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ABSTRACT. We consider two transitive 3-dimensional Anosov flows which do not pre-
serve volume and which are continuously conjugate to each other. Then, disregarding
certain exceptional cases, such as flows with C' regular stable or unstable distribu-
tions, we prove that either the conjugacy is smooth or it sends the positive SRB
measure of the first flow to the negative SRB measure of the second flow and vice
versa. We give a number of corollaries of this result. In particular, we establish lo-
cal rigidity on a C''-open C°°-dense subspace of transitive Anosov flows; we improve
the classical de la Llave-Marco-Moriyon rigidity theorem for dissipative Anosov dif-
feomorphisms on the 2-torus by merely assuming matching of (full) Jacobian data
at periodic points; we also exhibit the first evidence that the Teichmiiller space of
smooth conjugacy classes of Anosov diffeomorphisms on the 2-torus is well-stratified
according to regularity.
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Let us recall that a diffeomorphism f: M — M on some closed smooth Riemannian
manifold M is called Anosov if the tangent bundle admits a D f-invariant splitting
TM = E° @® E", where E° is uniformly contracting and E" is uniformly expanding
under Df. Similarly, a low Xt: M — M is called Anosov if the tangent bundle admits
a DX'-invariant splitting TM = E* @ RX & E*, where X is the generating vector field
of X!, E* is uniformly contracting and E“ is uniformly expanding under DX?, t > 0.
The stable and unstable bundles E*, E* integrate uniquely to X‘-invariant stable and
unstable foliations W* and W*, respectively.

The well-known examples of Anosov flows are geodesic flows on negatively curved
Riemannian manifolds and suspension flows of Anosov diffeomorphisms. Many more ex-
amples of 3-dimensional Anosov flows can be constructed by various surgery techniques,
especially in dimension 3 (see [Barl7| for a survey).
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Let Xt: M — M be an Anosov flow, and let Y be a C''-small perturbation of X*. By
Anosov’s structural stability, these two flows are orbit-equivalent, that is, there exists
a homeomorphism ®: M — M which sends orbits of X! to orbits of Y*. It is well-
known that such orbit equivalence usually cannot be improved to a conjugacy since the
difference of periods of corresponding periodic orbits provide obstructions. It is a well-
known corollary of the Livshits Theorem [Liv72] that matching of all periods for a pair
of transitive Anosov flows is a necessary and sufficient condition for the existence of a
continuous conjugacy.

In a different direction, one can ask if the orbit equivalence can be improved to be
smooth. Similarly, this cannot be expected and obstructions are given by the eigenvalues
of Poincaré return maps at corresponding periodic orbits. In fact, matching of eigenvalue
obstructions implies that the orbit equivalence can be chosen to be smooth (we include
a proof, which follows the strategy of de la Llave [d1L92| and Pollicott [Pol90| of this
fact in Appendix A).

Both the periods and eigenvalues obstructions discussed above are very natural mod-
uli. In this paper we explore a less obvious connection between periods and regularity
of the conjugacy.

Given a transitive Anosov flow X': M — M on a compact manifold M, we say
that Xt is conservative, or volume preserving, if it leaves invariant a smooth measure.
Otherwise, we will say that X? is dissipative.

In the setting of volume preserving 3-dimensional Anosov flows the first and the last
authors proved that a continuous conjugacy is necessarily smooth unless both flows are
constant roof suspensions [GRH22]. Thus, in this paper, we focus on 3-dimensional
dissipative Anosov flows and carry out a similar program as well as explore some appli-
cations.

Theorem A. Let X': M — M and Y': N — N be two transitive dissipative C'™
Anosov flows on 3-manifolds M and N. Assume that they are C°-conjugate by a home-
omorphism ®: M — N, ®o X! = Y'od. Assume that for any periodic point p = X' (p)
Jacobians match, i.e.,

det DX (p) = det DY T (®(p)).
Then, X' and Y are C*-conjugate.
Corollary B. Let f,g: T?> — T? be two dissipative C>® Anosov diffeomorphisms that

are CO-conjugate by a homeomorphism h: T? — T2, ho f = go h. Assume that for any
periodic point p = f™(p) Jacobians match, i.e.,

det Df"(p) = det Dg" (h(p))-
Then, f and g are C°°-conjugate.

Remark 1.1. Theorem A was stated in the C* category, but it also works for C" Anosov
flows with r > 4, which are (r — 1)-pinched in the sense of Definition 2.2 below. In that
case, the conjugacy ® is going to be C™, where

re =1, ifr ¢ N, and r, = (r — 1) + Lip, if r € N. (1.1)

Accordingly, Corollary B works for C™ Anosov diffeomorphisms, r > 5, which are (r—1)-
pinched.
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We also show that we can drop the condition on Jacobians for generic transitive
Anosov flows on 3-manifolds and obtain local rigidity.

Theorem C. Let M be a 3-manifold such that the space A of C*° wector fields on M
which generate transitive Anosov flows is non-empty. Then, there exists a Ct-open and
C>-dense subset U C A such that for any X € U, the Anosov flow X' generated by X
is locally rigid, i.e., if Y is an Anosov flow whose generator Y is sufficiently C'-close
to X, then we have:

Xt and Y are C%-conjugate < X' and Y are C™-conjugate.

In fact, the C'-open and C*°-dense property underlying Theorem C stems from the
lack of C'-smoothness of both the stable and unstable foliations; see Proposition 7.11.

Note that we always assume that the 3-manifolds M and N are homeomorphic, hence,
diffeomorphic. Therefore we could have assumed from the beginning that both flows
live on the same smooth manifold, however, we find that it is better to use distinct
notation for conceptual reasons. In fact, in higher dimensions this distinction becomes
more important because there exist homeomorphic but non-diffeomorphic manifolds
which support conjugate Anosov flows. Accordingly, in higher dimension, one could
only conclude that the manifolds are diffeomorphic if rigidity is established.

Finally we have the following application on stratification by finite regularity conju-
gacy classes of Anosov diffeomorphisms in dimension 2.

Corollary D. There exists a CYTHr Aposov diffeomorphism g: T? — T2 which is
not C' conjugate to any C? diffeomorphism.

Acknowledgements. The first author was supported by the Simons Fellowship dur-
ing the 2024-25 academic year when the bulk of this paper was done. The first author
is grateful for excellent working conditions provided by IHES and by the Mathemat-
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Section 5.

2. DETAILED STATEMENTS OF RESULTS

2.1. Rigidity problem for Anosov flows and prior results. Consider two transitive
Anosov flows X!: M — M and Y!: N — N which are C%-conjugate, that is, assume
that there is a homeomorphism ®: M — N such that

PoX'=Y'0d. (2.1)

When does the conjugacy ® have C! or better regularity? Although (2.1) ensures that
the orbits of X! and Y have the same behavior from a topological point of view, a con-
tinuous conjugacy does not retain all the information about the flows. For instance, if ®
is not C', then it may send the physical (SRB) measure to some singular measure which
is not physical, or it may change the Hausdorff dimension of some relevant invariant set.
Put succinctly: the flows may have different statistical behavior.
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Let us recall the basic fact that if X* and Y are transitive, the conjugacy in (2.1)
is essentially unique within a given orbit equivalence class. This means that any other
conjugacy map ® in the same class (which means that ®~! o ®: M — M fixes each
Xt orbit) has the form b =doX 7, for some constant time 7 € R. Indeed, pick a
point € M with a dense orbit, then ®(x) = ®(X7(z)) for some 7 € R. Therefore
&)’{Xt(l,)}teR = ® 0 X7|{xt(2)},epr DY (2.1); in fact, the same relation holds for all points,
since the orbit {X*(z)}er is dense, and both ®, ® are continuous. Because of this
observation, it makes sense to speak about regularity of the conjugacy without specifying
the conjugacy map we choose in a given orbit equivalence class.

Basic obstructions to ® being C! are again carried by periodic orbits, namely, by
their multipliers in period. Indeed, if the conjugacy ® is C', then at any periodic point
p = XT(p), we can differentiate the conjugacy equation (2.1) and obtain

D&(p) o DX (p) o (D(p)) ™" = DY ((p)).
In particular, a necessary condition for ® to be C' is that
Vp = XT(p) = DXT(p) and DYT(®(p)) have the same eigenvalues. (2.2)

It is a well-known classical result that (2.2) is, actually, a complete set of moduli if
dimM =dim N = 3:

Theorem 2.1 (De la Llave-Moriyén [DILMS8S8, d1L92], Pollicott [Pol88] ). Let X*, Y be
two C™, r € (1,00]U{w}, transitive Anosov flows on 3-manifolds which are continuously
conjugate as in (2.1) and satisfy the assumption (2.2). Then the conjugacy ® is C™
reqular, with v > 1 as in (1.1).

2.2. Main technical result. Let Xt: M — M be an Anosov flow on some Riemannian
3-manifold M. For x = s, u, we define

Ao(t) = IDX e ll,  V(z,t) € M x R.

By compactness, there exists an integer n > 1 such that A\ (n) < 1 < A%(n), for all
x e M.

Definition 2.2 (k-pinching). Given k > 1, we say that the Anosov flow X' is k-pinched
if there exists an n > 1 such that for all x € M,

A (n)EAYn) <1, and A:(n)*X3(n) > 1.

To ease the notation, from now on we will always assume that the integer n appearing
in the pinching conditions above can be chosen to be equal to one — n = 1.

Note that given an arbitrary 3-dimensional Anosov flow X then there always exists
some k > 1 such that X! is k-pinched. When the Anosov flow X? is dissipative and
o-pinched for some g € (1,2], we say that Xt is g-mildly dissipative.

Let us recall the definition of SRB measures.

Definition 2.3. Let X*: M — M be a transitive Anosov flow on a compact manifold M.
The positive SRB measure is the unique Borel invariant probability measure m; whose
conditionals along the leaves of the unstable foliation are absolutely continuous with
respect to the volume measure on these leaves. The negative SRB measure my of X s
defined by the same property along the stable leaves.
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Remark 2.4. Both measures m} and my are ergodic. Moreover, by the work of

Gurevich-Oseledets |GOT3| (in the diffeomorphism case), and Livshits-Sinai [LS72|, a
transitive Anosov flow X': M — M is conservative if and only if m} =my.

Our main result is the following:

Theorem E. Let X!, Y be two 3-dimensional transitive C", r > 3, Anosov flows that
are k-pinched with 1 < k < r — 1, and which are C°-conjugate by a homeomorphism ®
as in (2.1). Then, at least one of the following statements holds:

1. the flows Xt and Y are C™ -conjugate;
2. ® swaps SRB measures of the two flows, i.e., @*m} =my and ,my = m}t;

3. at least one of the foliations W, W%, Wy, or WY is of class C'T% for some
aec(0,1).

In fact, case 3 could alternatively be stated in terms of the C''*® regularity of the
stable and unstable distributions.

Addendum F. In the case 3 above we have more information. Assume, for the sake of
concreteness, that W%, s C'. Then one of the following holds:

1. both flows are constant roof suspensions and all foliations W3, W%, Wy, and Wy-
are of class C*;

2. the conjugacy ® is C" along stable leaves and WY is also Cl;

3. the stable foliation W5, is ct;

4. Dumy = m;S

In particular, if X' has one C' foliation, then so does the conjugate flow Y, unless,
possibly, when ®,my = m}t.

Moreover, if we additionally assume that both flows are C* reqular and g—mildly dis-
sipative then, in fact, one of the following holds:

1. both flows are constant roof suspensions and all foliations W5, W%, W5, and Wy
are of class C;

2. the conjugacy ® is C" along stable leaves and WY is also ct;
3. Pumy = m;S and W5, s Cct.
In particular, in the %—mz’ldly dissipative case, we have that at least one of the foliations

5 or W% is C and at least one of the foliations W, or W is also C1, improving
case 3 in Theorem FE.

In fact, our proof of the Addendum also works under 1+—2\/§—mildly dissipative as-

sumption and with some more effort should possible to establish for 2-mildly dissipative
Anosov flows. We also believe that for C°° flows, by working with higher order as-
ymptotic formulae it should be possible to obtain a stronger version of the addendum.
Specifically, it should be possible to remove the mildly dissipative assumption altogether
and still obtain the latter trichotomy in the addendum.

Remark 2.5. Let us discuss the regularity requirements, specifically C” for r > 3, im-
posed on the flow X' in our results. A key ingredient in our proof is the asymptotic
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formulae for certain periods, which are derived in Proposition 4.2. These formulae in-
volve second-order partial derivatives of the hitting times of the flow, which are computed
in specific normal coordinates (see, e.g., Proposition 3.2). Since these coordinates are
merely C™Y, the flow X' must be C™ with r > 3 in Theorem E. Using alternative tech-
niques, we believe that it might be possible to relax the reqularity requirement, allowing
the flow X' to be merely C for r > 2.

The C* requirement in the finite reqularity version of Theorem A, as stated in Re-
mark 1.1, arises from the use of a more precise second-order asymptotic formula in the
proof (see Proposition 4.12). This formula requires the hitting times to be C2THP in
the normal coordinates. Similarly, the C° requirement in the finite reqularity version of
Corollary B, as noted in Remark 1.1, stems from suspending the diffeomorphism by its
Jacobian (of class C*), yielding a C* flow to which we then apply the previous result.

2.3. Generic rigidity, local rigidity and rigidity from matching of abstract
potentials. We also show that generic transitive Anosov flows on 3-manifolds which are
CP-conjugate are smoothly conjugate, unless the conjugacy swaps positive and negative
SRB measures of the two flows:

Theorem G. Let M and N be 3-manifolds which support transitive Anosov flows. Let
Aprr and Ay denote the spaces of C°° wvector fields on M and N, respectively, which
generate transitive Anosov flows. Then there exist C'-open and C™-dense subsets Uy C
Ay and Uy C An ' such that, for any X € Uy and Y € Uy, the associated Anosov
flows X' and Y satisfy:

none of the four foliations W, W, W5, Wi is CL.
In particular, if Xt and Y are C°-conjugate via ®: M — N, ® o X! =Y o ®, at least
one of the following holds:
1. the conjugacy ® is a C'*° regular;
2. @*m} =my and ®.my = m¢
Remark 2.6. If both flows are assumed to be %—mildly dissipative, as in the Addendum F),

then, in fact one can drop the genericity assumption on Y and only assume that X is
generic.

Finally, we give variants of Theorem A and Corollary B, where we replace Jacobian
data with abstract smooth potentials data.

Theorem H. Let X': M — M and Y': N — N be two transitive dissipative C'™

Anosov flows on 3-manifolds M and N. Assume that they are orbit equivalent via a
homeomorphism ®: M — N, and that there exists pertodic point p = XT(p) such that

log | det DX (p)|log | det DY (®(p))| > 0
where T" is the period of ®(p).
There exist open and dense sets Ux,Uy C C®°(M,R") such that, if we can find
o € Uyp, & € Uy with the property that for any periodic point p = XT(p) and the
corresponding periodic point ®(p) = YT (®(p)),
T/

T
/0 X dt= [ €@ (p))dr,

0

1. Actually, the complements Apr \ Uns and Anx \ Un have infinite codimension.
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then X' and Y are C* orbit equivalent.

Corollary I. Let f,g: T2 — T? be two C™ dissipative Anosov diffeomorphisms that are
C-conjugate by a homeomorphism h: T? — T?, ho f = go h. Assume that there is a
periodic point p = f™(p) such that

log | det D f"(p)|log | det Dg" (h(p))| > 0.

There exist open and dense sets Uy, Uy C C>(T?,R) such that, if we can find ¢ € Uy,
& € Uy with the property that for any periodic point p = f"(p),

n—1 n—1
D ol ) =D &g (h(p)),
=0 (=0

then the conjugacy h is C*°.

2.4. Stratification of the Teichmiiller space of smooth conjugacy classes ac-
cording to regularity. We proceed to explain an application to the structure of smooth
conjugacy classes of Anosov diffeomorphisms. Let X" (M) be the space of Anosov dif-
feomorphisms on M of some finite regularity » > 1. Denote by Diff" (M) the space of
C" diffeomorphisms of M which are homotopic to the identity. Then Diff" (M) acts on
X" (M) by conjugation. Usually this action is either free or virtually free. Then one can
form the Teichmiiller space by taking the quotient

T(M) = X" (M) /Diff" (M).

There is little general understanding of topology and structure of these spaces, but when
dim M = 2 at least we know that these spaces are Hausdorff. For any r > s > 1 we have
the stratification map of Teichmiiller spaces my_s: T (M) — T°(M) which is induced
by inclusion and quotient maps

TT(M) = X"(M)/Diff" (M) C X°(M)/Diff" (M) — X*(M) /Diff* (M) = T°(M).

It is interesting to understand basic properties of maps m,_,s. One expects that
maps 7. are injective, at least away from exceptional loci. Injectivity of m._ is
equivalent to a well-studied bootstrap problem in hyperbolic dynamics. It is was es-
tablished for 2-dimensional Anosov diffeomorphisms [DILMMS86, dIL92| as well as for
one-dimensional [SS85] and higher dimensional expanding maps [GRH23| (with some
caveats).

Surprisingly, to the best of our knowledge, surjectivity of maps m._,s was not con-
sidered in the literature. We provide evidence that, in general, one should not expect
Tr—s to be surjective. Specifically, using Theorem E and Cawley’s realization theo-
rem [Caw93|, we obtain the following result.

Corollary J. The map m3_1: T3(T?) — TY(T?) is not surjective; that is, there exist
C' Anosov diffeomorphism of the 2-torus which is not C' conjugate to any C® Anosov
diffeomorphism.

The proof and some further discussion are given in Section 8.

A similar stratification can be considered for the Teichmiiller space of Riemannian
metrics on a given manifold, where one identifies two metrics if they are isometric via an
isometry which is homotopic to identity. Local description of such Teichmiiller spaces
were given by Ebin [Ebi70]



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 9

We note that the analogous question about surjectivity in this setting is well-
understood [DK81| and the Teichmiiller space of Riemannian metrics is known to be
well-stratified according to regularity. For example, one can realize a particular curva-
ture function of some finite regularity C” by some Riemannian metric, in which case this
metric cannot be more than C™*? regular. In fact, locally on a Riemannian manifold
there is a natural harmonic system of coordinates with respect to which the metric is
“as smooth as it can be”. For example, (1 + 3z|z|)(dz? + dy?) is a C*THP metric and
cannot be made any better by coordinate changes.

One can also hold an analogous discussion for the Teichmiiller space of expanding
maps f on a given manifold. We expect this space to be well-stratified as well. At
least in dimension one, we can similarly introduce harmonic coordinates by requiring
the eigenfunction for the Perron-Frobenius operator with respect to —log Jac(f) to be
the constant function. This harmonic coordinate system makes the expanding map “as
smooth as it can be”, implying that the Teichmiiller space of one dimensional expanding
maps is stratified according to regularity. Specifically, given some target regularity C”,
r > 1 consider any diffeomorphism 7': S' — S' which is C” but not C"*¢ and which is
not C° conjugate to x — x + é. Then define a C” expanding map f: S! — S! of degree
d by

d—1
fa) =3 T (@).
(=0

Then f is a covering map whose Deck group Z/dZ is generated by T. Using this
observation one can calculate that 1 is the eigenfunction of the transfer operator
L_tog .0 CT7HSY) — C™1(S). According to [GRH23, Corollary 3.3 the expanding
map f has optimal smoothness in its C'! conjugacy class. Indeed, if f were C'' conjugate
to f which is C"*¢ then the transfer operator £_ ., g 7: C"'*5(S') — C"~1*¢(S!) has
a C"17¢ eigenfunction u corresponding to the maximal eigenvalue (see, e.g., [GRH23,
Theorem 3.1]). By integrating u we can C"*¢-conjugate f to f which is still C"*¢ and
preserves the Lebesgue measure. Now we have that f and f are C! conjugate and both
preserve the Lebesgue measure. It follows that this C' conjugacy is a rotation of S'.
Hence, f is also C"¢, contradicting our construction of f.

