third one,
but precomposed with Hola,b. The stable holonomy map is Cbspfq with bspfq ą 2
and, hence, this term is also at least C2. The second term

ξϕa,bpxq “
ÿ

ně0
ϕpfnpxqq ´ ϕpfnpHola,bpxqqq

is the difficult one and from the proof of Lemma 2.3 we have that it is C1 with
Dξϕa,bpxq given by

ÿ

ně0
Duϕpf

npxqqDuf
npxq ´Duϕpf

npHola,bpxqqqDuf
npHola,bpxqqDHola,bpxq

Moreover we have an exponential estimate C1pµ
´1
´ λ`q

n on the absolute value of
the n-th term of the series (recall that κ “ 1), which we can further bound using
our definition of U

Cpµ´1
´ λ`q

n ă Cpλ´ δq´n

Now pick two close-by points x and y PWu
f1,loc

pxq. We will write d for the metric
induced by the Riemannian metric on the unstable leaves. Let K be the integer
which satisfies

pλ´ δq´K ă dpx, yq ď pλ´ δq´K`1

Let N “ tpk ´ 1qKu and we begin to estimate

|Dξϕa,bpxq ´Dξ
ϕ
a,bpyq| ď

N
ÿ

n“0
|Duϕpf

npxqqDuf
npxq ´Duϕpf

npyqqDuf
npyq|

`

N
ÿ

n“0
|Duϕpf

npx1qqDuf
npx1qDHola,bpxq ´Duϕpf

npy1qqDuf
npy1qDHola,bpyq|

`
ÿ

nąN

|Duϕpf
npxqqDuf

npxq ´Duϕpf
npHola,bpxqqqDuf

npHola,bpxqqDHola,bpxq|

`
ÿ

nąN

|Duϕpf
npyqqDuf

npyq´Duϕpf
npHola,bpyqqqDuf

npHola,bpyqqDHola,bpyq|

where we write x1 and y1 for Hola,bpxq and Hola,bpyq, respectively. We can estimate
the last two sums using the above bound on the tail of the series. Namely, they are
bounded by C1pλ´ δq

´N .
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We proceed to estimate the terms of the first sum using the triangle inequality
and Lipschitz property of Duϕ along unstable leaves.

|Duϕpf
npxqqDuf

npxq ´Duϕpf
npyqqDuf

npyq|

ď |Duϕpf
npxqqDuf

npxq ´Duϕpf
npyqqDuf

npxq|

` |Duϕpf
npyqqDuf

npxq ´Duϕpf
npyqqDuf

npyq|

ď Cλn`|Duϕpf
npxqq ´Duϕpf

npyqq| ` C2|Duf
npxq ´Duf

npyq|

ď C3λ
n
`dpf

npxq, fnpyqq ` C2|Duf
npxq ´Duf

npyq|

ď C4λ
2n
` dpx, yq ` C2C5λ

2n
` dpx, yq ď C6λ

2n
` dpx, yq

where the estimate |Duf
npxq ´Duf

npyq| ď C5λ
2n
` dpx, yq can be easily established

by induction on n. Summing up to N we obtain
N
ÿ

n“0
|Duϕpf

npxqqDuf
npxq ´Duϕpf

npyqqDuf
npyq| ď C7λ

2N
`

The terms of the second sum can be bounded in a similar way

|Duϕpf
npx1qqDuf

npx1qDHola,bpxq ´Duϕpf
npy1qqDuf

npy1qDHola,bpyq|

ď |Duϕpf
npx1qqDuf

npx1qDHola,bpxq ´Duϕpf
npy1qqDuf

npy1qDHola,bpxq|

` |Duϕpf
npy1qqDuf

npy1qDHola,bpxq ´Duϕpf
npy1qqDuf

npy1qDHola,bpyq|

ď C8|Duϕpf
npx1qqDuf

npx1q ´Duϕpf
npy1qqDuf

npy1q|

` C9λ
n
`|DHola,bpxq ´DHola,bpyq|

To estimate the first summand has exactly the same nature as the one we have
estimated for the first sum, for the second summand we recall that Hola,b is C2

and we can use Lipschitz property of DHola,b. Hence

|Duϕpf
npx1qqDuf

npx1qDHola,bpxq ´Duϕpf
npy1qqDuf

npy1qDHola,bpyq|

ď C6λ
2n
` dpx

1, y1q ` C10λ
n
`dpx, yq ď C11λ

2n
` dpx, yq

Hence, summing up to N we have exact same bound Cλ2N for the second sum.
Thus, putting all that together we have

|Dξϕa,bpxq ´Dξ
ϕ
a,bpyq| ď C12λ

2N
` dpx, yq ` C1pλ´ δq

´N

ď C12pλ` δq
2Ndpx, yq2´kdpx, yqk´1 ` C13dpx, yq

k´1

ď pC12pλ` δq
2N pλ´ δqp2´kqp1´Kq ` C13qdpx, yq

k´1

ď pC14pλ´ δq
2N η

α pλ´ δq´N
2´k
k´1 ` C13qdpx, yq

k´1

Hence, to establish the Hölder property it remains to show that 2´k
k´1 ´ 2 ηα ą 0.