2.5. Further questions. Let us list a few questions raised by our results.

Question 2.7. Givenr > 2, let X! and Y be 3-dimensional transitive C" Anosov flows
that are k-pinched as in Theorem E and C° conjugate by a homeomorphism ®. Similarly
to Theorem G, can one say that case 2 in Theorem E, where ® swaps the SRB measures
of Xt and Y, is exceptional?

Indeed, the existence of such a pair (Y, ®) can be regarded as a symmetry of the flow
Xt and we expect a typical Anosov flow to have no such symmetry. In other words,
is it true that for a generic 3-dimensional dissipative C” Anosov flow X?, there is no
C" Anosov flow Y* that is C°-conjugate to X by some map ® which swaps the SRB
measures of the flows?

Question 2.8. Furthermore, can one classify exceptional transitive Anosov flows X'
for which a pair (Y, ®) as in Question 2.7 exists? Must X' be time-reversible, namely,
C-conjugate to the inverse flow X t? Does one always have that at least one of the
foliations W% or W% is Cl, or even more reqular?
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Question 2.9. Recall that according to Theorem E the case where either foliation 'W*
or W¥ is C1 (but not both) is problematic for the rigidity of X*. On the other hand, by
Theorem G, for an open and dense set of 3-dimensional transitive Anosov flows, both
foliations are not C'. Can one go further and classify such exceptional Anosov flows
with C' strong stable foliation?

Question 2.10. In Section 3.3, we introduce a twisted cocycle which is a generaliza-
tion of the longitudinal Anosov cocycle introduced by Foulon and Hasselblatt for volume
preserving Anosov flows in dimension 3 [FHO03|. Foulon and Hasselblatt showed that, in
the volume preserving case, this cocycle is a coboundary if and only if the distribution
E* @ E" is smooth; this fact was utilized in the preceding work (GRH22| on the rigidity
of 3-dimensional volume preserving Anosov flows by the first and last author. While in
the dissipative case, we observe in Remark 3.11 that if ES or E* is C1, then the twisted
counterpart to the cocycle introduced by Foulon and Hasselblatt has to be a cobound-
ary. However, currently we lack understanding of the implications of this cocycle being
a coboundary.

2.6. Structure of the paper. In the next section we setup notation and recall various
known results which will be used later. We also introduce stable (unstable) templates
which can be thought of as the “time coordinate” of stable (unstable) distribution re-
stricted to a local unstable (stable) manifold. Most importantly, we prove that the stable
(unstable) distribution is C! regular if and only if the stable (unstable) template has
polynomial form for volume expanding (contracting) periodic points.

In Section 4 we setup a shadowing scheme associated to a homoclinic orbit of a
dissipative periodic orbit and prove an asymptotic formula for the periods of shadowing
periodic orbits. The leading exponentially small term in this formula will be the main
driver for the arguments in the paper. We also derive a version of this formula for a
conservative periodic orbit and a more precise two-term formula for a mildly dissipative
periodic orbit.

In Section 5 we recall the positive proportion Livshits Theorem and discuss various
related auxiliary results, such as density of a positive proportion set of periodic orbits and
full proportion property of volume contacting periodic points with respect to the SRB
measure. We also identify equilibrium states with respect to which mildly dissipative
periodic points have full proportion.

In Section 6 we still consider a single Anosov flow and present our main dichotomy
result, namely, that either eigenvalue data at periodic points can be recovered from the
periods or the stable (or unstable) foliation is C! regular. Then in Section 7 we put
together all prior ingredients and use this dichotomy to establish the rigidity results
about conjugate flows which were stated in Sections 1 and 2.

In Section 8 we give a proof of Corollary J which has a different flavor and relies on
Cawley’s realization result [Caw93].

Finally, in Section 9, we present examples of conjugate Anosov flows which illustrate
various aspects of our results.

3. BACKGROUND KNOWLEDGE ON ADAPTED CHARTS AND TEMPLATES

3.1. Notation. We will begin by recalling some standard terminology and notation.
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Given an Anosov flow X!, it is well-known that the strong stable bundle E* and
the strong unstable bundle E" integrate uniquely to invariant foliations W*® and WY,
respectively.

Throughout the paper we will always assume that the manifold M and the foliations
W? and W?* are oriented. Indeed, we can do so without loss of generality because one can
always pass to an appropriate finite cover so that the manifolds and foliations become
orientable. We will also use the notation W%, * = s, u, to emphasize the dependence of
these foliations on the flow, when several flows are involved. Further, we denote by W<
and W' the weak foliations with 2-dimensional leaves obtained by flowing the leaves of
W5 and W*, respectively. For each x € M, and * = s, u, cs, cu, we denote by W*(x) the
leaf of W* containing x. We denote by dw-+ the distance along the leaves of W* induced
by the restriction of the Riemannian metric to TW*. Finally, for x € M and § > 0 we
let Wi(z) := {y € W*(z) : dw+(x,y) < 6} be the d-neighbourhood of x within W*(x).
In the following, we will use the notation W;, () to denote some local leaf Wj(z), for
6 > 0 of order 1.

We denote by P the set of periodic orbits of the flow X*. Given a periodic orbit v € P,
and any point p in 7, we denote by T'= T'(y) = T(p) > 0 its period, and let

fy = pip = A (T) € (0,1), Ay =Xy :=2(T) > 1.

be the eigenvalues of the linearized Poincaré return map at p. We will also use no-
tation Jac,(T) for the Jacobian of the linearized return map, Jac,(T") = Jacy(T) :=
det DXT(p) = pyAs.

3.2. Adapted charts. In the following, we fix » > 3, and consider a transitive C"
Anosov flow on some 3-manifold M which is k-pinched for some 1 < k < r — 1. Given
a k € R, we will write [k] to denote the integer ceiling [k — 1].

The following is a standard consequence of non-stationary linearization along 1-
dimensional stable and unstable foliations.

Proposition 3.1 (Katok-Lewis [KL91|). For x = s,u, there exists a continuous family
of C" charts {®}: T, W*(x) - W*(x)}renm such that for any x € M, and for any time
o €R,

1. ®%(0) = 2, and DP*(0) = Id;
2. X7(B3(E)) = Vo () (N3(0)E). for any € € R.

The non-stationary linearization along stable and unstable foliations is a standard tool
in hyperbolic dynamics and @}, * = s, u, are given by integrating properly normalized
densities of the SRB measure on the stable and unstable leaves.

Now we recall the construction of adapted charts for 3-dimensional Anosov flows,
due to Tsujii [Tsul8| in the volume preserving case, and Tsujii-Zhang [TZ23] in the
general case. This construction was later extended to the partially hyperbolic setting

by Eskin-Potrie-Zhang [EPZ23|.

Proposition 3.2 (Adapted charts [TZ23]). Given a k-pinched Anosov flow, there exists
a continuous family of uniformly C"=1 charts {1,: (—1,1)3 — M},enr such that for any
x € M, and any time o € R, we have:

1. 14(8,0,0) = ©3(¢), for any & € (—1,1);
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2. Zw(ovovn) = @5(77), for any n € (ila 1);
3. 12(&,t,m) = X' (22(&,0,m)), for any (&,t,m) € (=1,1)%;
4' let Fg = (ZX”(x))_loXUOZI = (Fa(tf,l’Fg;%Fg,?)); then, F5—,2(§?ta77) = t+¢a(§vn);

and there ezist polynomials P} (o)(z) = Zgﬂl ai’é(a)zé, x = s,u, of degree at

most [k], such that for £ € (=X(a) 1, A8 (0)™1) and n € (=A%(o) "L, N4 (0)7h),

QIFT, F7, [ x0) 0
[alFa,z 82F§,2] (0,0,m) = [P;w)(n) 1]

a2Fg?,2 a3Fg?,2 _ |1 P (o)(§)
[aﬁﬁg agFgg] (5’0’0)—[0 (o) |

where Ay (o) := DX (2)|ps[l, Az(o) = DX (x)[ge]].

We present the construction of adapted charts in Appendix B. It is essentially the
same construction as the one given in [Tsul8, TZ23], but we took special care and
constructed C™~! regular charts (other than C"~2 regular constructed in [TZ23]) and
also extended the normalization of jets for all times o (other than for time-1 only).

3.3. Hitting times and their jets. The adapted charts provide a family of local
transversals to the Anosov flow. Here we setup notation and summarize basic properties
of hitting (return) times relative to these transversals.

Definition 3.3. Given a family {1,: (=1,1)3 = M}sen as above, we let
Yo =1, ((—1,1) x {0} x (=1,1)).

Then {X.}eens is a continuous family of uniformly C™' transverse sections for the flow
Xt. By construction, for any point x € M, the transversal ¥, contains local stable and
unstable manifolds of the base point z, i.e., Wy (x) C Xy, * = s, u.

For any point x € M, and o € R, there exists a neighborhood U(x,0) C ¥, of x such
that the Poincaré map 115 : UW(z, 0) — Yxo(y) is well-defined, with 11 (x) = X (x). For

y € U(z,0), we denote by 73 (y) € R the corresponding hitting time, 1% (y) = X W) (y).

Wioe(2)

Ex Wﬁm(’I')

FIGURE 1. Transveral X,.

With a slight abuse of notation, we will also denote by 77(&,7n) the hitting time
in (&, n)-coordinates, i.e., if y := 1,(£,0,n) € U(z,0), we let 77(&,m) = 72(y). By
construction of our charts, 79(+) is a C"~! function which is constant when restricted to
the local strong stable and unstable manifolds of z, i.e., for o > 0,

77 (4 0)[(—1,1) = 0, T2 (0, ) (=xe (o)1 A2 (o)1) = O
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Lemma 3.4. For any time 0 € R, any & € (=Ai(0) 5 A3(0)7Y), and any n €
(=X5(0) ™ AR (0) ™), we have
077 (£,0) = =P/ (0)(§), h7l(0,n) = —P;(o)(n), (3.1)
where P (o)(§), Pi(0)(n) are the polynomials from Proposition 3.2(4).

Proof. Let us prove it for o > 0 and n € (—A\%(0) ™%, A%(0) 1), the other cases being anal-
ogous. By using the normal forms given by Proposition 3.2(4), we have for sufficiently
small |£] < 1,

F7(€,0,m) = F7(0,0,1) + 01F7 (0,0,n)¢ + O(€?)
= (0,0,A%(0)n) + (A3(0), Py (0)(n), 77 (€,m))E + O(E7),
for some 47 (&, n) € R. Therefore, by Proposition 3.2(3),
XTPHOWE 0 100 (FF (€,0,m)) = 157 () (A3 (0)8, 0, A (@) + 77 (€, m)€) + O(€?),
with ox0 () (AZ(0)8, 0, AZ(0)n + 77 (€, 1)) € Xxo(y). Hence
72(&m) =1 - Pi(0)(n)é + O(£%),
and we deduce that 0;77(0,n) = —P:(0)(n), as claimed. O

Remark 3.5. Although for a fized o the hitting time 7 is formally only C™!, as a
direct consequence of Lemma 3.4, we have that 0212 (-,0) and 017Z(0,-) are actually
polynomial functions; in particular, for j € {1,--- , [k]},

1 . . 1 . .
ﬁ@{@QTg(O,O) = —ay”(0), ﬁ&@%%‘;’(@,o) = —ay’(0), (3-2)

where o7 (o), o’ (0) are the j-th coefficients of P*(c)(€) and P3(c)(n), respectively.
Moreover, if the flow Xt is C3, by Schwarz lemma, we have all =t

Remark 3.6. By the chain rule, the map (x,0) — o3’ (0) is a twisted cocycle with
twisting given by the multiplicative cocycle (x,0) + A(0)/A\¢(0), i.e., for any point
x € M, and times 0,0’ € R, we have

(o + ') =adi (o) + Xe(o) A\ o) a ng( )(o’). (3.3)
Indeed, for €| < 1, with the notation of Proposition 5.2, we have the following additivity
by the definition of hitting times

77 (&) = 17 (6m) + TR () (F21(6,0,m), FZ5(€,0,m)).

Recall that F71(€,0,n) = A\3(0)§ + 0(§), Fy3(£,0,m) = Ag(o)n + o(§). Hence, by differ-
entiating the above equation we have

D1t (0,m) = D17Z(0,1) + X3(0) D170 (4 (0, N(0)),

which yields (3.3) by differentiating j times with respect to the second component at
n=0, by (3.2).

Remark 3.7. The twisted cohomology class of o s independent of our choice of
{X:}eem given by adapted charts. Indeed, if {3, }zenm is another continuous family of
C™1 transversals such that for x € M, ¥, D Wi (x), * = s,u, then for any x €
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M, there exists a neighborhood U, C (—1,1)? of (0,0), e, > 0, and a C"~! function
ug: Uy — R such that

2~331: N B(x,ax) = {Z:c (5;%(5,77)777) : (5777) € Ux}

Therefore, denoting by {77 }z o+ the hitting times for the family {S.}eens, the correspond-
ing cocycle M x R 3 (z,0) — a3’ (o) = 1,6{02 7(0,0) differs from a7 by a twisted
coboundary:

&Sl (o) — ag’j (o) = 012u,(0,0) — )\fc(a))\g(a)jalguxa(x)((), 0).

x

Similarly, for j € {1,---,[k]}, the map (z,0) — a2’ (o) is a twisted cocycle with
twisting given by the multz’plzcatwe cocycle (z,0) = A3 (o) Ay (o ). '
In particular, the families of twisted cocycles {ay”’ }j=1,---,[ K and {az” }j:17...7[k] can be

regarded as a generalization of the longitudinal Anosov cocycle introduced by Foulon and
Hasselblatt for volume preserving Anosov flows in dimension 3 [FHO3].

3.4. Templates and regularity of E° and E“. Following the terminology of Tsujii-
Zhang |TZ23|, we consider a family of functions called templates which are given by the
first jets of local strong stable and unstable manifolds through points on coordinate axes
in the adapted charts. Specifically templates are defined in the following way.

Definition 3.8 (Templates). For any &,n € (—1,1), we write:

(Wi @) = {ETmE+ ENEm+ Emd ], | 64

1z (Wiee(@3(6))) = {(€ + <&M TEn + 026 D0 D }ie 11y, (35)

where T3 and TY are called the stable and unstable templates, respectively, and

b3, 0%, c3, ct are some functions.

Wioe (P2 (1)

a Wioe (@)

FIiGURE 2. The template can be informally thought of as a function
measuring the angle between the local stable manifold and the transversal
pI-

One important point is that templates control the C! smoothness of the strong stable
distribution E* along the unstable leaves.

Lemma 3.9. There exists an o > 0 such that the family of stable templates {T2} e
is uniformly C1T if and only if the strong stable distribution E° is C1T.
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Proof. Assume that E° is C'T. Then for any 2 € M, with respect to an adapted chart
1, at x, the restriction of E* to W} (z) is given by

£2(0,0,m) = R(L, T3(n), ¢z (0,n), n e (=1,1). (3.6)

Since the adapted charts are uniformly C"~!, we then conclude that the family of stable
templates {T3},cps is uniformly C1+e.

Recall that the weak stable distribution £* @ RX of a 3-dimensional Anosov flow is
always uniformly C1*® for some o > 0 (see, e.g. [PS72]). Equivalently, the family of
functions {c5(0, ) }zens is uniformly Ct+e.

Now assume that {J%},cp are uniformly C'T. From (3.6) we can see that the
restriction of the stable distribution to each local unstable leaf is uniformly C1+<. Since
E? is also uniformly C'*® along weak stable leaves we conclude that E® is globally
Cl+a_ |

Lemma 3.10. For anyxz € M, 0 € R and n € (=A%(0) "1, A\%(0)~ 1), we have
Pi(o)(n) = X(0)Txo 2y (Az(0)n) — T2 (n), (3.7)

where P:(o)(n) is the polynomial from Proposition 5.2(4).

Proof. Equation (3.7) follows from the invariance of the stable foliation W?*, expressed

in normal coordinates. Indeed, for n € (—=\%(c)~!, A%(s)~1), the image of (1,T%(n)) by
the differential DX? in normal coordinates, namely

[Pg?a(;()n) (1)] [Til(n)} N {PS(U)?i)((QTS(n) !

should be proportional to (1, ( “(a)n)) T, which yields
Pi(o)(n ) A5 (0) T %o @y (Az(o)n) = T3 (n). O

Remark 3.11. If the stable distribution E* is C1T%, for some o > 0, then the twisted
cocycle (z,0) — a3 () is a twisted coboundary. Indeed, by (3.9), the family of sta-
ble templates {T5}oenr is uniformly C1T%, and then, for any x € M and o € R, by
differentiating (3.7) and evaluating at n = 0, we have

oy (@) = A (O)AH(0)(Txo(r))'(0) = (T2)(0)-

In other words, similarly to the observation of Foulon-Hasselblatt [FHO3|, the non-

vanishing of the cohomology class of the twisted cocycle (x,0) — ai«’l(a) is an obstruction
to the C* smoothness of E°.

Corollary 3.12. Let X! be volume preserving 3-dimensional Anosov flow. Then E° is
C'te a >0, if and only if E* is C'T®' o/ > 0, in which case X' is a contact flow or
a constant roof suspension flow.

Proof. If X* is volume preserving, then the map (z,0) — a'(c) is merely the lon-
gitudinal Anosov cocycle introduced by Foulon-Hasselblatt [FHO3| (see Remark 3.6).
Moreover, if B¢ is C'T® o > 0, then by Remark 3.11, the cocycle (z,0) — o (o) is
a coboundary. By the work of Foulon-Hasselblatt [FHO3|, we deduce that X' is either
a contact flow or a constant roof suspension flow. In both cases, E¥ is also C1T¢| for
some o > 0. O
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Lemma 3.13. If p € M is a volume expanding periodic point, of period T > 0, with
eigenvalues p = pp, <1 < X=X, Jacy,(T) = pX > 1, then for any n € (—1,1), we have
[k]

To) — Tim A (=) T oy Ni(—oy) = S 22D i
J

o——+00 _1MA]—1

Proof. Fix a periodic point p € M, of period T' > 0, with Jac,(7T") > 1. After a change
of variables in (3.7), for n € (=1,1) and ¢ > 0, we obtain

Tp (1) = Ap(=0)Tx o () Ap (=0)1) = Ay (=0) Px—o () (o) (A (—0)1). (3-8)
Let us show that the right hand side has a limit which is a polynomial of degree at most
[k]. As before, we use the following notation for coefficients: P:(o)(n) = Zg’il oI (o)t
Then
[k] o 4
BOPerp OO0 = 35 (=0 oy (39

Take o > 1, and write it as 0 =nT +p, p € [0,T). By (3.3), the map (z,t) — ol (t)
is a twisted cocycle, with twisting given by (x,t) — A3(t) (A%(1)), 7 € {1,---,[k]}.
hence

|
—

j , n ,
05y (0) = 050 ) () + Moy () (Moo () 03 (1) D (XY,
0

~
Il

and
s u s u ) s, 1 - :u)‘j)in
)‘p(_a) (Ap(_a)) a)(,'J (p )( ) = )‘p(_g) ()‘p( )) aX] P(p )(p) + ap?J(T)lu)\(j—l
The map [0,7] > p — oz;(’_];p(p) (p) is continuous, hence the family {a;j,p(p) (P)}pejo,m 18
bounded, while A\}(—0o) (/\g(—a))j = O(Jacy(T)™™) goes to 0 as 0 — +00, and so does
the first term in the right hand side of the previous equation. Since uM > 1, for j > 1,
we deduce from (3.9) that

[k] s
P )
S
lim X (=) Py oy () (A Z; 1"
We conclude that the two sides in (3.8) have a limit as ¢ — 400, which is equal to the
k) ap?(T) 0

polynomial ijl 1!

Lemma 3.14. Let p € M be a volume expanding periodic point, of period T > 0,
with p = pp < 1 < X =Xy, Jacy(T) = pA > 1. Let P, be the polynomial given by
Lemma 3.153:

K] S,J
~ o’ (T) .
By(n) ::zuggﬂinﬂ.

Then, the stable distribution E* is C1T* along Wit . (p) for some o > 0 if and only if
T, = P]f . (3.10)



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 17

Moreover, if E° is C? along the unstable manifold Wit (p) for some B > — igg’;,Q then
it is automatically C'T* along WY _(p), a > 0 (note that —logl)‘\ € (0,1)).

lo
Proof. 1f (3.10) is satisfied, then 7T}, is obviously O™ a > 0. Conversely, let us assume
that there exists a > 0 such that T} is C1*o. After possibly taking o > 0 smaller, by
reasoning as in the proof of Lemma 3 9, we deduce that E* is C1T* along Wi _(p). Since
the sections {Xyt () }ttejo,r] are uniformly C™~!, and since E*(X'(p)) = DX'(p)E*(p),
for t € [0,T], we deduce that the family of templates {U’;t(p)}te[QT] is uniformly C'te.
Then, according to Lemma 3.13, for any n € (—1,1),

Fy(n) =Tp(n) = Hm A (=1) Ty ) (Ap (=1)n)

=T5(n) — lim O ((MA)‘%) = T,(n)-

n—-+o0o

Finally, if we assume that E® is C? for some 8 > — }ffé . Then,

Xy (=) Ty N (—m)m) = O (™ FAPH) = o(1).

As before, we conclude that T = PJ, and that E° is C'** along Wi . (p), for some
a > 0. U

Lemma 3.15. The strong stable distribution E° is C'T® for some a > 0 if and only
if there exists a dense set of volume expanding periodic points p € M, Jac,(T'(p)) > 1,
such that T, = Py.
Proof. The direct implication follows immediately from Lemma 3.14. Conversely, let us
assume that there exists a dense set 8 C M of periodic points p such that T = 15];"’.
For each (z,m) € M x (—1,1), the stable template T2(n) essentially measures the
angle between the stable space E® at ®%(n) and the transversal ¥,. Because the map
(—=1,1) > (z,n) — ®%(n) is continuous, the stable space E*(y) depends continuously
on the point y € M, and {,},en is a continuous family of uniformly C"~! transverse
sections, we conclude that the map

T M x (=1,1) 3 (x,n) — T5(n)

is continuous.

Let I := [—3,3]. Welet (C°(I,R), ||/|co) be the Banach space of continuous functions
on I, where [|¢]lco := sup,c; l¢(n)], for ¢ € CO(1,R).

By Lemma 3.13, for each periodic point p € M with Jac,(T(p)) > 1, we have that P,
is a polynomial of degree at most k—1. Let R[,ﬂ C C"~Y(I,R) be the space of polynomial
functions of degree at most [k] on the interval I. It is a finite dimensional vector space
hence all norms on this space are equivalent. For any @Q: n — ZZ qu € R[k}
[Qlle> := maxyeqo,... x]} lge|- In particular, there exists a constant C' > 0 such that for
any QQ € R[Ik], |Qlle < C|Q]|co. Therefore, for any periodic points p, ¢ € 8 in the dense

set 8, we have T = ]5*5 € R[Ik], for * = p, g, hence
|75 = Tglles < Cl|Tp — T3l co- (3.11)

2. By Pugh-Shub-Wilkinson [PSW97], we also know that for any 6 < —igggﬂ E*® is always C? along
Wiee (p)-
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Moreover, the map T® introduced above is continuous, hence it is uniformly continuous
when restricted to the compact set M x I. In particular, sup,cys | T2]co < K for some
K > 0, and for any £ > 0, there exists > 0 such that

[z =yl <n = |77 = Tyllco <e.
By (3.11), we deduce that
Vp,ge 8, lp—ql <n = [T, — Tglle= < Ce.

By the uniform Cauchy criterion for the finite dimensional vector space (]R[Ik], Il |lese)s
and since the set 8 is dense in M, we conclude that the family {T%},cps is a family of
polynomial functions of degree at most [k], whose coefficients depend continuously on
the point x. In particular, the family {T%},¢cas is uniformly C"~!, and by Lemma 3.9,
we conclude that E* is C'+ for some a > 0. O

Remark 3.16. In the previous results, we have focused on the stable distribution E?,
but clearly, the same results hold for the unstable distribution E¥, by reversing time. In
particular, the second statement in Lemma 3.13 can be made for the unstable template
J, along the local stable manifold of a volume contracting periodic point p.

4. ASYMPTOTIC FORMULA FOR PERIODS

In the present section, we fix a 3-dimensional transitive Anosov flow X! which is of
class C", with r > 3.

4.1. Shadowing setup. Let {1;},cns be the uniform charts given by Proposition 3.2,
and for x € M, recall that we denote by ¥, C M the surface
Yo i=1((—1,1) x {0} x (=1,1)).

Also recall that for (&,7) € (—=1,1)%, y = 1,(£,0,1) € X, we denote by {r(¢£,n) =
7t(y)}; the corresponding family of hitting times, and by II% : 3 — X™=®)(y) the Poincaré
map from ¥, to Yxe(y).

In the following, we consider a periodic point p € M, of period T' > 0, with multipliers
0 < p=XMT) <1< X=XN(T). We assume that p is volume expanding, i.e.,
Jac,(T') = pA > 1. All the statements that follow will be given in that context, but they
all can be easily adapted to the case when the periodic point p is volume contracting,
ie., Jacy(T) < 1.

We fix some homoclinic point ¢ € W (p). We fix a time 7" > 0 with the property

loc

that ¢ = X T,(q) € Wi .(p). Without loss of generality, we can assume that ¢,¢" € 3,.

loc
Then, for some £, Mo # 0, we have

Z;I(Q) = (0,0,700), Zgl(q/) = (£, 0,0).
Let f = Hg: ¥p — X, be the Poincaré map from ¥, to itself.

Lemma 4.1. There exist a constant Cy > 0 and an integer ng € N such that for n > ng,
there exists a unique periodic point p, € ¥, of period

T, ~nT+T
and such that

d(X'(pn), X"(q)) < Cop T

V|3
<C
~

—
|
3
N~
3
~
—
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Proof. For n > 0, we consider the periodic pseudo-orbit {X?(q) : t € [%"T, % +T1'}
with a small jump at ¢t = % + T'". Because ¢ is homoclinic to p, and p\ > 1, it is
easy to see that for some constant C' > 0 independent of n, the jump is bounded above
by CM%. By Anosov closing lemma, for all sufficiently large n > 0, we deduce that
this pseudo-orbit is Copu2-shadowed by a unique periodic orbit {X*(p,) : t € [0,T}]} of
period T;, ~ nT + T, for some constant Cp > 0, with p,, € ¥, close to g. O

4.2. Asymptotic formula for a volume expanding periodic point. As above, we
let p € M be a volume expanding periodic point of period T > 0, with multipliers
0<p<1l<A pX=Jac,(T) > 1. We fix some homoclinic point ¢ € ¥, "W} _(p) and

loc
we let ¢/ := X7 (q) € 3, N W} _(p) as above. Let (pn)n>n, be the sequence of periodic
points given by Lemma 4.1 whose orbits shadow the orbit of g. The main goal of this
section is to derive a certain asymptotic expansion of the period T,, of p, with respect
ton > 1. We fix § € (0,1) such that

3 2log A

max (,ui,,ulogk—logﬂ) <0< p. (4.1)

Proposition 4.2. Asn — +oo, the period T,, of the periodic point p,, has the following
asymptotic expansion:

T =0T + T + 6o (T3100) = By (1:0) ) 1™ + O(07),
with s # 0, and where

(%] j_T
s 1 81857—;0 (p) j

1s the polynomial already introduced in Lemma 3.13.
We will split the proof of this result into several lemmata. Let us first derive some

asymptotic expansion for the coordinates of the periodic points p, € 3, and p], =
f7™(pn) € ¥p in normal charts. For each integer n > ny, let

(5717077771) = Zgl(pn% (5;’0777;1) = Z}:l(pil)

Let x* € R be such that v§ = (1,x%) € D1, (¢q)E$,(q), where E§(q) := (E* @ RX)(¢) N
Ty%p. For each time t € [0,nT], we let IL;*: ¥, — Xx-t(, be the Poincaré map, and
we let ﬂ; t.= z)_(l,t @ ° I, " 01, be its image in normal coordinates. We also denote

(gn(_t)v 77n<_t)) = ﬁ;t(€n7 77n)
We also define the integer
log p
by = |—————n| €N. 4.2
" [logu—logAn] (4.2)
Since A~ < p, we note that £,, < 5. Note that the choice of time £, is made so that
En(—LnT) = np(—£,T); in other words, u"fn ~ X~

Remark 4.3. In what follows, we always denote by 0 < p < 1 < A the multipliers of the
periodic point p under consideration, with A\=' < u. The constant v € (0, ) is auxiliary,
its value will be chosen differently for various lemmata.



20 ANDREY GOGOLEV, MARTIN LEGUIL, AND FEDERICO RODRIGUEZ HERTZ

Lemma 4.4. Fiz a number v € (0,1) such that max(\™1, M%) <v < . Then, for some
constant co # 0, we have

(&ns7n) = (0,700) = Coop™(1,£%) + O("). (4.3)
For any time t € [0,nT], we have
(gn(_t)vnn(_t)) - (foo)\‘;)(nT - t)v 0) = O()‘_T)a th > gnT
Proof. We abbreviate as f = ﬂg the Poincaré map f = Hg in normal coordinates.

Since the flow X is assumed to be of class C", r > 3, by [Sto86, Theorem 2, case 3|,
there exists a change of coordinates ®: U — R? of regularity class C 3 (in fact, of class
C'2), defined on some neighborhood U  (—1,1)2 of (0,0), with ®(0,0) = (0,0), which
linearizes f :
Bofod™t = L: (£,7) — (1 M), (4.5)
Note that ® preserves the horizontal and vertical axes {(£,0) : |£] < 1} and {(0,7) :
7] < 1}. Moreover, ® can be extended to f+'(U) by setting ®(f*!(x)) := LT (®(x)),
for any x € U. By repeating this construction finitely many times, we can extend
linearizing chart ® to a neighborhood of the horizontal and vertical axes up to (£, 0)
and (0, 7s), respectively.
After replacing ® with ® o A for some linear map A: (§,n) — (a&,bn), and since
L, A commute, we can also assume that ® fixes the points (£0,0) and (0,7s). More-

over, fliy=op = Llfy=oy: (&,0) — (1€,0) and flge—oy = Lle—oy: (0,m) — (0,An); in
particular, for any integer £ > 0, we have

(0,2 00) = (0, A 0c), (€0, 0) = (160, 0)- (4.6)
For each integer n > ng, let us denote
(gna M) == @(&ny ), (gwlwﬁ;L) = ‘I’(ffwﬂ%)‘

By construction of the points p,, pl,, we have f™(&,,1,) = (€n,m5). Then, by Lemma 4.1,
we have the crude expansion *

(& n) = (0,100) + O(u%), (€)= (€, 0) + O(p?).
By (4.5), we thus obtain
A y ~ 3n n
(ns i) = ("€ N77) = (Soott™ + O(uE™), M + O(11) )
(&) = ("€ A ") = (oo + O ), oA + O(uEA™))
Recall that v§ = (1,x%) € Di, ' (q)E$(q), and let
e Uy = (B3.7g) == D®(0, oo )y, with B7 # 0;
° vg, = D(z;1 o XT'o 1) (0,100 )y € Dz;l(q')Eg(q');
o % = (55,0) == DB(Ee, 0)05), with 55 # 0.
Indeed, we observe that vy, 07, € (R\ {0}) x {0}. Similarly, let

(4.7)

3. Using exponential slacking in the shadowing construction we could use O(u™) instead of O(u™/?),
however, due to loss which occurs later in the proof such precision is not needed here.
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o vy = (k" 1) € Dz;%q')E%(q'), where E4(q') := (RX & E*)(¢") N TyEy;
° Uy = ( ;‘,,’yg,) = D<I)(§OO7O)U;‘,, with g, # 0;
° UZ]‘ = D(z;1 o X T'o 1p) (€0, O)U;‘, S Dlgl(q)Eg(q);

u

= (0,08) := DB, 00, with 5 £ 0,
Indeed, we also have v¥, 0% € {0} x (R\ {0}).

q:Yq
Let a,, b, € R be such that

(ém ﬁn) - (07 7700) = anﬁg + bnﬁg

By (4.7), and since 0; = (87,7,), Uy = (0,d;), we see that a, = coop” + O(u%”), with

oo 1= (85) oo # 0, and b, = O(p2). Similarly, let a,, b}, € R be such that

(gn’ n) (§007 )_ a U +b/ u
By (4.7), and since 7, = (J; /,O) v = (B 7y), we see that bj, = CooA™" + O(pz\™"),
for some constant coo := (7 ) e # 0, and a,, = O(u2).

Let II: U, — Uy be the Poincaré map of X' between a small neighborhood U, C %,
of ¢ and a small neighborhood Uy C %, of ¢’ so that II(q) = ¢'. Let 0= z;l oIl o,
be its expression in normal coordinates, and II := ® o [To® ! be its expression in the
linearizing chart. We then have

an Ty + b0y = (6, 70) — (€<, 0)
= T, 7in) — T1(0, noo)
= DII(0, 700 ) (an®] + buy )+O(max(\anl2 b, \ )
= an¥y + by ¥y —l—O(max(,m \bn|§)).
By considering the projection onto Rog; parallel to Roy,, we thus see that
b, = O(V"),
where v := max(A\~!, ;1 %) € (0, 1). From the above equation, we also deduce that
a, = ap +O0W") = coou” + O(V™).
Therefore,

(&ns7n) — (0,100) = Coopt™ 05 + O (V™)

= (§oopt" +O(V"),0(n")), (4.8)
(& i) — (€00, 0) = (Coott™ + O(V™))5 + (GacA ™" + O(n2 X)) Tl
= (O(™), oA + O (2 A™™). (4.9)

Now we go back to (&,,m,) y using Taylor’s formula for the C3 diffeomorphism &1,
and using 0 < A~ < p.
- 3
(&ns 1) = (0,000) = DP(0,100) ™" (oo™ + O(™)) 4+ O(p2")
= coopt” (1, £%) + O(v"),
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which concludes the proof of (4.3). Moreover, by (4.8)-(4.9), for any integer ¢ €
{0,--- ,n}, we have

&y iin) = (oott™ 4 O, A~  + O(u"A7Y)).
Applying the diffeomorphism ®~!, by (4.6), we then obtain

(n(—LT), 10 (—£T) = oA ™) = [ (Enymn) = (0,m00X ™) = O ("), (4.10)
if £ is such that p"¢ < )\_Z, and

(n(—€T) — gwﬂn_evnn(ng)) = f_e(énvnn) - (éwﬂn_ea 0) = O()‘_Z)a
if ¢ is such that "¢ > X\~¢. In particular, we note that in either case,
§n(—£T)77n(—£T) = O((:U’/\)ie)ﬂn

Let us now finish the proof of (4.4). Fix a time ¢ € [0,nT] such that u"~* < A~*, where
0:=[%]>0. Let t =4T +t', with ¢/ := ¢ — (T € [0,T). We have

o (En(—€T), (=€) = (&a (1), (1)),
I (0,70 A1) = (0,10 AN (=) = (0,710 A (1)
Recall that f[;t = ZX “(p) ° H;t/ 01, is the notation for the Poincaré map Hljt/: dp —
Yyov ) represented in normal coordinates. The time ¢ € [0,T) is uniformly bounded
with respect to n, henc? so are Ay (—t'), A5(—t') a?d the differential of the map ﬂ; ¥ in
particular, "~ ~ y"~T and A= ~ A%(—t) ~ A~7. By (4.10), we thus obtain

t

(&n(=1), M (—1) = NocAp(—1)) = O(u""T),

as we claimed. Moreover, we see that u"‘z < A\t if and only if £ < —ll%n. The
og A—log 1

case where p"~¢ > X\~ is analogous. O

Lemma 4.5. For any point x € M, and o > 0, let
1,7 = (I, 7,11,%) =13, o 11,7 01,

x,1» X—9(x) T

be the expression of the Poincaré map 11,7 : ¥y — Yx—o(y) tn normal charts. Then the
differential of the first component along the unstable manifold is given by

Proof. Let us denote by F;" = (zX_o(z))*l 0o X %o, = (F,7,F 3,F, ) the inverse

z,10 % 2,29
of the time-o map of the flow in normal coordinates based at x. Fix any ne(—1,1).

On one hand, by Proposition 3.2(2), F, 7 preserves the vertical line {(0,0)} x (—1,1),
hence 03 F), 7 (O 0,7) = 03F, 5(0,0,n) = 0. Moreover, by Proposition 3.2(4), we have

HF7(0,0,1) = No(—0),  F,7(0,0,n) = 0.
Therefore, if || < 1 is small, we have
;7 (6:0,m) = (0,0, X5(=0)n) + (X3 (=), 1 F, £(0,0,1), L F, 5(0,0,7))€ + O(€?).
By Proposition 3.2(3), we then have

(1x-0 () Lo X T ERZ 00Ny (€.0,7) = (AS(~0)E, 0, \2(—0)n+01 F 5 (0,0,7)€)+O(€2).
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We thus conclude that
IL7(&m) = (Ao (=0)& Ag(—o)n + 01 F, 5(0,0,m)€) + O(£%),
and the result follows by differentiating the first coordinate with respect to &. O

In the following, we assume that the constant v € (0,1) from Lemma 4.4 is chosen
such that max(A ™!, ,u%) <v < .