Recall that 1
k´1 “ 2η ` 1 and that α ą 1. So, indeed, we have

2´ k
k ´ 1 ´ 2 η

α
“ 2η ´ 2η

α
ą 0
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6. Proof of Theorem 1.7

6.1. The setting. We begin by explaining how the choice of the neighborhood U
and the open dense V is made.

Let ξ1 ă ξ2 ă . . . ă ξl be the absolute values of unstable eigenvalues of L and
let µ´1 be the absolute value of the stable eigenvalue. Clearly µ ą ξl. By the
definition of the stable bunching parameter we have

bspLq “
log ξ1 ` logµ

log ξl
ą 1

because µ ą ξl. The bunching condition in Theorem 1.7 can be rewritten as

µb
s
pLq´1 ą ξl

The unstable bunching parameter is given by

bupLq “ 1` log ξ1
logµ ą 1

By our assumption the subbundle EjL corresponding to the eigenvalues with ab-
solute value ξj is either one- or two-dimesional. Then for sufficiently C1-small
perturbations f this dominated splitting survives

Euf “ E1
f ‘ E

2
f ‘ . . .‘ E

l
f

Then neighborhood U is chosen such that f P U are Anosov diffeomorphisms ad-
mitting the above dominated splitting for Euf , with bspfq ą 1 and bupfq ą 1, and
such that µbspfq´1 ą ξl.

Denote by Jjf the Jacobian of Df |Ej
f
and define V in the following way.

V “ tf P U : log Jf, log J1f, . . . log J lf are not cohomologous to constantsu

Note that Jjf not being cohomologous to a constant is indeed an open condition.
Indeed, the function log Jjf is not cohomologous to a constant if and only if there
exists a pair of periodic points with different sums over the smallest common period,
which is an open property in C1 topology. Note that if log Jf is cohomologous to
a constant then f is volume preserving and the constant has to be equal to 1. Also
it shouldn’t be very difficult to show that if log Jjf is cohomologous to a constant
then this constant has to be equal to log JjL, but we won’t need this.

6.2. Outline of the proof. We apply Theorem 4.1 to f1 and f2 with κ “ 1.
Because κ “ 1, bupfiq ą 1 and µ ą ξl the assumption of Theorem 4.1 boils down to

µb
s
pfiq´1 ą ξl

which is satisfied according to our choice of the neighborhood U .
Theorem 4.1 yields distributions Ei Ă Wu

fi
and corresponding foliations Wi. If

dimEi “ 0 then corresponding foliations are foliations by points and from conclu-
sion of Theorem 4.1 we obtain that h is uniformly C1 along the unstable foliation.
In this case we have that h matches all the intermediate distributions (because they
are characterized by the speed) and one can conclude from this (see [GKS11]) that
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h is, in fact, C1`ε smooth along the unstable foliation for some ε ą 0. Matching of
the stable Jacobians give smoothness along the 1-dimensional stable foliation and
then Theorem 1.7 follows by applying the Journé Lemma.

Hence we need to rule out the case when dimEi ą 0. From matching of full
Jacobians we have pf1, Jf1q „ pf2, Jf2q. Also note that Jfi are C2 functions.
Hence, item 6 of Theorem 4.1 applies to Jfi and we have vanishing of simple PCFs
ρJfia,b along the leaves of Wi. If dimEi “ dimEufi then we have vanishing ρJfia,b on
local unstable leaves, which implies, by Proposition 2.2, that Jfi are cohomologous
to 1. But this means that fi are volume preserving contradicting our choice of V.

Thus it remains to address the case when dimEi P r1,dimEufi ´ 1s (recall that
dimE1 “ dimE2). Because Ei is Dfi-invariant it must be a direct sum of some
sub-collection of Ejfi .

Remark 6.1. These sub-collections must be the same for E1 and for E2, which
can seen from the fact that hpW1q “W2 and both f1 and f2 are C1 close to L.