Corollary 4.6. For any integer £ € {0,--- , £}, with £,, < 5 given in (4.2), we have

En(—LT) = Eoop™ " + 0" ™). (4.11)
Therefore, for any integer £ € {0,--- £,}, we have

Tp (6 (—LT), 00 (—T)) = T — & P (T) (oA~ Y™ (" + O(v™)) + O(1**™9). (4.12)

3
2

Proof. Let v := max(\~ 1, p
show that

) € (0,u). By induction on ¢ € {0,---,4,}, let us first

En(—UT) = €™ C + O((L+ D)7 ™). (4.13)
For ¢ = 0, it is true by (4.3). Let us assume that it is true for some integer ¢ €
{0,---,¢, — 1}, and let us show it for £+ 1. Recall that by (4.4), we have

(n(—€T), ma(—T)) = (0,7100A ") = O(u" ). (4.14)
By applying Lemma 4.5 and our induction hypothesis, since the normal charts are C" 1,
with r — 1 > 2, we have

En(=(+1)T) =10, T (& (~4T), a(~LT))
= 0,1 (0,10 A™) + 57 6 (—LT) + O(2™)
= coopt" TV + O((L+ 1)p" = V) + O 0)
= Coopt™ D 1 O((0 + 2)5 (D),

3
Indeed, since £ < £, < 5, and p2 < v, we have

2(n—2L) 2n
= <P i<,
I/n,uff
which justifies the last equality and concludes the proof of (4.13). Since we assumed that
max()\_l,,u%) < v < p, we deduce that for any integer £ € {0,--- ,£,}, with £, < 5, we

have (0" = O(nv™) = O(v™), and
En(—T) = coop™ " + 0" 1)

Thus, to obtain (4.11) it remains to show that the constant ¢ is actually equal to
oo- Set £, := [ §]. In particular, Al = O(A\"2) = o(u?), while PN (=4, T) = "l
is of the same order as 2. By (4.4), we thus have

(gn(_EInT)a %(-%T)) = (goo,un_glm O) + O()‘_%)-
By Lemma 4.5, we have
AL, (0, (=0, + 1)T)) = ™ d,
and then,
En((=, + 1)T) = oo™ D 4 o(un =t D),
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By a straightforward induction, we obtain

§n = n(0) = Lo +o(1").

Comparing with (4.3), we conclude that cs = €, as claimed.

Now, for £ € {0, -+ , £y}, by (4.11), (4.14), (3.1), and since 7.} is C?, with 7.1 (0,-) = T,
we have
Ty (En (=€), 0 (—€1)) = 77 (0,706A ") + 017 (0, 1106 A ™ Y (—4T) + O (1> =)
= T = G PAT) (oA (" 4+ O(™)) + 020,
The proof is complete. O

Recall the expansions of local stable and unstable manifolds which we used to define
the stable and unstable templates in Subsection 3.4:

Wi (@20) = {@5(6) = € THmE+ EME + HEME . - )
Wi (23(6)) = { Q) = w6+ chE M TH@ +bE M|

By construction, at the point (0,0,7) = z;l(q), we have

(1, Tp(nec), €5(0,m)) € Doy (@) E*(q),
(1,0, ¢5(0,700)) € Da, ' (a) B3 (a)-

In particular, using the notation introduced at the beginning of Subsection 4.2, we have
5= (1,5") = (1,¢5(0,100)) € D1, (9) B3 (q).

Recall that we denote by II: U, — U, the Poincaré map induced by X* between a
neighborhood U, C ¥, of ¢ and a neighborhood Uy C ¥, of ¢/, and let Il := z;l olloq,
be its expression in normal coordinates. Now we define the return time 7 on U,. For
z € Uy, we have II(z) = X7(3)(z), for some time 7(z) close to 7(¢) = T'. Writing
2z =1p(§,0,n), we also let 7(&,n) := 7(2).

As before, let us also consider

= (k1) = (¢5 (6, 0), 1) € D1, (¢') B (d);
1= DI (¢, 0)vY € D1, (q)E%(q) = {0} x R.
Lemma 4.7. We have
D7(0,7100) (€ v + 705) = Ty (1100)€ — Tpy (€c0) - (4.16)

Proof. Given |€] < 1, let us consider the path L® tangent to U, and the weak stable
manifold at g, L*: & = 2,(§, 0,100 +¢5 (&, 1M0)§)- By Proposition 3.2(3), and with Q; _ (£)
as in (4.15), we have

v

(Y

u
q

u
'l)q

d(X T = (L2(£)), Q5 (€)) = O(€%).

) oo

Moreover, by definition Q; _(£§) € Wi, (q), hence X7 7 (£)) € Wi (¢') C Uy, and
thus,

T(L*(€)) = T' + Tp(nc)€ + O(E7).
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By definition, 7(L*(0)) = 7(¢) = T", and (L*)'(0) = D1,(0,0,7)v], hence 7(L5(€)) =
T' + D7(0, noo)(évg) + O(£?). Therefore,

D7(0,7100)(vg) = T (o).

Similarly, given |7 << 1, let us consider the path L“ tangent to Uy and the weak
unstable manifold at ¢/, L*: 7] = 15(§o0 + ¢ (60, 7)1, 0,77). For Q¢ (7] ) as in (4.15), we
have

(XTI (7)), Q¢ (7)) = O(F).

Moreover, by definition Q¢ (1) € Wig.(¢), hence X~ T/(ngo (1) € Wit.(q) € Uy,
and thus,

T o LU(7) = T' — Ti(éo0)il + O(7).

(Note that {X T+ Ee)(Lu(q )) In| < 1} is not in ¥p, but is tangent to the path
[I~' o L* ¢ %, and hence we use IT-1.) By definition, F(IT~' o L*(0)) = 7(¢q) = T’, and
(I toLwy (O) D1,(0, 0,700 ) vy, hence 7o LU(7)) = T’—{—DT(O,nOO)(ﬁUg)—i—O(ﬁQ).
As before, we thus conclude that

Di—(oanoo)(vg) = _Tg(fw) U

Building on the previous lemmata, we will now give the proof of the main result of
this section, namely Proposition 4.2, which gives an asymptotic expansion of the period
T, of p, as n — +o0o. Let us recall the expression of the polynomial introduced in
Lemma 3.13:

(%]

NS « X (T) j s, 1 j
Pj(n) = Z ;;\j — 177], ay?(T) = —ﬁalaéTpT(O,O).
j=1 '

Proof of Proposition 4.2. We split the proof into three claims.

3
2

Claim 4.8. Recall that max(A\~!, p
have:

) < v < p. With the notation of Lemma /.7, we

T(pn) = T' + £ T ()™ + O (V™).
Proof. By (4.3), (4.11) and (4.16) (recall that c¢s = &s), We have

7(pn) = 7(&n> M)
= 7(0, 1) + D7(0, 7700)5001} p+O0W")
=T" + & Tp (oo™ + O(V"). O

Let us recall that for z € M, t € R, 7%(-) is the hitting time function associated to
the Poincaré map from ¥, to Xxi(,). Also let £, < 2L he the time defined in (4.2).

Claim 4.9. Let

_ 2log A 3 2log A
0 ‘= max (>\ qu Nlog)\ 1ogp,) — max (ME’MlogA—logu> c (0”&)7
and let @ € (0,1) be any number with 6 < 6 < u. Then, we have
TfnT(X_enT(pn)) =0,T — 500155(77@)#" +O(0").
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Proof. 1t essentially follows from Corollary 4.6. Indeed, by (4.12), we have

ln
7 (X () = D7y (Ea(—LT), ma(—T))
(=1

Ln
= (T &oops )( OOA*E)M*E(MTL +O(Vn)) _i_O(IuIZ(an)))
/=1
=T =& f: (P;(T)(%M_Z)M_Z) (w"+0@@")+0 (MQ("_E")) . (4.17)
=1

Since P;(T)(noo)\_é)u_é = O ((uA)7F), with pX > 1, we can write

ln +00
> B A = (BT A ™9™ ) +0 () ™).
=1 =1

By (4.2), we have

1o log A+1o, 2log A
(uA) " =0 <(M)ﬁ”un) =0 (uk’g* oz 1 ) o (uk’g*—gbg””) . (4.18)

2log A 2logp 1
Since A™! < p, we have plosr-logn = \logr-logn € (A~1, 1), hence

3 2log A 3 2log A
0 := max ()\ 1,,u2 los A= 10%#) = max (,uﬁ,,ulogkflogu> € (0,p).
By (4.2), we also have
N?(”—En) =0 (Mlo;)}(iglci\gun> = O(én)
Finally, the exact same computation as in the proof of Lemma 3.13 gives

= %] sl (T) . .
> (B ™~ ) + 0 (X)) = 32 5= = Bilne),
=1 j=1

with a? (T) := —%818573(0,0), for j € {1,--- ,[k]}. By (4.17), and because v € (0, 1)
was any number such that max(/\*l,u%) < v < W, this concludes the proof of the
claim. O

Claim 4.10. We have
I (p) = nT — £, + O(0™).
Proof. We write

n

T Ty = N 7L (€ (—0T), na(—LT)). (4.19)

l=ln+1

By (4.4), for any integer ¢ € {¢, +1,--- ,n}, we have
(&n(—LT), mn(—LT)) — (goo}ﬁn_za 0) = OO‘_Z)'
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Since Tg(-,O) =T, and Tg is C?, with DTIT(O, 0) = 0, we deduce that
Tg(gn(_nT + E)’ nn(_nT + E))
= 7 (€oot"™,0) + O (D7 (€oon™ ™, 0)A)

—T+0 ((M)—Qﬂ) .
By (4.19), adding up everything, and since u\ > 1, we thus obtain
AT (4 = 0T — 6+ O ((uA) ") = 0T — 6, + O (67).
where the last equality follows from (4.18). O
Gathering Claims 4.8-4.9-4.10, we can now finish the proof of Proposition 4.2.
T =137 (9) + 7(pn)
= 75" ) + 7 (X () + 7(pn)
=0T — by + O(0") + b — oo By (o0 1™ + O(0") + T + £6a T (noc) ™ + O (V")
=0T+ T + & (T (ne) = B nec) ) 1" + O(0"). O
4.3. Second order asymptotic formula for mildly dissipative periodic points.
Here we derive a more precise second order asymptotic formula, but only for mildly
dissipative periodic orbits, when the flow X? is of class C”, » > 4. This formula will be
used in Sections 7.3 and 7.5, where Theorem A and Addendum F are proved.
Recall that for any periodic orbit v € P for X!, we denote by p, < 1 < A, its

stable and unstable multipliers. Recall Definition 2.2, where we have defined g-mildly
dissipative Anosov flows; now we need to define the same property for periodic orbits.

Definition 4.11 (g-mildly dissipative periodic orbits). For any o € (1,2], the set P¢ C P
of o-mildly dissipative periodic orbits is defined as follows:

P .= {76?:M§A7<1 andu7A§>1}.
For any v € P2, and any point p € v we also say that p is o-mildly dissipative.
Recall that the flow X! is k-pinched for some k, 1 < k < r — 1.

Proposition 4.12. If the periodic point p is volume expanding and %—mz’ldly dissipative,
with eigenvalues < 1 < A, then as n — 400, the period T, of the periodic point p, has
the following asymptotic expansion:

T = 0T + T+ (Ty(n) = B (ne) ) €oct” = (Th(oo) = P (€oc) ) mecX ™ + O(07),
where 0 := ,u,% € (0,A71), and

[k] Jj T [k] J g T
~ 10197, (p) & 4 1 01027, ()
Pi(n) == — —— =P ) PU(E) = — — P,
Remark 4.13. By optimizing the choice of exponents in the proof which follows one
can relax the assumption on mild dissipation and obtain the same formula for 1‘5—‘/3—
mildly dissipative volume expanding periodic points. We also believe that with some
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more efforts one can deduce the same formula for 2-mildly dissipative volume expanding
periodic points.

Below we explain how the previous arguments can be adapted to prove Proposi-
tion 4.12. Let p = X7 (p) be a volume expanding periodic point which is %-mildly
dissipative, i.e., the multipliers u < 1 < X of p satisfy

pA> 1, pix< 1. (4.20)
As in (4.2), let
4 1
= | —2L <2 (4.21)
9 log it — log A 2

In that case, similarly to estimate (4.3) in Lemma 4.4, and because we assume here
that X! is C*, by [Sto86], we can consider C? linearizing coordinates and obtain the
following expansions.

Loy Choy A £ 0, we have the asymptotic formulae

(nstin) = (0,700) = Coot™(1,K°) + i A™"(0,1) + O(p?™), (4.22)
(&) — (€s0s 0) = op™(1,0) + LA (K", 1) + O(u*™). ‘

In fact, arguing as in the proof of Corollary 4.6, we can show that ¢, = £~ and
Noo- We will need the following more precise version of Lemma 4.5.

Lemma 4.14. For some constants o, C

"
oo —

c
Lemma 4.15. For any point x € M, and o € R, let us denote by 1I7: Xy — Yxo(y)
the Poincaré map of the flow Xt from ¥, to Yixo(z), and let f[g = z;((l,(m) o I1Z o 1, be
its expression in normal coordinates. For (£,m) € (—1,1), with || < 1, we have

Dﬂp_T(§777) = [g(nl) )\91:| +O<£)-

Similarly, for (£,m) € (—1,1), with |n| < 1, we have

pif(en =[5 %] +om.
Proof. Let us focus on the first case; the second one is shown analogously. As in the
proof of Lemma 4.5, this essentially follows from Proposition 3.2. In particular, for
& = 0, the matrix of the differential Dﬂ; 7(0,n) is lower triangular, where the only non-
normalized coefficient, namely the bottom-left one, is of order O(n). Indeed, since the
dynamics is normalized along the axes {{ = 0} and {n = 0}, the matrix at (£,n) = (0,0)
is diagonal. O

Fix a constant v € (u% ,A™1). Arguing as we did in the proof of Corollary 4.6, starting
from (4.22), and thanks to Lemma 4.15, we can obtain the following expansions.

Corollary 4.16. For any integer £ € {0,--- ,n}, we have

(En(—€T), 1 (—LT)) = (boop™ “ + OW " 1), A+ 0(™) , VU< Ly,
(En(—LT), nu(—LT)) = (k™ +O(U™), A F + O™ A™)), VL= Ly,

Therefore, for any integer £ € {0,--- ,£,}, we have
é’n
Ty (En(—T),m(—LT)) = T = € Py (T) (oA~ )"~ + O(u3™), (4.24)

(4.23)
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and for any integer £ € {ly,--- ,n}, we have
4
TpT(ﬁn(—fT), M (—LT)) =T — P;(T)(gwﬂn_g)nooA_g +O(u3"). (4.25)

Proof. Let ¢ € {0,---,¢,}. Since TpT is C3, by Taylor formula, we have the following
expansion for the hitting times

Tg(gn(_ET)v nn(_gT)) = Tg(ov nn(_gT)) + 817—;?(07 ﬁn(—fT))fn(—fT)
+0 ( sup I, (&, nn(—fT))én(—ﬁTV)
€]<&n (—LT)
=T — P3(T)(na(—€T))én(—LT) + O (na(—LT)én(—LT)?) ,

where we have used that 0117, (£,0) = 0. By (4.23), we then obtain
Tg(gn(_ET% M (—LT)) =T — P;(T) (M (—LT)) & (—£T) + O (Un(_£T>§n(_£T)2)
=T — PS(T) (1A~ )éoo™* + O (max (M%_Z V(A MQ("‘@A_E))

=T — Py(T)(1ocA ™Yoo + O(v").

4
3

. o 3
Since v can be chosen arbitrarily close to ©2, we can assume that v < p3. Let us now

consider the case where ¢ € {/,,--- ,n}. By Taylor formula, we have

T (& (—T), i (—LT)) = 7] (&u(—LT),0) + D27} (§u(—LT), 0) 1 (—LT)

+0 < sup 8227,?(&1(—”),n)nn(—ﬂT)2>

[n]<nn(—€T)
— T — PUT) (En(—T) ) (—CT) + O (a( 1) (1)),

where we have used that 8227‘1?(0, n) = 0. By (4.23), we then obtain
7y (&n(—LT),00(—T)) = T — Py(T)(&n(—T))10(—T) + O (n(—€T)nu(—€T)?)
=T~ P;L(T)(foou”_e)noo)\_e +0 (max (u")\_e, V() pt A u”_e)\_%)>
=T = PY(T)(€ott™ ™ Jaoh ™" + OW" (uA)" 7).
Since v can be chosen arbitrarily close to ,u%, by (4.20)-(4.21), and since p™~n ~ A\~
we can ensure that
V() < ,ui",u%g” < ,u%" <A O

End of the proof of Proposition J.12. We argue as in Claims 4.8-4.9-4.10. By (4.24), we
have

Ln
TzfnT(X_énT(pn)) = Z Tg(ﬁn(—KT% nn(_gT))
/=1
ln
— LT -6y (P;(T)(nooﬂ)u"—f) + O(nus™).
/=1
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Let us write B (T)(n) = apn+ R, (T)(n), where oy, = aN(T) = o (T) = 78127';{(0, 0),
and R3(T)(n) = O(n?). We deduce that

L= () &

Tzf"T(X_E"T(pn)) =1,T — Oépfoonooﬂnﬁ — &0 Z (R;(T)(Uoo)\_e)u"_g)
/=1
+ O(Mn—ﬁn)\—%n) + O(nM%n)
5 nfén)\fén
=T — &oo Py (Noo) 1™ + apgoonoou'u)\i_l +0(6"), (4.26)

where we recall that 6 := ,u% <AL
Similarly, by (4.25), we have

n

T () = T (XT () = 3 T (E(—T), mn(—LT))

(=lp+1
n B - .
= (= l)T = Y (BT o™ AT) + O(nps™).
b=ln+1
We deduce that
(n—2,)T ¢,/ -n 4 w,j j 1 - (Mj)‘)n tn n
Tp " (pn) - (TL - en)T - 7700)‘ ; O‘p’ (T)gm 1 — /ij)\ + O(nMS )
(%] ' . 1
= (0= t)T = ned™" 3 (D)3
j=1
n—Kn)\—Zn 4

Mn—Zn)\—Kn

= _EnT oo)\inf)u ) — ol I ———
(n—£,)T +n ' (Eo) — apoon P

where (recall (3.2))

+0(0"), (4.27)

u,j (%] J T
o oa!(T) .. 1 01027, (0,0) .
F© _Zﬁm—ﬁ __Zﬁm !

Jj=1 J=1

Finally, by (4.16) and (4.22), the estimate in Claim 4.8 can be improved under the mildly
dissipative assumption in the following way.

T(pn) = T + fooj-;(noo)ﬂn - nwjg(gw)A_n + O(MQn)-

To conclude the proof of Proposition 4.12, it remains to add to 7(py,) the expressions
obtained in (4.26)-(4.27). O

4.4. Asymptotic formula in the volume preserving case. Let us now assume that
the Anosov flow X! is C", r > 3, and volume preserving. In particular, X is 2-pinched
in the sense of Definition 2.2, and by Lemma 3.4, for any time o € R, the polynomials
P:(o0), P¥(o) are merely linear maps:

Pi(o)(n) = Oty (x)n, P/ (0)(§) = d127] ()8 (4.28)
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Let p € M be a periodic point, with period 7" > 0 and multipliers 0 < p < 1 < p~ %

As above we consider a sequence of periodic points (py)n>n, Whose orbits shadow some
orbit homoclinic to p.

Proposition 4.17. Asn — +oo, the period T, of the periodic point p,, has the following
asymptotic expansion:

To=nT + T + &EcocO127, (D)™ + (§ac T (Ms0) — Moa T (Ex0)) 1™ + 0(u™),

where &xoNoo # 0.
Moreover, if Xt is C", r > 3, then the remainder is of order O(v™), with v € (0, ).

Qutline of the proof. We will not give a detailed proof of Proposition 4.17 as it is similar

to the proofs of Proposition 4.2, resp. Proposition 4.12, at a volume expanding, resp.

%-midly dissipative volume expanding periodic point p. We will comment below how

the previous statements can be adapted to the volume preserving case. We use the same
notation as in Subsection 4.2.

By [Sto86], the dynamics near p can be C' %—linearized, and the formulae in Lemma 4.4
are to be replaced with:

(€)= (0,710) = (nc(1, K°) + Eo0(0, 1)) " + O(u3"),
(€0, 77) = (€50, 0) = (Fo(1,0) + 7o (K", 1)) ™ + O(u2"),

for some constants ¢, 5, # 0. Moreover, for any time ¢ € [0, nT], we have

(fn(_t)’ nn(_t)) - (Oa nooAg(_t)) = O(Mni%
(fn(—t), nn(_t)) - ({oo)\;(nT — t),O) = O(M

Then, the estimates in Corollary 4.6 now become: given v € (,u%, i), then for any integer
{<4{,, with £, := [%], we have

En(—T) = oo™ " + O 1Y),
M(—(n— OT) = neop™ " + 0" ™").
Using (4.28), we thus have

if t < 2L,
), ift> =L

)
t
T

T (En(—0T); 1 (=0T)) = 1 + Eoenoedramy (P)1" + O(") + 0 ("),
7y (En(=(n = OT),n0(=(n = OT)) = 1+ Exnocdiory ()" + O(W") + o(u*" 1),

Note that Lemma 4.7 applies in the volume preserving case, as it is insensitive to
whether or not the point p is dissipative.

Gathering the previous estimates, and following the steps of Proposition 4.2, we obtain
the following asymptotic expansions:

F(pn) = T' + (€xoT5(M00) — 1T (Enc)) 1™ + O(u2"),
(X0 (py)) = €aT + lo€ocnocOrary (D)™ + o(u™),
)T (pl) = (n = £)T + (0 — €3)EactiooOrzT (D)™ + ().

We conclude the proof of Proposition 4.17 by adding up the above expansions. U
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Remark 4.18. Let us consider the case where Xt is a contact flow. Fix a periodic point
p = XT(p) and homoclinic points q, ¢ = XTl(q) as above. As observed by Foulon-
Hasselblatt [FHO3|, the coefficient alng(p) in Proposition 4.17 vanishes; but we claim
that the contact property ensures that the coefficient (§ocTp(Noc) =Moo T (€cc)) of the next
term in the asymptotic formula above is non-zero. Indeed, after possibly replacing q,q
with X (¢q), X¥T(¢) for some large integers £,¢' > 1, without loss of generality, we
can assume that 0 < |oo| & |Noo| K 1 are small. We claim that the coefficient

() = (E0T5(M00) — Moo T (Esxc))

is non-zero. Indeed, since E%,E" are C'T®, o > 0, so are the stable and unstable
templates, and we can expand (,(q) = ((T5)'(0) = (T2 (0)) £ooo + 0(€sclsc). On the
one hand, ((T5)'(0) = (T4)'(0)) €actioo is the first order approzimation of the temporal
displacement between Wi (q) and Wit (¢'). On the other hand, by the contact property,
it is also the first order approximation of the transverse area, which has to be of order

§oolloo- We deduce that (T3)'(0) — (T5,)'(0) # 0, hence Cp(q) # 0.

5. ON ASYMPTOTIC PROPORTIONS OF CERTAIN PERIODIC POINTS

In the following, we always assume that X¢: M — M is a transitive Anosov flow.

5.1. Pressure, equilibrium states and SRB measures. Let us recall that, given a
Holder continuous function 1, the pressure P (1) € R is defined by

Pxw) = s (nx0+ [ wan),
peEM(Xt) M

where M(X") is the set of Borel invariant probability measures of X*, and h,(X")
denotes the metric entropy of the time-one map of the flow X* with respect to p. The
equilibrium state j,, € M(X") associated to ¢ is the unique measure in M(X") on which
the above supremum is achieved. It is known to be ergodic and fully supported.

We have defined the SRB measures in Definition 2.3 and now we need to recall few
more well-known facts about them. The positive SRB measure m} of a transitive
Anosov flow X! can also be characterized as the unique equilibrium state of the geometric
potential defined by

u d
Y'ra e —— | log || DX (x)|gell,

dt lt=0
while m’y is the equilibrium state for the potential
d
S: —_— 1 DXt s|.
o 2| log]| DX (2)]e
Also recall that Px (") = Px(¢*) = 0 [Bow75].

5.2. Positive proportion Livshits Theorem of Marshall Reber and Dilsavor.
We denote by P the set of periodic orbits of X!, and given a periodic orbit v C P, we
denote by T'(y) > 0 its period. For any Holder function ¢: M — R, and for any v € P,
we let

T(v)
zwweé B((s)) ds.
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We say that 1) is a coboundary if there exists a Holder continuous x: M — R (which is
smooth along the flow) such that

_ d t
w—%’t:O(HOX).

Fix a Holder function ¢: M — R, and a positive number A > 0. For any T > 0,
and for any subset § C P, we denote by 87 A C 8 the set of periodic orbits v € § with
T(vy) € (T, T + Al], and we let

Z?/),T,A(S) = Z eTw(’Y)'
YEST, A

It is well-known that

1
P(y) = i —logX P
()= lim  logEyra(P),
and if P(¢)) > 0, we also have the Bowen formula, which expresses the equilibrium state
as a weak-* limit of discrete measure supported on periodic orbits [PP90]

1
= lim ——— e (g,
Hop T—+o0 Zw,T,A(T) ng:A v

Given a subset 8§ C P, we say that § has positive proportion with respect to (¢, puy) if

by S
lim sup LA() > 0.

Totoo 2,7,A(P)

Remark 5.1. If we replace 1 with 1 +c¢, where ¢ is a constant, then P(1)+c) = P()+c
and ply1c = py. One advantage of working with geodesics whose length is in the interval
(T, T + A] is that we have obvious inequalities

eIy A(P) < Syiera(P) < eTTAT, 1 A(P)

and similarly for the subset 8. It immediately follows that 8 has positive proportion with
respect to (1, ) if and only if it has positive proportion with respect to (¢ + ¢, juy). It
1s also well-known that two potentials have the same equilibrium state if and only if their
difference is cohomologous to a constant. It follows that the property of having a positive
proportion depends only the equilibrium state y, and is independent of particular choice
of the potential 1.

Let us now recall the positive proportion Livshits Theorem due to Marshall Reber
and Dilsavor [DMR24].

Theorem 5.2 (Positive proportion Livshits Theorem [DMR24]). Let X be a transitive
3-dimensional Anosov flow which is not a constant roof suspension, and let ¢: M — R
be a Holder continuous function. If there exists a Hélder continuous function p: M — R
such that the set 8% := {y € P : T,,(y) = 0} has positive proportion for p,, then ¢ is a
coboundary.

In fact, the result of Marshall Reber and Dilsavor is valid in any dimension under the
condition that stable and unstable distributions do not jointly integrate. In dimension
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3 this is equivalent to the flow not being a constant roof suspension [Pla72, Theorem
3.4].1

5.3. Positive proportion and density. Here we show that sets of periodic orbits of
positive proportion are dense.

Proposition 5.3. Let U C M be a non-empty open set. Let PU C P be the set of
periodic orbits v € P such that y NU # &. Then for any Hélder potential 1v: M — R
with pressure P(y) >0, the set PV has full proportion for the equilibrium state Hop -

Proof. Assume by contradiction that it is not the case. Let U C M be a non-empty
open set, and let ¥»: M — R be a Holder potential with P(i)) > 0 such that the
complement P \ PV has positive proportion for fyp. The set F:= M \ U is closed;
moreover, P¥ := P\ PV consists of periodic orbits v € P such that v C F. Fix A > 0.
For each T' > 0, and for * € {U, F'}, let us consider the invariant probability measure

iy = el
HoTA =5 A (P) e;
T,A

In particular, the support of ,ui 7 A 18 contained in the closed set ' C M. Moreover,

L v ey, = Zura®) o Zural®)

PN — + .
MT/J,T: E'[p,T7A(:P) ~EPTA Ew,T,A({‘P) M¢7T,A E¢,T,A((‘P) :LL¢7T,A

By weak-* compactness, and the assumption that P¥ has positive proportion for Moy, WE

can take a sequence (7,), — +oo such that

by PpE
Wi, A —n by, * € {U,F},  lim Zy 1,8 (P7) _ p> 0.

n—-+4oo vaTn A (T)

Because P(1) > 0 we can apply Bowen formula i, = lim7_,o e, 7,A, and by taking
limit along T}, n — oo, in the above decomposition we have

pp = (1= p)ul) + ppyy.

Since p > 0, and p,, is ergodic, we have p = 1, hence i, = ui. But ,uf; is supported in
F while the equilbrium state p, has full support, a contradiction. O

We have the following direct consequence of the above result.

Corollary 5.4. For any Hélder potential 1p: M — R with pressure P(¢) > 0, and any
set 8 C P of periodic orbits with positive proportion for i, the set {p € v :~v € 8} is
dense in M.

4. In fact, the case of constant roof suspension reduces to the diffeomorphism case, hence, there are
no exception for positive proportion Livshits Theorem in dimension 3.
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5.4. Volume contracting periodic orbits and the SRB measure. Here we show

that if the Anosov flow X': M — M is dissipative, then volume contracting periodic

orbits have full proportion with respect to the positive SRB measure m} and, similarly,

volume expanding points have full proportion with respect to the negative SRB measure
Recall that we have Px(¢") = 0 and by the Bowen formula

1 -1 +
s = e T A, g
Ypu P v

w1, (P) T

If we denote by x*(m%) and x“(m%) the stable and unstable Lyapunov exponents of
m¥ then h(m¥) = x*(m%) by the Pesin formula and, since we are assuming that X'
is dissipative, h(m%) < —x*(m¥) by the Margulis-Ruelle inequality (strict inequality
holds because equality holds only for the negative SRB measure [Led84] and m¥ # my).
Hence for ¢: z — %|t=0 log Jacy(t), we have

[ =)+ x ) <o (5.1)

Now we decompose the set of periodic orbits as the disjoint union P = CUV U €,
where v € € are volume contracting, Jacy(T'(y)) < 1, v € V are volume preserving,
Jacy(T'(v)) = 1, and v € & are volume expanding, Jac,(T'(y)) > 1. We split the
approximating measure jiy« 7,A according to this decomposition

_ Yy ral€) e Syera(V) v Sy ral) e
Hopu T, A = Soera(P) Hapu 1, A SIPINGD) Hapu T A Sye1a(P) Hapu T A
After passing to suitable subsequence T,, — oo, n — oo we can pass to a limit in the
above formula and obtain
mY = ppgu + pgu + (1= p— <) pifu.

Now note that, by construction, we have inequalities :U’SZ)U,T, AlY) <0, '“Z“,T, Al) =0
and Niu,TA(d’) > 0 which persist under passing to the limit: MSJ“ () <0, “X” () =0
and ,ufbu (¢) > 0. Comparing to (5.1) we can conclude that p > 0. Finally, since m¥
is ergodic it cannot be a non-trivial linear combination of invariant measures and we
conclude that p = 1 and ¢ = 0 which means, according to our definition, that volume
contracting periodic orbits have full proportion with respect to m} Similarly, volume
expanding orbits from &€ have full proportion with respect to my.

Lemma 5.5. Let Xt be a dissipative transitive Anosov flow. Then volume contracting
periodic orbits C C P have full proportion with respect to the positive SRB measure m},
that is,
i oe2al®
T—4o00 Ewu’T,A(fP)
Stmilarly, volume expanding periodic orbits € C P have full proportion with respect to

the negative SRB measure m, .

We leave it to the reader to adjust the argument to show that the limit in fact exists,
without passage to a subsequence.
As a direct corollary of Corollary 5.4 and Lemma 5.5 we have:
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Corollary 5.6. Let X! be a dissipative transitive Anosov flow. Then both volume con-
tracting and volume expanding periodic points are dense in M.

5.5. Volume preserving periodic orbits. Let X! be a dissipative transitive Anosov
flow. We say that a periodic orbit v € P is volume preserving if for p € ~, we have

Jac,(T'(y)) = 1.

Proposition 5.7. Assume that X' is not a constant roof suspension. Then, for any
Hélder potential ¢: M — R, the set V C P of volume preserving periodic orbits has zero
proportion with respect to fiy.

Proof. Fix A > 0. Assume that for some Holder potential p: M — R, the set V has
positive proportion. In particular, for a set of v € P of positive proportion, for p € ~,

M) ¢ | p
/0 %’tzo og Jacxu(p) (t) du = 0.

By the positive proportion Livshits Theorem (Theorem 5.2), we conclude that
%]tzo log Jac,(t) is a coboundary. Thus, there exists a continuous function x: M — R
such that for any (x,t) € M x R,

log Jac,(t) = k(X'(z)) — k(z).

In particular, for any periodic orbit v C P, for any p € 7, we have Jac,(T(7)) = 1, and
then X! is volume preserving (see [LS72|), which contradicts our assumption. O

5.6. Mildly dissipative equilibrium states. Let X*: M — M be a dissipative transi-
tive Anosov flow on a 3-dimensional manifold M. Consider the logarithmic infinitesimal
Jacobian

d
Vx> pn |i=0 log det DX (x).

Then 1) = ¥* —9" and we consider the following one parameter family {;}:cr of Holder
potentials
or =t + (1 — )" = " + t.

For each t € R we denote by m; the equilibrium measure for X! associated to the
potential ¢;. The path of equilibrium states {m, ¢t € [0, 1]} connects the positive SRB
measure mgy = m} to the negative SRB measure m; = my. Recall that the function
P:t + P(yp;) which assigns to t € R the pressure of the potential ¢; is smooth, with
P'(t) = Il y dmy. In fact, P is strictly convex, since 1 is not cohomologous to a
constant (see Parry-Pollicott [PP90, Proposition 4.10, Proposition 4.12]). Recall that

by the entropy formula for SRB measures P(0) = P(1) = 0. Let to = to(X*) € (0,1) be
the point at which P achieves its minimum, so that

P'(ty) = /demto =0. (5.2)

Recall that for any periodic orbit v € P for X!, we denote by p, < 1 < A, its
stable and unstable multipliers, and that for any ¢ € [1,2), the set P¢ C P of g-mildly
dissipative periodic orbits is defined as follows:

93'9::{76?:u§)\7<1andu7)\§>1}.

Lemma 5.8. For any o € (1,2], the equilibrium state my, gives full proportion to the
collection Pe.



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 37

Proof. Assume by contradiction that there exists o € (1,2] such that the set P?¢ does
not have full proportion for m;,. We would like to use Bowen formula for m,, however
it has negative pressure. Thus we add constant a consider the family ¢; + ¢. Then
P(p1+c¢) = P(pt) + ¢ and for a large enough ¢ we have P(t)y, +¢) > 0. The equilibrium
states remain the same, in particular, pe, +c = m¢,. And the property of having positive
proportion remains the same under such adjustment (recall Remark 5.1).

Let us decompose P\ P2 = P! U P22 where

fﬁg’l::{’yETP:uE’Y)WZl}, jm%z{vé?:;w)@ﬁl}.

Fix A > 0. As previously, for any T" > 0, and for any subset 8 C P, we denote by
87,a C 8 the set of periodic orbits v € 8 with T'(y) € (T,T + A]. Let

g tea(8) = Z Loty NFT ().

YEST A
and let )
8 — Tipy, (V) +T'(7)
Moy +eTA = 5 A(8) Z e o Oy
<Pt0+C,T, 'YEST,A
so that
m? _ Esozo—&-c,T,A(fP ) I Z goro-x-cTA fPQ’ ) mPe (5.3)
TA — T,A .
PTen T e tera(®P) Mot

o ter,a(P) Moo +eTh:

Take a suitable sequence (7},),>0 such that lim,, T,, = +o0, and
mj&t0+c,Tn,A An m*’ * — ':PQ’ “TDQ,l? 53972'

Since we have assumed that P2 U P22 has positive proportion with respect to My,, DY
passing to a further subsequence we also arrange that for ¢ = 1, 2,
- Sogrema)
n—+oo Ngy te,1,a(P)

= Pi,

with p; + p2 > 0. By (5.3) and the Bowen formula, we then have

mey = (1= p1 = p2)m” + prm®*" + pym™*”.

Without loss of generality, we assume that p; > 0, since the case p2 > O is symmetric. By
ergodicity of the equilibrium measure my,, we conclude that m;, = m””" . By definition,
for any v € P!, we have

log Jacy > —(0 — 1) log 1,
which can be written as

/ b(y(s)) ds > —(o— 1) / 5o (s)) ds.
v vy

Then, for any T}, > 0,

ﬂsé’al Tn 539’1 Tn ‘:PQ !
/M w dm(Pto +¢,Tn,A Z 60 / w dm‘Pt()yTnyA Z _ec (Q B 1) /M qu dm WtOan:A

cTn
s Po,1
ec(Tn+A) / v dm% +eT,a > 0.
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—p, My, we deduce that

0,1
Taking the limit as T,, — 400, and using that mw teTnA

[ v,z o= [ v, >0

The last inequality is strict because integral of ® is negative with respect to any
invariant measure. Indeed, 1° is cohomologous to the average Jacobian function
f ¥ (X*(+))dt which is negative for large enough Tp.
The last 1nequality contradicts (5.2). We conclude that the set P¢ =
{v€P:ufA, <1and uyA§ > 1} has full proportion, as claimed. O

Given g > 1, we introduce the two subsets £¢, ¢ C P?,
e .= {’yef]):u,y)w>1andu$)w<1}, el .= {’yEfP:,uv)w<1andu7)\§;>l}.

Corollary 5.9. For any o > 1, there exist tg,tg € [0,1] arbitrarily close to ty such
that the expanding subset £ has positive proportion relative to mye and the contracting
subset C¢ has positive proportion relative to myg -

Proof. Let us prove the result for €; the other case being completely analogous. Fix any
0 > 1. The pressure function P is strictly convex, and has a critical point at tg, by (5.2).
Then, for any small € > 0, there exists a unique t. € [to, 1], with lim._,t. = tg, such
that

P't.) = /M bdmy, = > 0. (5.4)

By Proposition 5.7, the set of volume preserving periodic orbits has zero proportion
with respect to m;_. Arguing in the exactly same way as in the proof of Lemma 5.8,
we deduce that if ¢ is sufficiently small, then, the set £€2 U €2 C P? has full proportion
relative to my_.