However, we will not need the above remark for the proof as we will proceed
working solely with f1. Namely, we will show that, in this case f1 R V which yields
a contradiction. We can lighten notation now by writing f for f1, E for E1, etc.
We will split the argument into two sub-cases. The first case is when E1

f Ă E and
the second one is when E1

f Ć E. Both will be treated using similar arguments
relying on an idea from [G12] which allows to obtain constancy of periodic data
transversely to a Lipschitz foliation, yet there are a few differences.

6.3. Case I: when E1
f Ă E. Denote by j the smallest index such that Ejf Ć E.

Such j exists because dimE ă dimEuf . Denote by W j´1,u and W j,u the integral
foliations of E1

f ‘ E2
f ‘ . . . ‘ Ej´1

f and E1
f ‘ E2

f ‘ . . . ‘ Ejf , respectively. From
definition of j it is clear that W j´1,u “ W XW j,u. Recall that by Theorem 4.1
foliation W is C1 inside of the leaves of Wu

f . This implies that W j´1,u is C1 inside
W j,u. Indeed this is easy to see by looking at holonomy maps. If Hol : P1 Ñ P2

is a holonomy of W j´1,u between two transversals P1 and P2 in W j,u, then these
transversals can be embedded into transversals to W inside Wu

f . In this way Hol
becomes a restriction of a holomomy map for W and, hence, it is C1.

Lemma 6.2. If W j´1,u is Lipschitz inside W j,u then the Jacobian Jjf is coho-
mologous to constant.

Note the lemma immediately implies that f is not in V by the definition of V,
which rules out Case I. Hence it remains to prove the lemma.

Proof. Recall that the subbundle Ejf is either 1-dimensional or 2-dimensional by
the generic assumption on the model L. When dimEjf “ 1 this lemma was proved
in [G12]. (In the setting of [G12] the foliationW j´1,u was also one dimensional, but
this is not affecting the argument as was remarked in [G12].) Thus we will focus
on the case when dimEjf “ 2 in which case the idea is the same, but the argument
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has to be modified. We will be brief when explaining the steps which are exactly
the same as in [G12].

Remark 6.3. In fact, a more difficult argument work to establish rigidity of peri-
odic data transversely to a Lipschitz foliation even when the codimension is greater
than 2 (in preparation, [GS]).

For the proof of the lemma we rename foliations now in order to avoid having
so many decorations: T “W j,u, Wwu “W j´1,u and Ewu “ E1

f ‘E
2
f ‘ . . .‘E

j´1
f

(here wu stand for “weak unstable"). Also denote by W su the integral foliation of
Ej,uf . Then recall that we have

1. Wwu and W su are transverse sub-foliations of T;
2. Wwu is conjugated to a minimal linear L-invariant foliation (this is standard

fact for weak unstable foliations of perturbations of L);
3. Wwu is C1 in T.

Using these three properties we will show that that Jsu, the Jacobian of Df |Esu
is constant. By Livshits theorem, it is sufficient to show that Jsu is constant on
periodic points, which is what we are going to do.

Let p be a periodic point, fnpppq “ p. Denote by λ
np
p and µ

np
p the absolute

values of the eigenvalues of Dfnp |Esuppq. We assume that λp ě µp. We will show
that λp is a constant, which does not depend on p. Then an analogous argument
would yield that µp is independent of p. Because Esu is 2-dimensional we have that
Jacobian of Dfnp |Esuppq equals to pλpµpqnp and, hence Jsu has constant periodic
data completing the proof of the lemma.

Let λ´ “ infp λp and λ` “ supp λp. If λ´ “ λ` then we are done, so assume
that λ´ ă λ`. Given any ε ą 0 consider an adapted Riemannian metric for which
we have

λ´ ´ ε ă
}Dfpvq }

} v }
ă λ` ` ε, v P E

su

Now pick a periodic point b with λb ă λ` and a small δ ą 0 such that λb`δ ă λ`.
Next we will pick a periodic point a with λa ą λb` δ very close to λ`. Namely, we
need that

ν “
pλb ` δq

γpλ` ` εq
1´γ

λa
ă 1

For any γ ą 0 we can choose an ε ą 0 such that the above inequality holds. The
choice of the value of γ ą 0 will be explained later.