As in the previous proof we pick a constant ¢ such that P(g;. +c¢) > 0 so that we can
apply Bowen formula. Let us show that the set C¢ cannot have full proportion. Indeed,
fix A > 0; using similar notation as in the proof of Lemma 5.8, for any T > 0, we let

m@@ — 1 eT‘f’ts 'y)+cT(7)6 )
ote+c,T,A S te TA(GQ
Pte ) ’YEG

Note that by definition of ¢ we have [ wdmgi tera < 0. If €2 is full-proportion
relative to my_, then,

0> lim /zpdmgj +CM:/ Y dmy,
M < M

T—~+o0

which contradicts (5.4). We conclude that the set £2 has positive proportion relative to
the equilibrium state m;_. In fact, it is easy to see that £¢ has full proportion relative
to my, . O

6. A DICHOTOMY: C'-SMOOTHNESS OF A STRONG SUBBUNDLE OR RECOVERY OF
EIGENDATA

As previously, we consider a transitive C”, r > 3, Anosov flow X! on some 3-manifold,
which is k-pinched for some 1 < k < r—1. Welet p € M be a volume expanding periodic
point of period 7' > 0, with multipliers 0 < g = pp <1 < XA = Xy, pA = Jac,(T) > 1.
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We fix some homoclinic point ¢ € WY .(p), we let 7" = T, € R and ¢’ := XT/(q) €
¥, NWP (p) as in Section 4, and let (py)n>n, be the sequence of periodic points given
by Lemma 4.1, whose orbits shadow the orbit of ¢q. We use the same notation as in
Subsection 4.2. Let ¥, := 12,((—1,1) x {0} x (=1,1)), let {T;(-)} be the stable template
along Wi (p) N Xy, and let 155 be the polynomial of degree at most [k] introduced
in Lemma 3.13. By Proposmon 4.2, the periods (T}, = T}1)n>n, obey the following
asymptotics:

T, =nT +T + ¢(q)u" + 00", (6.1)

2log A

with max (,u2 plos A= 108#) <60 < p, and

6o(0) = oo (T3(no0) = P () )

where (0,70) =1, (q 1(q) and (£50,0) := z;l( ") denote the normal coordinates of ¢ and
¢, respectively. Note that the excursion time 7" = T’ can always be recovered from the
periods (T}, = T )n>n,, since T = limy, 4o (T}, — nT)

Definition 6.1 (Recovery of eigendata from periods). Let
H*(p) = Hi (p) := {q € Wise(p) : ¢ is homoclinic to p},
Heood (P) = Hx good (P) := {q € H"(p) : (p(q) # 0},

and let

He(p) — RU{—o0},
X .
r,=r { q hmsupllog\Tq—nT T’|

n—-+o0o

We say that the stable eigenvalue pn = pu, € (0,1) of the periodic point p can be recovered
from the periods if J—Cgood( ) # 2.

Indeed, by (6.1), if H"

g0od(P) # @, then i can be computed from the periods (75, =

T )n>n, as follows:

logii= sup Tp(@) =Tpla)s V4 € Heopalp), (6.2
qe3t(p)
while if H{ ;(p) = @ then, by (6.1)

sup I'p(q) <logb < log p. (6.3)
qeH*(p)

Remark 6.2. By reversing time, we can analogously define the symmetric notion of
recovery of the unstable eigenvalue at a volume contracting periodic point. Indeed, fix
a periodic point p € M, of period T > 0, with multipliers 0 < p, < 1 < A, with
Jacy(T) = ppAp < 1. Let

Ho(p) = Hx (p) := {d € W;,.(p) : ¢ is homoclinic to p}.

For any point ¢ € H?(p), similarly to Lemma 4.1, we can define a sequence of periodic

points (pp)n whose orbits shadow the orbit of ¢'. Denoting by (T, = T)\ ) their periods,
formula (6.1) becomes

Tn=nT +T + (¢ )N +0(6"), (6.4)
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for some T" =T, € R and 0 € (0, 27D, and where
Gla) 1= e (T(60) = Py(w0))

denoting (€x,0) = 5 M(¢), ¢ = XT'(d), (0,m) = 15 (q), where {TE()} is the

unstable template along Wi (p) N %,, and ]5;; is a polynomial of degree at most [k]

(uniform in p) similar to those introduced in Lemma 3.15. We also denote by 33 .4(p) =
X.g00a(P) the set of points ¢ € H*(p) such that (,(¢') # 0, and we let

1 :
Ip=T:H°(p) > RU{-o00}, ¢+ limsup—log|T —nT —T|.

n—+oo N

Similarly, if ?{good(p) # &, then by (6.4),

—logA= sup Tp(q)=Ty(d), V¢ € Hipalp) (6.5)
q'€Hs(p)

In that case, we say that the unstable eigenvalue \, can be recovered from the periods.

Lemma 6.3. For any volume expanding periodic point p, we have the following di-
chotomy:

e cither the stable eigenvalue 1, € (0,1) can be recovered from the periods (Ty,)n>ng;

° orJ, = I:’;; moreover, the strong stable distribution E* is C1T% along Wit (p)NE,
for some a > 0.

Proof. Assume that p cannot be recovered from the periods (T5,)n>n,. By definition,
and since homoclinic points are dense along W*(p), we thus have T;(n) — P;(n) = 0
for a dense set of n € (—1,1). By continuity of the function T3 — P;, we deduce that
Jp= ]5;. Lemma 3.14 then implies that the strong stable distribution E*® is C1*® along
Wi .(p) N X, for some a > 0. O

loc

This result has the following global counterpart. Before stating the result, let us recall
that by Corollary 5.6, volume expanding periodic points are dense in M.

Proposition 6.4. The following global dichotomy holds:

e cither there exists a non-empty open set V-.C M such that for any volume expand-
ing periodic point p € V, the stable eigenvalue p, € (0,1) can be recovered from
the periods;

e or there exists a dense set of volume expanding periodic points whose stable eigen-
value cannot be recovered from the periods; in that case, the stable distribution E*
is C1T%, for some a > 0.

Proof. Assume that we are not in the first case, namely, there exists a dense set Peyxp, C M
of volume expanding periodic points p whose stable eigenvalue p, € (0,1) cannot be
recovered from the periods. Thus, by Lemma 6.3, for any p € Pexp, we have T = ]5;.
The conclusion then follows from Lemma 3.15. O

Remark 6.5. Let us recall that if the stable distribution E* is C1TY, o > 0, then so is
the stable foliation W* (see e.g. Pugh-Shub-Wilkinson [PSW97, Section 6] ).

Let us conclude this part by recalling the classical fact that 3-dimensional transitive
Anosov flows whose stable and unstable distributions E® and E% are C'! can be classified:
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Lemma 6.6. Let X! be a 3-dimensional transitive Anosov flow. Assume that both E*
and E* are C'. Then,

o cither X' is a contact flow;

o or E5 @ EY is integrable, and X is topologically conjugate to the suspension of
an Anosov diffeomorphism.

Proof. Let w: M — R be the canonical 1-form such that
kerw=FE°*® E", w(X)=1.

Clearly, w is X'-invariant. Assume now that E*, E* are C'. Then so is w, and the
form w A dw is X'-invariant. In particular, since X' is transitive, we have the following
dichotomy:

e cither w A dw is a volume form, in which case, X' is a contact flow;
e or wAdw=0.

In the latter case, by Frobenius Theorem, the distribution E* @ E" is integrable. More-
over, by Plante [Pla72, Theorem 3.1], we can then conclude that X* is topologically
conjugate to a constant roof suspension of some Anosov diffeomorphism on T2. Il

7. PROOFS OF MAIN RESULTS: MATCHING OF EIGENDATA

Let X!, Y be two transitive C", » > 3, Anosov flows on 3-manifolds that are C°-
conjugate by a homeomorphism ® as in (2.1). Let p € M be periodic for X*, of period
T >0, let ¢ € W} _(p) be homoclinic to p, let ¢ = XT'(q) € Wi .(p), and let (py),
n > ng, be the sequence of periodic points given by Lemma 4.1 whose orbits shadow

the orbit of g. The points ®(q) € WL (®(p)), ®(¢') = YT (®(q)) € Wi .(®(p)) are
homoclinic to ®(p). Let {i,}, x € M, be a family of adapted charts for the flow Y, and
let {f]z} x € M, be the associated family of transverse sections. Let also (p,), n > ny,
be the sequence of periodic points for Y* given by Lemma 4.1 associated to the points

d(p), ®(q) and ®(¢’). Let ng = max{ng, n1}.
Lemma 7.1. For all n > ngy, the points ®(p,) and p, are in the same (periodic) orbit.

Proof. Let dy > 0 be some expansivity constant for the flow Y. By construction,
for n > 1, large, the point p, is the unique periodic point in g, near D(q)
whose orbit shadows the pseudo-orbit {Yt(Q(p))}te[_ﬂ Ty With a jump at time
272
% + T’". Moreover, by Lemma 4.1, for n > 1 large, the orbit of p, stays %—Close
to this pseudo-orbit. The pseudo-orbit {Xt(p)}te[_ nT nT v is sent to the pseudo-
272
orbit {Yt(fb(p))}te[_ﬂ ot qpq by ®. Moreover, by Lemma 4.1, and by the conti-
272

nuity of ®, for n > 1 large, the orbit of ®(p,) stays %—close to the pseudo-orbit

{Yt((P(p))}te[iﬂ nt qv). Therefore, the orbits of p, and O (pp) %Y—Shadow each other,
272

hence they are actually equal. Il

As above, we denote by T,/ > 0 the period of the orbit of p,. Similarly, we denote by
Tf(q) > 0 the period of the orbit of p,. By Lemma 7.1, for large n, we have

T = T2, (7.1)
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7.1. The case when one of the flows is volume preserving. Here we consider the
case when one flow is conservative and the conjugate flow is dissipative. In Section 9,
we give certain non-trivial examples when this indeed happens. First we establish con-
sequences of the existence of a conjugacy.

Proposition 7.2. Assume that X' is a 3-dimensional dissipative Anosov flow which
is conjugate to a conservative Anosov flow Y by some homeomorphism ®. Then, the
following statements hold:

1. both distributions E5. and EY- are of class Cl*e, for some a > 0;

2. at least one of the distributions E5 and EY is of class Cl*e, for some a > 0.

Remark 7.3. In fact, the above dichotomy can be refined into the following trichotomy:

1. either both Xt and Y are constant roof suspension flows, and all four distributions
E%,EY%, E} and By are C*;

2. or Y is a contact flow, EY% s Cc'*e . for some a > 0, E% 1s not C', and ® is
smooth along stable leaves;

3. or Y is a contact flow, E% is ctte for some a > 0, E% is not Cl, and ® is
smooth along unstable leaves.

Proof. 1f both E5 and EY% are C'™® « > 0, then by Lemma 6.6, we have that X? is
a constant roof suspension flow, and then so is Y?; in particular, both E§. and EY are
C1*t% & > 0. Hence, in what follows we will assume that neither X* nor Y* is a constant
roof suspension flow.

If there exists a dense set of volume expanding periodic points of X! at which the
stable eigenvalues cannot be recovered, then by Proposition 6.4, the distribution E%
is Ot for some o > 0. Similarly, if there exists a dense set of volume contracting
periodic points of X* at which the unstable eigenvalue cannot be recovered then EY is
C1*e for some a > 0.

Hence, using Corollary 5.4 we are free to assume that for a full proportion set of
volume expanding periodic points of X*, with respect to the measure my, the stable
eigenvalue can be recovered. That is, for such points p, there exists a homoclinic point
q € H“ _.(p) such that the periods (T}!),, of the periodic points (p,,), given by Lemma 4.1

good
whose orbits shadow the orbit of ¢ satisfy (see (6.1)):

T3 =nT + Ty + Gla)uy + O(0y), (7.2)

where we recall that p, € (0,1) is the stable eigenvalue of p, 6, € (0,pu,), and the
coefficient (,(q) # 0.

On the other hand, by the asymptotic formula obtained in Proposition 4.17 for the
volume preserving flow Y* at the periodic point ®(p) = X7 (®(p)), and by (7.1), for
n > 1, we have

T8 = T + T + Costagy (T)sl ) + Oy ), (73)

where p1g(,) € (0,1) is the stable eigenvalue of ®(p), Cx # 0, and ag(y,)(T) is the value
at (®(p),T) of the longitudinal Anosov cocycle (z,t) — ay(t) (see Remark 3.6). Clearly,
since the convergence rate of n,ug(p) is not precisely exponential we see that the above
formulae could only be compatible when ag,) (T') = 0. Hence the longitudinal Anosov
cocycle vanishes on a full proportion (with respect to the equilibrium measure ®,m’y)
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set of periodic points ®(p), and by Theorem 5.2 the longitudinal Anosov cocycle is a
coboundary. Then, by [FHO3|, we conclude that both Ej and Ef. are of class oo
a > 0.

As we have already recalled in Lemma 6.6, using the results from [FHO03, Pla72],
one can then conclude that Y? is either a contact flow or a constant roof suspension
flow, the latter case being ruled out by our assumption. By the formula obtained in
Proposition 4.17, formula (7.3) can then be refined as

T = nT + Ty + Cop) (D) + (i), (7.4)

with &b(p) (q) # 0, due to the quantitative non-joint integrability of E§, and Ef in the
contact case, see Remark 4.18. Comparing (7.2) with (7.4), we deduce that for a full
proportion set of volume expanding periodic orbits ~, stable multipliers of v and ®(7)
match. Applying Theorem 5.2, we conclude that for any periodic point p = X7 (p),
stable multipliers of p and ®(p) match, hence conjugacy ® is smooth along stable leaves,
by the classical argument [d1L92].

To finish the proof, let us note that in the above situation, E% has to be C'*<, for
some o > 0. Otherwise, by the same reasoning, for any periodic point p = X7 (p), the
unstable multiplier of p would have to match the unstable multiplier of ®(p). Together
with the matching of stable multipliers this immediately implies that all periodic orbits
of X! are volume preserving (Jacobian is 1). This, by [LS72], implies that X* is volume
preserving, contrary to our assumption. 0

7.2. The trichotomy: proof of Theorem E. Let X!, Y be two transitive C” Anosov
flows on 3-manifolds as before, that are C°-conjugate by a homeomorphism ®. Assume
that they are k-pinched, & < r — 1, and that none of the four foliations W5, WY,
Wy, Wi is CL.

By Proposition 7.2, either both X* and Y* are volume preserving, or both X* and Y
are dissipative.

If both X? and Y are volume preserving, then, by the work of Gogolev-Rodriguez
Hertz [GRH22|, X* and Y are C"*-conjugate.

Let us now consider the case where both X* and Y? are dissipative. For Z = XY,
we denote by Py the set of periodic orbits for Z'; we decompose the set of periodic
orbits — Py = £ UV U Cyz, where v € €z are volume expanding, Jacf(T(W)) > 1,
v € Gz are volume contracting, Jacf (T'(y)) < 1, and v € Vz are volume preserving,
Jacf(T(’y)) = 1. Then, by Proposition 6.4, for Z = X,Y, there exist non-empty open
sets VZS, VZe C M such that

e for any volume expanding periodic point p € VZ‘O’ N €z, the stable eigenvalue
,ug € (0,1) of Z* at p can be recovered from the periods;

e for any volume contracting periodic point p € VZe N Cz, the unstable eigenvalue
)\5 > 1 of Z! at p can be recovered from the periods.

Since Z! is transitive, there exists tz € R such that Vy := VENZ712(V§) # @ is a
non-empty open set. Moreover, for any volume contracting point p € VZC, the point
Z~tz(p) is still a volume contracting periodic point, and its unstable eigenvalue can
still be recovered from the periods. By a similar argument, we can also assume that

Vi=Vx N0 LWy £ 2.
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Let my be the negative SRB measure for the flow X*; recall that it is the equilbrium
measure for the potential ¢% : x — % li=o log || DX*(z)|ps|. By functoriality, the push-
forward measure ®,m’y is also an equilibrium measure for Y, associated to the potential
Y% o @1, By Proposition 5.3, and Subsection 5.4, the set '.P;’g = fP}/( NEx C Px of
volume expanding periodic orbits for X crossing the open set V has full proportion
for the measure my. By construction of V', we deduce that for the full proportion set

‘.P;?E of periodic orbits v for X*, the stable eigenvalue u, € (0,1) can be recovered from
the periods. More precisely, denoting by Fg( the function introduced in Definition 6.1
for the flow X?, for any v € ﬂ)y(’e, there exist p € VN and ¢ € HY . ,4(p) such that
log py = T (q)-

Let us also consider the set <I>(CP§/(’€) = T}‘i’g U TK’V U CP¥’G C Py, where TP¥’E =
QD(TE/(’E) NEy, TPX‘;’V = @(?y(’g) N Vy and ?¥,€ = @(T}/(’E) N Cy are volume expanding,
volume preserving, and volume contracting periodic orbits for Y?, respectively. By
Proposition 5.7, the set T¥’8 U ?¥,€ has full proportion with respect to the equilibrium
measure ®,m>. We have two cases:

1. 9’1‘;’8 C Py is a set of positive proportion for the equilibrium measure ®,my;

2. (P}‘f’e C Py is a set of positive proportion for the equilibrium measure ®,m’,.

Although it is not obvious, we will see that these two cases are actually mutually exclu-
sive. Below we treat these two cases separately.
Case 1. For any periodic orbit v € T;/(,g N ‘Dfl(?x‘f’g), there exist points p € V N,

q € Hy gooa(p), and ¢ € Hy . q(®(p)) such that logp, = F;f(q) and log pig(y) =
F}g(p) (q), where pg(y) € (0,1) is the stable eigenvalue of the volume expanding periodic

point ®(p) of Y, and F;c (Fg(p)) are the functions introduced in Definition 6.1 for
the flows X! (Y?) at p (®(p)). In fact, since both functions I‘g( and Fg(p) are entirely
determined by the lengths of shadowing periodic orbits, and by (7.1) these lengths are
the same for any homoclinic point ¢x € % (p) and the corresponding homoclinic point
®(gx) € H5-(P(p)) we have

F;((QX) = Fg(p)(@((b{))'
Using (6.2) and (6.3) we deduce that

log f1y = T (@) = L) (®(q)) < T (@) = 108 pr(s)-
Similarly,
log Ho(y) = Fg(p)@) = F;((i’_l(ﬁj)) < Fg(Q) = log fiy.
Hence
[y = [l ()- (7.5)
In particular, denoting by ¢: M — R the Holder potential

S S d
pi= Pk —Uy e @iz o limo (log IDX" ()| p:|| — log [|IDY"(®(2)) |- ]l) .

equation (7.5) implies that for any periodic orbit 7 in the positive proportion set
fP;/("g N @fl(?x‘fg), we have T,,(y) = 0. By the positive proportion Livshits Theorem
(Theorem 5.2), we thus conclude that ¢ is a coboundary. In particular, for any periodic



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 45

point p € M of X*, denoting by p,, tap) € (0,1) the stable eigenvalues at p and ®(p)
for the flows X* and Y, respectively, we have

Ip = Ha(p)- (7.6)

Case 2. Let us now consider the second case. By the definition of V', and by (6.5),
for any periodic orbit v € ny(’E ﬂ@‘l(?¥’e), there exist points p € VN, q € %%good(p),
and ¢ € Hy,,q(®(p)) such that logu, = I'X(q) and —logAg(y) = F}g(p)((j’), where
Ap(y) > 1 denotes the unstable eigenvalue of the volume contracting periodic point ®(p)
of Yt and Fg(p) is the function introduced in Remark 6.2 for the flow Y at ®(p). Let us

denote by (1)), and (T, ;3')n the periods of the periodic orbits which shadow the orbits
of ¢ and ¢, respectively. Arguing as previously, and by (7.1), we deduce that

logpy = sup Tp(gx)= sup Dy (ay) = —log Ag(y)-
ax €% (p) qy €35 (2(p))

Since the set ?;/(,g N <I)_1(‘P¥’e) has positive proportion, we conclude that for any periodic
point p € M for X*, we have

where j1, € (0, 1) is the stable multiplier at p and Ag () > 1 is the unstable multiplier at
®(p) for the flows X! and Y, respectively.

In particular, if cases 1 and 2 were occuring simultaneously, from (7.6)-(7.7), we would
conclude that the flow Y is volume preserving, contrary to our assumption.

To finish the proof we need to repeat the whole argument again, but instead of starting
with m7y and considering volume expanding periodic points for X*, we can start with
m} and consider volume contracting periodic points. Specifically, by construction of V|
and Proposition 5.3, for the positive SRB measure m}, there exists a full-proportion
set fP;/(’e of volume contracting orbits v for X* (crossing the open set V') whose unstable
eigenvalue A\, > 1 can be recovered from the periods. Similarly, we have @(ﬂ’;’e) =
,:]33\&8 U 533\’ U ’:]SV’G, where ’j]V’}‘f’E, 5}\?\7 and ’:]33‘1’6 are volume expanding, volume preserving,
and volume contracting periodic orbits for Y, respectively, and the set i’]3¥8 Uff)g:‘? C Py
has full proportion for the equilibrium measure @*m}. For any periodic point p € M
for X!, we denote by u, < 1 < ), its eigenvalues, and we denote by pap) < 1< App)

the eigenvalues of the periodic point ®(p) of Y. Splitting into two cases as previously,
we deduce that

1. either for any periodic point p of X', we have )\, = Ad(p)i

2. or for any periodic point p of X, we have Ap = ,u(;(lp).
Notice that now we have arrived at four cases:

1. for any periodic point p we have i, = gy and Ay = Ag(p);

2. for any periodic point p we have p, = A;(lp) and \, = u;(lp);

3. for any periodic point p we have p, = pg(p) and Ap = u;(lp);

4. for any periodic point p we have p, = A;(lp) and A, = Ag(p)-
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In the latter two cases we conclude that X! is volume preserving, which gives a contra-
diction. In the first case we apply Theorem 2.1 and conclude that the flows X* and Y?
are smoothly conjugate. While in the second case, swapping of the eigenvalues at cor-
responding periodic points implies swapping of the positive and negative SRB measures
of the two flows. Indeed, by the Livschits theorem, both 15 — 15 o ® and 9% —1)5- o @
are cohomologous to 0 (recall the Definition 2.3) and ® must swap the SRB measures
by functoriality property of equilibrium states. O

7.3. Jacobian rigidity for flows: proof of Theorem A. We begin with a remark
on a finite regularity version of Theorem A.

Remark 7.4. Theorem A was stated for C*° flows for convenience, but it also works in
finite reqularity, namely, C" flows, r > 4, which are k-pinched for some 1 < k <r — 1.

Let Xt: M — M and Y*: N — N be two transitive dissipative C*° Anosov flows
on 3-manifolds M and N. Assume that they are C%-conjugate by a homeomorphism
®: M — N, ®o X! =Y"o®d. Assume that for any periodic point p = X7 (p) Jacobians
match, i.e.,

det DX (p) = det DY T (®(p)). (7.8)

We apply Theorem E and conclude that X and Y are C*°-conjugated, except, possibly,
in one of the following two cases:

1. the positive and negative SRB measures of the flows X, Y are swapped by ®:;
2. at least one of the foliations W%, and WY, is C'*e for some a >0, Z = X,Y.

We claim that the former case never happens; indeed, swapping of SRB measures implies
that any volume expanding periodic point for X* is mapped to a volume contracting
periodic point for Y, which is ruled out by (7.8).

Let us then assume that we are in the latter case. After possibly reversing time,
without loss of generality, we can assume that W% is C11® o > 0.

Claim 7.5. The foliation W% 1is C' if and only if both X' and Y are constant roof
suspension flows.

Proof of the claim: The reverse implication is clear, so let us focus on the direct one,
and assume that W% is C'. Now we have that both W% and WY and we can apply
Lemma 6.6. Taking into account that X is dissipative we have that X* must be (topo-
logically conjugate to) a constant roof suspension flow (over an Anosov diffeomorphism
of T?). Let us denote by E3 and E% the (strong) stable and unstable bundles of the
flow Z', for Z = X,Y. In particular, the distribution E% & F% is integrable. Since
the latter condition is topological, it is preserved by the C°-conjugacy map ®, hence
the distribution E§ @ Ej is integrable too. By Plante [Pla72, Theorem 3.1|, we then
conclude that Y is also a constant roof suspension flow. O

First assume that that X! and Y? are not constant roof suspension flows. By the
above claim, the foliation W% cannot be C'. Similarly, the flow Y cannot have both
foliations W3, and WY. of class C'; we then have two cases:

1. W5, is not ct,
2. Wy is not Ct.
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Case 1. Let us assume that W5, is not C'. By Proposition 6.4 and the transitivity
of the flows X', Y we deduce that there exists a non-empty open set V. C M such
that for any volume expanding periodic orbit v for X! crossing V, the periodic orbit
() is also volume expanding because of the Jacobian matching (7.8). Moreover, the
stable eigenvalues ui( , ,ugm € (0,1) of X! and Y* at v and ®(v), respectively, can be

recovered from the periods. Let Tygg be the set of volume expanding periodic orbits for
X* crossing V. We have

log f1y = sup I‘g( = sup Fg(p) = log pa(y), Vv E ‘PE/(’E, pEA. (7.9)
Hx () Hy (2(p)

Consider the Holder potential ¢: M — R,
d
o v 2 limo (log [DX! (@) | — log [ DY (@ ()] - )

By Proposition 5.3, and Subsection 5.4, the set ZPE/(’S has full proportion with respect

to the negative SRB measure m ., and by (7.9), for any v € 9’;/(’8, we have T, (v) = 0.
By the positive proportion Livshits Theorem (Theorem 5.2), we conclude that ¢ is a
coboundary. Therefore, for any periodic point p for X, the stable multipliers of X?
and Y?! at p and ®(p) match. By (7.8), we deduce that for any periodic point p of X?,
the stable and unstable multipliers of p and ®(p) match, and hence, the conjugacy map
® between X' and Y is C>° [DILMMS6, dIL87|, as claimed.

Case 2. Let us now consider the second case, i.e., WY is C'* for some o > 0, but
neither W% nor Wy, is C 1. Our goal is to show that this case is actually ruled out by
the Jacobian assumption (7.8).

For Z = X, Y, recall that the potentials for SRB measures m; and mJZr are ¢y : T —
4 1=0 log |DZ"(x)|ps || and ¥y : x — —4 |y—o log |DZ*(x)| gy ||, respectively. For each
t € R, we denote by m; the equilibrium measure for X* associated to the Hélder potential
pr 1=t + (1 — .

Let v € Px be a periodic orbit of X, of period T > 0, with multipliers 0 < pu =
fy <1 <X =\, We fix p € v, a homoclinic point ¢ € Wi _(p), we let 7" =Ty € R, so
that ¢/ := X7'(¢q) € EpNWi (p). Let (pn)n>n, be the sequence of periodic points given
by Lemma 4.1 whose orbits shadow the orbit of q. We use the same notation that we
used in Section 4.2. Recall that ¥, :=1,((—1,1) x {0} x (—1,1)) is the local transversal,
that {T(-)} is the stable template along Wi! (p) N %, and that {T7(-)} is the unstable

template along Wy _(p) N %,. Also recall from Lemma 3.14

loc

(] i T (] j 5. T
~ 1 618%’7' (p) . ~ 1 6{627' (p) .
Pp(n)::_zﬁ u/\jp—l " Pp(é)::_zﬁ ,uj)\p—l &
=1 j=1

Recall that for any o > 1, we denote by P4 C Px the set of g-mildly dissipative
periodic orbits,
P% = {'y € Px : p2Ay <1 and py A3 > 1}.
As in the proof of Proposition 4.12, we will consider gp-mildly dissipative periodic orbits,
with gg 1= % By Corollary 5.9, there exists té’o € [0,1] such that the subset €% C P
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of volume contracting periodic orbits,
€ :={y€Px:p\y <1land A A > 1}
has positive proportion with respect to m := myeo.

Claim 7.6. If the periodic point p is po-mildly dissipative, and uX # 1, then asn — 400,
the periods T, of the periodic point p, admit the following asymptotic expansion:

T, =nT +T + (qu™ + O0"), (7.10)
for some 6 € (0, u), where (p(q) = (TZ(TIOO) — ]5;(7700)> oo-

Moreover, there exists a subset j’gg C ‘P_ﬁ'g of full proportion with respect to m such
that for any v € P and any p € v, there exists a homoclinic point ¢ € WY (p) such

that ¢p(q) # 0.

Proof. If p is volume expanding, namely pyA > 1, then the claim follows directly from
Proposition 4.2. So consider the case when p is volume contracting, namely, pA < 1. By
Proposition 4.12 applied to the inverse flow X ~, the point p becomes volume expanding,
hence as n — 400, the periods T;, of the periodic point p,, obey the following asymptotic
expansion:

Ty = 0T + T+ (T (c) = P (60) ) 1oeA ™" + (T3(00) = Py (1) ) seit” + O(07).
Since WY ig C'* o > 0, by Lemma 3.14, for any choice of p and ¢, the term Czlv(q) =
(T3 (€oo) — P5'(§c0)) 00 vanishes, hence the expansion of Ty, is of the form (7.10) as well.

Now, by Proposition 5.7, we know that the set of periodic orbits v € Px for which
iy Ay = 1 has zero proportion with respect to m. Let P C P% be the subset of periodic

orbits v € P such that s, Ay # 1, and such that for any p € ~, and any homoclinic point
q € Wi .(p), we have (p(q) = 0. If P has positive proportion, then by Corollary 5.4,

loc
and arguing as in Lemma 3.15, we conclude that the stable bundle E% is C1* for some
a > 0, hence also W5 (see Remark 6.5), contrary to our assumption on X ¢, O

Claim 7.7. The potential 1% — 1§ o ® is a coboundary.

Proof. Let égg =C¥N j’gg be the subset of volume contracting periodic orbits within
‘ﬁgg. By Corollary 5.9 and the preceding claim, égg has positive proportion with respect
to m.

By (7.8), any v € @(ég?) is a volume contracting periodic orbit for the flow Y.
Moreover, @(égg) has positive proportion with respect to the equilibrium state m :=
®.m. We claim that for a subset G C ®(€%) of full proportion with respect to 7
within @(ég?), the unstable multiplier A5 > 1 of any periodic orbit ¥ € éf,o can be
recovered from the periods. Indeed, otherwise, by Lemma 6.3 (for volume contracting
periodic points in place of volume expanding periodic points), and by Corollary 5.4, we
deduce that the unstable distribution F% of Y (hence also the unstable foliation W)
is C1T2_ for some o > 0, contrary to our assumption.

Arguing as in the proof of Theorem E in Subsection 7.2, for any periodic orbit 7 in
the set <I>_1(é§’,°), the stable multiplier i, € (0, 1) of v for X! matches the inverse of the
unstable multiplier Ag(y) > 1 of ®(y) for Y?, i.e.,

~1
Py = )‘<I>(7)'
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Since the set &1 (éf,o ) has positive proportion for m, by the positive proportion Livshits
Theorem (Theorem 5.2), we conclude that ¢§ — 1§ o ® is a coboundary. O

Let us now explain how to reach a contradiction. By (7.8), the potential
(x —¥%) — Wy —¢y)o®
is a coboundary. Combining with the last claim, we deduce that
1y o @ is cohomologous to 2¢% — ¥ = ¢a. (7.11)

As we have already discussed in Subsection 5.6, the function P: t — P(y;) is strictly
convex, due to the fact that X! is dissipative. But it always vanishes at 0, 1, and
by (7.11), it also vanishes at 2, a contradiction.

To finish the proof, it remains to consider the case where X* and Y are topologically
conjugate to constant roof suspensions over two Anosov diffeomorphisms f and g of T?,
respectively. In particular, f and g are conjugate by some homeomorphism h: T? — T2,
ho f =goh,and by (7.8), for any periodic point p = f"(p), we have

det Df"(p) = det Dg" (h(p)). (7.12)

Fix a sufficiently large constant £ > 0 such that logdet D f+x > 0 and log det Dg++x > 0.
Let us consider the suspension flows X*, Y over f and g, respectively, with roof functions
given by log det D f 4« and log det Dg+ . Then, Xt and Y* are transitive Anosov flows
(recall that f and g are always transitive) which are also dissipative. Since f and g are
conjugate, the suspension flows Xt and Y are orbit equivalent; actually, by (7.12) and
Livshits Theorem, the flows X* and Y are C%-conjugate.

We claim that neither X! nor Y is a constant roof suspension flow. Indeed, if X!
is conjugate to a constant roof suspension flow, then we have that logdet Df is con-
tinuously cohomologous to a constant c; € R. If ¢y = 0, then the diffeomorphism f is
conservative, contrary to our assumption. On the other hand, if logdet D f = yo f—v+cy
for a constant ¢y > 0 and a continuous transfer function v: T? — R, then we can take
ny € N large enough such that for any n > ny, logdet D f™* = yo f" —~v+mncy > 0, which
is incompatible with f being a diffeomorphism. The case where ¢y < 0 is impossible for
similar reasons.

Now we have that X! and Y?! are transitive dissipative C°° Anosov flows on 3-
manifolds which are C%-conjugate by a homeomorphism ®, doX* = Ytod, and by (7.12),
for any periodic point p = XT(p), T > 0, Jacobians match, i.e.,

det DXT(p) = det DY T (®(p)).

Since X* and Y are not constant roof suspension flows, by the previous discussion, we
deduce that they are C°°-conjugate. This implies that for any periodic point p = X7 (p),
stable and unstable multipliers of p and ®(p) match. This in turn implies that for any
periodic point p of f, the multipliers of p and h(p) match, and hence, the conjugacy
map h between f and g is C*° [DILMMS6, dIL87]. Since the initial conjugated flows X
and Y are constant roof suspension flows over f and g, we conclude that X and Y?
are, in fact, C'*°-conjugate. The proof is complete. O
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7.4. Jacobian rigidity for diffeomorphisms: proof of Corollary B. It is a direct
consequence of Theorem A. Indeed, let f,g: T?> — T? be two dissipative C*> Anosov
diffeomorphisms that are C%-conjugate by a homeomorphism h: T? — T2, ho f = go f.
Assume that for any periodic point p = f™(p) Jacobians match, i.e.,

det Df™(p) = det Dg" (h(p)). (7.13)

Let us show that f and g are C'°*°-conjugate.

Fix a sufficiently large constant x > 0 such that log det D f+x > 0 and log det Dg+x >
0. Let X*: M — M,Y": N — N be the suspension flows over f and g, respectively, with
roof functions given by log det D f 4+ & and log det Dg+x. Then, X* and Y? are transitive
Anosov flows (recall that f and g are always transitive) which are also dissipative. Since
f and g are conjugate, the suspension flows X* and Y are orbit equivalent; actually,
by (7.13) and Livshits Theorem, the flows X’ and Y are conjugate by some C° map
d: M — N.

By Theorem A, we conclude that X* and Y? are C*°-conjugated. In particular, for
each periodic orbit v of X* the multipliers of v and ®(y) match; this in turn implies
that for any periodic point p of f, the multipliers of p and h(p) match, and hence, the
conjugacy map h between f and g is C*° [DILMMS6, dIL87]|, as claimed.

Although it is not needed for the proof, let us note that in fact, neither X* nor Y is
a constant roof suspension flow. Indeed, as we observed in the proof of Theorem A the
case where logdet D f is cohomologous to a constant is ruled by our assumption that f
is dissipative.

7.5. Improving to two C' foliations: proof of Addendum F. Given r > 3, let X?,
Y? be two 3-dimensional transitive C” Anosov flows that are k-pinched, 1 < k < r — 1,
and which are C%-conjugate by a homeomorphism ® as in (2.1).

If both flows X and Y are conservative, then by [GRH22|, at least one of the following
holds:

e X' and Y are constant roof suspension flows, and all four foliations W5, W%,
3 and WY, are cl,

e the conjugacy @ is smooth.

Now, if X! is dissipative but Y is conservative, then the result follows from Proposi-
tion 7.2. In the following, we thus assume that both X* and Y are dissipative, and that
at least one of the foliations W5, WY is of class C' 1 Up to reversing time, without loss
of generality, we will assume that W% is C.

On the one hand, if W% is also C', then as we saw in Claim 7.5, both X* and Y* are
constant roof suspension flows, in which case, all four foliations W5, W%, W5, and Wy
are CL.

On the other hand, if W% is not C', then by Lemma 6.6, X* and Y are not constant
roof suspension flows, and at least one of the foliations W5, and Wy, is not Ct. To
conclude the proof of the first half of Addendum F, it remains to show that if the stable
foliation W5, is not C 1 then one of the following holds:

a. the conjugacy ® is smooth along stable leaves and the foliation WY, is also Cl;

- _ o+
b. ®,my = my.
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In the following, we thus assume that W% is C' 1 but neither W% nor W5 is. We split
the proof into two cases. In the following, given a periodic point p = X7 (p), we denote
by pp = A§(7P(T) < 1, resp. Ay := /\}‘(’p(T) > 1 its stable, resp. unstable multipliers
for X*, and by g = AV () (T) < 1, resp. Ag(p) = AV () (T) > 1, the stable, resp.
unstable multipliers of ®(p) = YT (®(p)) for Y.

Case 1. Assume that for some equilibrium state m for X?, m and ®,m give positive
proportion to the set of volume expanding periodic orbits of X? and Y respectively.
Then, arguing in exactly same way as in the first case 1 of the proof of Theorem E, we
deduce that

p = Ha@m),  Yp=X"(p). (7.14)
The following proposition shows that we are necessarily in case a. above:

Proposition 7.8. Assume that the flow X' has C' unstable foliation W%, and that
stable multipliers of X' and Y at corresponding periodic points match as in (7.14).

Then the conjugacy ® is smooth along stable leaves, and the unstable foliation Wy of
Ytis CL.

Proof. By (7.14), the conjugacy ® is smooth along stable leaves (see [d1L92]). But ®
is always smooth along flow lines; by Journé’s lemma [Jou88|, we deduce that ® is also
smooth along the leaves of W<.

By [PSW97, Section 6], Wy is C L'if and only if local unstable holonomy maps of Y
are uniformly C'. For Z = X, Y, given two points z,y with y € WY 1..(z), we denote
by 7

HOI%,ar,y: CZs,loc (.%') - WCZS,IOC(y)
the local unstable holonomy map. The conjugacy map ® sends the foliations W%, W
to the corresponding foliations WY., W§? respectively; as a result, for any points z, y with
Y € W 1oc(2), we have

-1
B\ es (y)oHOIUX@,yo(@\WCS m) = Hol, g4 a(y)- (7.15)

X,loc X,loc

Since W% is C', by [PSW97, Section 6|, the local holonomy maps Holy ... ¥ €
W“XJOC(m), are uniformly C'. Moreover, as recalled above, ® is uniformly C' along local
leaves of W¢. By (7.15), we deduce that local holonomy maps Holy ; 5, § € Wy,.(2),
are uniformly C', which concludes the proof. O

Case 2. Assume now that for any equilibrium state m for X! such that the set of
volume expanding periodic orbits of X has positive proportion with respect to m (such
as the negative SRB measure my, by Lemma 5.5), the equilibrium state ®,m gives full
proportion to the set of volume contracting periodic orbits of Y.