By Hartman’s Theorem [H60] the contraction f´na : W su
f,locpaq Ñ W su

f,locpaq is
C1-linearizable. Hence there is an invariant submanifold ofW su

f,locpaq corresponding
to the eigenvalue with absolute λa (if the eigenvalue is complex then this subman-
ifold is the whole W su

f,locpaq, otherwise it is 1-dimensional). If ã is a point on this
submanifold then, using the linearization at a, we have,

dsupf´kpaq, f´kpãqq ď Cλ´ka dsupa, ãq, k ě 0
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Here dsu refers to the intrinsic metric on the leaves of W su
f induced by the Rie-

mannian metric.
Consider a large disk DwupDq ĂWwu

f paq, D ą 0, given by

DwupDq “ tx PWwu
f paq : dsupx, aq ă Du

Let Hf be the conjugacy to the linear model Hf ˝ f “ L ˝ Hf . Then we have
Hf pDwupDqq ĂWwu

L pHf paqq. FoliationWwu
L is an irrational Diophantine foliation,

which implies that Hf pDwupDqq is C D´β-dense in Td for some β ą 0 and C ą 0
which is independent of D. Since Hf is bi-Hölder continuous, the same is true on
the non-linear side — DwupDq is C D´α-dense for some α ą 0 and C ą 0 which
are independent of D.

Pick a point c P DwupDq which is C D´α close to b. We now explain the choice
of point ã on the submanifold of W su

f,locpaq corresponding to the eigenvalue with
absolute value λa. If θ is the Hölder exponent of subbundle Esu then for points y in
a small neighborhood BpOpbq, 2Kδ 1

θ q of the orbit of b, we will have }Df |Esupyq } ă
λb`δ. (Recall that the number δ was already chosen.) Point c is extremely close to
b for all large D and we pick a point c̃ PW su

f,locpcq such that it satisfies the following
properties:

1. dsupc, c̃q ě Kδ
1
θ

2. c̃ “ W su
f,locpcq X Wwu

f pãq, that is, point c̃ is related to a point point ã P
W su
f,locpaq via aWwu

f -holonomy, where ã belongs to the invariant submanifold
of W su

f,locpaq corresponding to the eigenvalue with absolute value λa.
We have that the pair of points pc, c̃q is an image of the pair pa, ãq under a long

weak-unstable holonomy inside T. We will iterate this quadruple of points N times
in negative time, where N is chosen in such a way that dwupf´N paq, f´N pcqq « 1.
Then we have that logD » N , and, because distpc, bq ď C D´α we can conclude
that there is a positive proportion γ P p0, 1q of the orbit c, f´1pcq, . . . f´N pcq such
that the iterates c, f´1pcq, . . . f´tγNupcq remain Kδ 1

θ -close to the orbit of b. By our
choice of point c̃, the orbit of c̃ also stays Kδ 1

θ -close to the orbit of b and using the
that }Df |Esupyq } ă λb ` δ we can estimate

dsupf´tγNupcq, f´tγNupc̃qq ě pλb ` δq
´tγNudsupc, c̃q

The number γ depends on α and the expansion/contraction rates, but is indepen-
dent of D and, hence, N and also is independent of δ, (for all sufficiently large
D). (The precise of the value of constant γ can be calculated in terms of α and
hyperbolicity rates; such calculation appears in [G12], however we only need to
know that γ ą 0.).

Our goal now is to show that the ratio
dsupf´N paq, f´N pãqq

dsupf´N pcq, f´N pc̃qq

can be arbitrarily small. To show that we need one more observation.

dsupa, ãq ď c0pδq
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f−N (ã)

ã

λa

W su
f,loc(a)

W su
f,loc(c)

W su
f,loc(a)

W su
f,loc(c)

b

c

c̃

c

Wwu
f (a)

Wwu
f (ã)

f−N (c)

a

b

µa

a

f−N (ã)

ã

f−N (c)

Wwu
f (ã)

Wwu
f (a)

c̃

Figure 3. Point configuration.

where c0pδq is a constant which is independent of D and N . Indeed, this follows
from dsupc, c̃q ě Kδ

1
θ and the fact that the foliation Wwu

f is conjugate to a linear
foliation via a map Hf which is close to idTd .

We have

dsupf´N paq, f´N pãqq

dsupf´N pcq, f´N pc̃qq
ď

Cλ´Na dsupa, ãq

pλb ` δq´tγNupλ` ` εqtγNu´Ndsupc, c̃q

ď
Cc0pδq

Kδ1{θ

˜

pλb ` δq
tγNu

N pλ` ` εq
1´ tγNu

N

λa

¸N

ď
Cc0pδq

Kδ1{θ
λ` ` ε

λb
νN Ñ 0, N Ñ8

Recalling that dwupf´N paq, f´N pcqq « 1 we conclude that Wwu-holonomy is not
Lipschitz inside T, which yields a contradiction.
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A very similar argument works for showing that the smaller multiplier µp is a
constant independent of periodic point p. We illustrate it in the bottom half of
Figure 3. Define µ´ “ infp µp and µ` “ supp µp. Then if µ` ą µ´ we can obtain
a contradiction is a very similar way. Namely we will pick periodic points a and b
such that

µ´ . µa ă µb ´ δ ă µb

Then the points ã, c and c̃ can be arranged in the same way as before, but re-
quiring that ã is on the “weakest" invariant submanifold of fna : Wwu

f,loc Ñ Wwu
f,loc

corresponding to µa, so that

dsupf´ipaq, f´ipãqq ě Cµ´1
a dsupa, ãq

(In the case when µa “ λa there is no “weakest” submanifold and ã does not have
to be chosen in any special way in order to have desired control.) Using the same
estimates as before we would have that the ratio

dsupf´N paq, f´N pãqq

dsupf´N pcq, f´N pc̃qq

is arbitrarily large contradicting the Lipschitz property again. As we mentioned
already λp and µp being constant implies that the Jacobian Jsu is cohomologous
to a constant. �

6.4. Case II: when E1
f Ć E. In this case let j be the smallest index such that

Ejf Ă E. Such j exists because E is a non-trivial subbundle. If we denote by F j
f the

integral foliation of Ejf then, from definition of j we have F j
f “W XW j,u

f . Because
both foliations W and W j,u

f integrate jointly with W s
f , so does their intersection

Fj
f .

Lemma 6.4. Let Hf be the conjugacy to the linear model, Hf ˝ f “ L ˝Hf . If F j
f

integrates jointly with W s
f then HpF j

f q is an L-invariant linear minimal foliation
on Td.

Proof. Denote byW s
f ‘F j

f the foliation to whichW s
f and F j

f integrate jointly. Then
HpW s

f ‘F j
f q is an L-invariant C0 foliation which is sub-foliated by a minimal linear

foliation W s
L “ HpW s

f q. Then HpW s
f ‘F j

f q must be linear as well by [GS, Lemma
2.1] (which is a higher dimensional generalization of a lemma from [RGZ17]). Now
we can write HpF j

f q as an intersection of two linear foliations HpF j
f q “ HpW s

f ‘

F j
f q XW

s
L. Hence HpF j

f q is linear. Minimality follows easily from irreducibility of
L. �

Now consider the integral foliation of Ej´1
f ‘ Ejf which we denote by T by

analogy with Case I. Then, by the same observation which we used in Case I, we
have that C1 regularity of W inside Wu

f implies C1 regularity of the foliation F j
f

when restricted to T.
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Lemma 6.5. If F j
f is C1 inside T and HpF j

f q is linear then J
j´1
f is cohomologous

to a constant.

The proof of this lemma is exactly the same as the proof of Lemma 6.2. Indeed
we have all the properties on which the proof builds upon:

1. F j
f and F j´1

f are transverse sub-foliations of T;
2. F j

f is conjugated to a minimal linear L-invariant foliation by Lemma 6.4;
3. F j

f is C1 in T.
The only difference compared to the setting og Lemma 6.2 is the Lipschitz foliation
is not the weak foliation in T, but the strong foliation F j

f , however which foliation
is faster was irrelevant for the proof of Lemma 6.2.

Hence Jj´1
f is cohomologous to a constant which means that f is does not be-

long to the subset V, ruling out Case II as well, and, thus, finishing the proof of
Theorem 1.7.

6.5. Proof of Addendum 1.10. The strategy for the proof is exactly the same
but we cannot work with the full Jacobian anymore because it is cohomologous to
a constant for volume preserving diffeomorphisms. Instead we can work with the
stable Jacobian.

We define U 1 to consists of volume preserving Anosov diffeomprhisms f which
are sufficiently C1 close to L so that they retain the dominated splitting and such
that bspfq ą 1, bupfq ą 1, and such that µbspfq´1 ą ξl.

Recall that Jjf denotes the Jacobian of Df |Ej
f
. Define an open dense subset V 1

in the following way.

V 1 “ tf P U 1 : log Jsf, log J1f, . . . log J lf are not cohomologous to constantsu

Now we apply Theorem 4.1 to diffeomorphisms f1 and f2 with κ “ mintbspf1q ´

1, bspf2q ´ 1u. Because of our choice of κ and because bupfiq ą 1 and µ ą ξl the
assumption of Theorem 4.1 boils down to

µb
s
pfiq´1 ą ξl

which is satisfied according to our choice of the neighborhood U 1.
Now note that Jsfi are Cbpfiq regular with bpfiq ě 1 ` κ, and by matching of

stable Jacobians we have pf1, J
sf1q „ pf2, J

sf2q. Hence item 6 of Theorem 4.1
applies to Jsfi. These Jacobians are not cohomologous to a constant by our choice
of V 1 and we can proceed from here in exactly the same way as in the proof of
Theorem 1.7.
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