Let us first assume that Wy is not C 1. Then, considering the equilibrium states My,
®,my, and arguing in exactly same way as in case 2 of the proof of Theorem E, we
deduce that

Hp =Agpyr TP =X (D).

This implies that ®,my = m;;, i.e., we are in case b. above.
On the other hand, if WY is also C', then according to the following proposition, we
are in case a., which completes the proof of the first point of Addendum F:
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Proposition 7.9. If X' and Y* are not constant roof suspension flows, and both W%
and Wy, are C, then the conjugacy ® is C' along stable leaves.

Proof. As above, for Z = X,Y, given two points z,y with y € Wy loc (), we denote by
Hol , ,, the local unstable holonomy map. Let us also denote by

HOIZJ: RN WZ loc( ) - WSZ,loc(y)

the holonomy map along the leaves of W%'. In particular, for any z € WSZJOC(Z'), there
exists a unique 0z(z) = 074 4(z) € R such that

Holy, ,(2) = Z°2) o Hol}, ,(2).
Moreover, the function ¢z : WSZ,IOC(x) — R is C1; indeed, W% is C!, hence by [PSW97,

Section 6], so is the unstable holonomy map Holy , . Since the conjugacy map @
preserves dynamical foliations, we see that

8y.0(2),0(y) © P|yps

loc

0 = 0% (7.16)
Claim 7.10. There ezists a point y € W ,.(x) such that

0y o (2) p(y) (P(2)) # 0. (7.17)

Proof. Otherwise for any y € Wi (z), we have that DHoly g, 4, By (®(2)) =
Ej (®(y)). By minimality of the unstable foliation WY, we deduce that E§ & Ey is

integrable, hence Y? is a constant roof suspension flow, by Lemma 6.6, a contradiction.
See e.g. [ALOS24, Lemma 5.8 for more details. O

Let us fix a point y such that (7.17) holds; then, by the implicit function theorem,
Sy,a(z),0(y)|v is a local Cl-diffecomorphism, for some nelghborhood U C Wy (2(2))

of &(x ) By (7.16), we deduce that @‘q,_ Wy = = (y,a(),0@)lv) "o 0X zylo-1 () 18 Cct.

Since this is true for any point z, we deduce that ® is C!. O

Let us now show the second half of Addendum F, when both flows are C* regular
and g—mildly dissipative. We will also need to use the second order asymptotic formula
derived in Section 4.3. By |GRH22| and Proposition 7.2, we are free to assume that
both flows X! and Y are dissipative. According to the preceding proof, we see that the
case which remains to be considered is when

e W& is C ! yegular but W% is not;

e the conjugacy ® satisfies ®,m’ = m;i

In particular, by the latter property, we have

i =gty VP =X"(p): (7.18)

Let us show that WS- is C'. Assume by contradiction that it is not the case. By
Lemma 5.5, the negative SRB measure my. gives full proportion to the set of volume
expanding periodic orbits of Y*. Since we assume that W$ is not C', by Lemma 6.3
and Corollary 5.4, for a full proportion set of volume expanding periodic points of Y
with respect to my,, the stable eigenvalues can be recovered. That is, for such points
®(p) = YT (®(p)), with multipliers 0 < pgp) < 1 < Ap(p), there exists a homoclinic

point ®(g) € Hg,,q(®(p)) such that the periods (T},), of the periodic points (®(py))n
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given by Lemma 4.1 whose orbits shadow the orbit of ®(¢) satisfy the asymptotic formula
(see (6.1)):
Tn=nT+T + Ca(p) (P(a)) 1) + O055())

with () (2(q)) # 0, and Og(p) € (0, ta(y))-

Recall that we denote by 1, < 1 < A, the eigenvalues of the periodic point p = XT(p).
The flows X! and Y are globally g—mildly dissipative and we can apply the two-term
asymptotic formula deduced in Proposition 4.12. Since WY is C', by Lemma 3.14, the
unstable template T} is equal to the (linear) polynomial ]5;,* defined therein. Hence the
leading term in the formula vanishes and we are left with only one exponential term in
the asymptotics,

T, =nT+T + (‘.Tf,(noo) . 15;(7700)) Eoottl + O(O7), (7.19)

where (0,7s0) and (£s0,0) are the normal coordinates of the points ¢ and X' (g), re-
spectively, 8, € (0, p1p), and where J, is the stable template, and I:’If is the polynomial
defined in Lemma 3.14. Since W% is not C', by Lemma 3.14 and Corollary 5.4, for a
positive proportion set of periodic orbits « relative to (CI)_l)*m;, p € 7, and for any
homoclinic point ¢ in an open subset of W} .(p), we have T (1) —]5;(7700) # 0, hence p,,
can be recovered from (7.19). By the previous discussion, we conclude that p, = K (p)
for a positive proportion set of periodic orbits relative to my-. Therefore, by the positive
proportion Livshits Theorem 5.2, we conclude that

1y = liap), Vp=X"(p).

Comparing to (7.18), and applying Livshits Theorem, we conclude that the flow Y is
volume preserving. We have thus arrived at a contradiction; in other words, the foliation
W%, is C1, as claimed. The proof of Addendum F is complete. O

7.6. Exceptionality of C! foliations: proofs of Theorem G and Theorem C.
The main technical result in this section is that having C! stable (and similarly unstable)
foliation is not a generic property in the space of Anosov vector fields.

Proposition 7.11. Let M be a 3-manifold which supports an Anosov flow. Denote by
Anr the spaces of C*° wvector fields on M, which generate transitive Anosov flows. Then
there exists a C*-open and C*-dense subset U, C Apr such that for any X € U3, the
(strong) stable foliation W5 is not C* regular.

Using this proposition we can easily derive Theorem G and Theorem C.

Proof of Theorem G. We apply Proposition 7.11 for Anosov flows on M: first for the
stable and then for the unstable foliation (we can reverse the time and apply the propo-
sition), we obtain two open and dense sets whose intersection Uy; forms an open and
dense set on which both the stable and the unstable foliations are not C''. Similarly we
obtain an open and dense set of Anosov flows on N on which both foliations are not C?.
Now, if we have conjugate flows from these sets, then applying Theorem E immediately
yields Theorem G. O

Proof of Theorem C. Let M and Up; C Aps be as in Theorem G. Let us note that if
Xt Yt are C%conjugate Anosov flows with respective generators X,Y € Uy, then by



54 ANDREY GOGOLEV, MARTIN LEGUIL, AND FEDERICO RODRIGUEZ HERTZ

Theorem G, the conjugacy ® is C'°°, unless ® swaps positive and negative SRB measures
of the two flows, i.e.,

D.my =my, Pumy =mi. (7.20)
If X is conservative, then (7.20) implies that Y is also conservative, hence by [GRH22],
Xt and Y are smoothly conjugate (note that the exceptional case where X* and Y are
constant roof suspension flows is ruled out by the assumption that X,Y € Uy, so that
the invariant foliations of X*, Y are not C1).

Otherwise, if X? is dissipative, then so is Y. Fix any volume expanding periodic point
p=XT(p). If X,Y are sufficiently C'-close, then the periodic point ®(p) = Y7 (®(p))
is also volume expanding, while (7.20) implies that ®(p) has to be volume contracting,
a contradiction. Therefore, (7.20) does not occur, and ® is C*°. O

The proof of Proposition 7.11 consists of two steps. First we will show in Lemma 7.12
that if the stable foliation W* is C! then this property can be destroyed by arbitrarily
C*°-small perturbations. The second step, in Lemma 7.14, is to prove that the property
of the stable foliation of not being C' is stable under C'! perturbations of the flow.

Lemma 7.12. Let X': M — M be a 3-dimensional transitive Anosov flows with C*
stable foliation W%. Then there exists a C™-small perturbation Y': M — M whose
stable foliation W5, is not Cl. In fact, we can choose Y to be dissipative and such that
there is a periodic point p for Y' such that E§ is not C! along W&loc(p).

Remark 7.13. A similar lemma for higher dimensional Anosov flows appears

in [FMTO7, Lemma 4.2(2)].

Proof. Without loss of generality, after a C°°-small perturbation of X if needed, we
can assume that p = X7 (p) is a volume expanding periodic point, with multipliers
p< 1 <A pA>1.

The perturbation Y will be a time change of X! localized in a neighborhood of a
periodic point. We define a local transversal to the flow in the following way

EP = U Wlsoc(x)'
€W} (p)
Since the stable foliation is C'! this transversal is also C'' with constant return time 7. We
consider the Poincaré return map II: f]p — Xp, where i)p C X, is an appropriately small
sub-transversal which contains p. Further, recall that we can C' linearize the Poincaré
map so that it takes the form I1(¢,n) = (u&, An) with the local stable manifolds being

the axes: Wit (p) = {(0,7) : ] < 2o} and Wi,o(p) = {(£,0) : l¢] < 0}.
Now we pick a homoclinic point (0,7) € ¥, such that its forward orbit under X°*

intersects X, only on the local stable manifold Wy, .(p). To construct perturbation we

pick a smooth function p: ¥, = R with the following properties:
1. the function p is '™ small;
2. the function p vanishes on the local unstable manifold: p(0,7n) = 0 for all |n| < &o;
3. %p((),)x_lﬁ) < 0;
4. the function p has localized support: supp(p) C Bs((0,A7'7)) = Bs(II=1(0,7)) C

3.,, where § > 0 is sufficiently small so that supp(p) is disjoint with TI(supp(p))
and T~ (supp(p))-



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 55

We define Y? as a local reparametrization of X*. Namely, locally at p, the flow Y is
defined as the suspension of II with the roof function T+ p. Since p has localized support
we can let the flows be the same away from p. It is easy to see that since p is C'*° small
we also have that Y and X are C'*° close.

Further, note that since p vanishes on both axes we have that local stable and unstable
manifolds through p remain the same for Y. Also, since the forward orbit of (0,7) is
disjoint with supp(p) we have that W% | .(0,7) = W5,,.(0,7).

We now proceed to calculate the stable distribution of Y along the forward orbit
of (0,7) and show that it is not C! at p. As usual, we will use (£,¢,1) coordinates to
express the stable vector field along W} (p), which we will normalize to have unit first
coordinate. For the stable vector based at (0,n) € Wi .(p) we write v (1) = (1,0,¢*(n))
for the vector which spans the stable distribution of X*. By the above observations we
also have that E¥ (0, 77) = span(v§ (7)) with v§.(7) = UX(’) = (1,0,¢%(n)). To obtain
the stable vector at A™'7 we go backwards and apply DY ~7(0,7):

DY (0,73 (7) = (u™ ", 6, A7 e (7).

After normahzmg we have v§ (A1) = (1,ul, uA"1c*(7)). Here £ defined by ¢ :=
—9p/0v5 (0, \717) is positive since dp/de(0, A7) < 0 for any unit vector e based
at (0, \~'%) which points into positive quadrant. Indeed, this fact follows directly from
the properties (2) and (3) imposed on p above. (In fact, v5% is almost horizontal vector
and 0p/0v3 (0, A\717) =~ 0p/9¢(0,A717).) Calculating v (A\~*7) further for £ > 2 is
straightforward since return time is now constant again and the second coordinate of
the vector under iteration remains the same:

DY T, oy (A1) = (7l A e (7).
After normalizing we obtain
vy (A1) = (1 p A e (7).
Recall that v$-(0) = (1,0,0). Since p > A~! We see that the second coordinate of v,

cannot be better than Holder with exponent —22£. Hence the stable distribution (and
hence foliation) of Y is not C* at p. O

Lemma 7.14. Let Xt: M — M be a 3-dimensional transitive Anosov flow whose stable
distribution E% is not C' along WY (p) for some volume expanding periodic point p =
XT(p), Jacy(T) > 1. Then there exists a C'-small neighborhood W of X in the space of
smooth Anosov vector fields such that for any Y € U the stable distribution ES. is also
not C regular.

The idea of the proof is to use the characterization of the C'-smoothness of the stable
distribution provided by Lemma 3.14. Namely, we know for X? that the asymptotic
formula (6.1) at p holds with a non-zero coefficient (,(¢) by the exponential term. We
would like to claim that the coefficient (,(¢) varies continously as we vary the generator
of the flow in C' topology, as this implies stability of non-C'-smoothness of stable
distribution. While this strategy is sound the approach faces a technical obstacle.
Formula (6.1) was derived with the help of adapted charts given by Proposition 3.2. The
adapted charts depend continuously on the flow (in C'-topology on charts), but only if
one varies the flow continuously in C? topology (this can be checked by examining the
construction of adapted charts in Appendix B). Hence, directly from the proof, we can
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only say that (,(¢q) varies continuously as we continuously vary the generator of the
flow in C? topology. To overcome this issue we will reinterpret the main coefficient in
asymptotic formulae for periods in simpler crude charts which have the advantage of
varying continuously with the flow in the C'! topology.

Let {1;: (—1,1)3 = M},en be a family of C"~! adapted charts as in Proposition 3.2,
let {X;}zenm be the associated family of transverse sections, ¥, := 1,((—1,1) x {0} x
(—1,1)), let 7,: ¥, = R be the first return time to ¥, and let IT: X, — ¥, 2,(£,0,7n) =
z — X™®)(z) be the first return map of X to the section X,. For each x € M, we
denote by T3 (-) the stable template along Wyt (x) N X, as in (3.4).

Fix a volume expanding periodic point p € M, of period T' > 0, with multipliers
0<p<1<A pA>1 Welet P be the polynomial introduced in Lemmata 3.13-3.14:

(k] j
~ 1 01957,(p)
Pi(n) :=— E — 2P
= glopAN —1

For any point ¢ = 1,(0,0,7) € W} .(p), we let

Gola) = Tp(n) — By (n). (7.21)

Recall that if, moreover, ¢ is a homoclinic point, then (,(q) is the coefficient that ap-
pears in front of the exponentially small term in the asymptotic formula derived in
Proposition 4.2.

Now, let 2,: (—1,1)> — M be any other smooth chart such that flp = ip((—1,1) x
{0} x (—1,1)) is a transverse section at p, with W _(p), W¥ (p) C 3, being the axes,

loc loc

and Xt © ip(&o,n) = ip(fatﬂ?)a fOI' §7t777 € (_17 1)
Remark 7.15. Since Wy, .(p) and W}

loc

(p) depend C* continuously on X in C* topology.
As we vary X we can ensure that the parametrized sections EP(X)(X) also depend C'-
continuously on X in the C' topology.

Let ‘j'f)() be the associated stable template along Wi (p) N i]p, namely, for ¢ =
i5(0,0,7) € W _(p), we can write

loc

Wiela) = {ip& T + B (ENE i+ &END .-

Denote by 7,: ﬁ)p — R the first return time to ﬁ)p, and let II: pr — flp, ip(f,O,ﬁ) =
z — X7 (x) be the first return map of X' to the section ﬁp. As previously, we slightly
abuse notation and write 7,(z) = 7,(&, 7). For any q = 1,(0,0,7) = i,(0,0,7) € W _(p),
denote

vp(q) := Dip(0,0,17)(1,0,¢(0,m)) € E“(q) N Ty,

05(q) == Dip(0,0,9)(1,0,&(0,9)) € E“(q) N T,5,.

For any ¢ > 1, we have



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 57

where j\z,q(fé) is defined by the above formula, and 0 < g < 1 is the stable multiplier
at p. Note that we have used the properties given by Proposition 3.2. Now, define

Go(a) = T30 +Z)\ —0)817,(TT7(q)). (7.22)

(This definition is fully analogous to (7.21), only using 3, instead of ¥,.)

Lemma 7.16. There exists a positive function 9,: Wit (p) — R* \ {0} such that ¢, =

0y - .

Remark 7.17. Validity of this lemma is fairly clear from the role ¢, and ép, Namely,
these are coefficients in the asymptotics (7.10), relative to two different transversals, ¥,

loc\P

and i]p, Notice that while the chart is important for the derivation of the asymptotic
formula, the formula itself is coordinate free since all that matters are periods and the
etgenvalue . Hence the coefficient by p™ is the same relative to either chart. Hence,
the lemma is the observation that relative to Z this coefficient is given by U Cp We
still give a formal proof starting with the deﬁmtwn of Up.

Proof. With the notation introduced in (3.4), for any point ¢ = 1,(0,0,7n) = 2,(0,0,7) €
Wi (p), we have

loc\P
Du(0,0,7)(1, T3 (n), ¢5(0.m)) = 9p(a) - Diy(0,0,7)(L, T (1), &(0,7)) € E*(q),

for some function 9,: W¢ (p) — RT.

For a small neighborhood U, of W (p), we write 3, N U, = {(X7*3)(2)) : z €
Y, NUp}. Again, we abuse notation by writing 7,(2) = v,(§,7). Then we have the
following relationship between the templates

T3(1) = 017 (0,m) + 0, (0) T3 (0)- (7.23)

Moreover, for any point z € X ﬂUp, and any integer n > 0 such that IT=1(2),--- , II7"(2)
are well defined, we let 2 := X7(?)(2), so that
n

ZTp (2 Tp(I17(2)) + 1 (I7"(2)) = 7p(2)-

(=1

Differentiating the above equation at ¢ = 2,(0,0,1) = 7,(0,0,7) € W} (p) along the
weak stable direction (namely, along v;(q)) yields

> o g) = DX (—001 7T (q))0p(q) + p"01p(0, A7) — D1yp(0, ),
— 62
(7.24)

where 0 < p < 1 < A are the multipliers at p. In the above formula, we have used that

the holonomy map X 71’(')( -) from X, to i]p preserves the weak stable foliation W, and

that the return times 7, and 7, are ﬁat along Wi (p), which in our charts is the n-axis.
Since 7, is smooth, by Taylor expansion, we also have

101 (0, A7) = O((uA)™"),
which goes to 0 as n — 400 since pA > 1.
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Addding up (7.23) and (7.24), and letting n — +oo gives

+o0
J0)+ Y n (@) = dy(a ( +ZA 001711 f(q»). (7.25)
=1

Moreover, by (3.1), we have 017,(0,7) = Z[ } 818J7p(0 0)n’, hence

7=0 5!
+o00 +o0 (%] 1 +00 A ~
> ptorm,(I(g) =) u om0, A ) Z S 01087(0,0)07 > (uN)~* = ~F ().
=1 =1 =0 =1

With the notation introduced in (7.21)-(7.22), we see that the left hand side of (7.25) is
indeed equal to (y(g), while the right hand side is equal to ¥,(q)(,(q), which gives the

posited equality (,(q) = ﬁp(q)ép(q). O

We can finish the proof of Lemma 7.14:

Proof of Lemma 7.1/. Let X': M — M be a 3-dimensional transitive Anosov flow
whose stable distribution E% is not C* along W% (p) for some volume expanding periodic
point p = X7 (p), Jac,(T) > 1.

Then, by Lemma 3.14, there exists a point ¢ € W}’ (p) such that

() = T5(q) — By(q) # 0. (7.26)

By Lemma 7.16, we deduce that g},(q) £ 0.

By Remark 7.15, if Y is C'-close to X, then, for the Anosov flow Y, we can choose a
transverse section f]p(y)(Y) adapted to Y* which is close to flp in the C! topology. The
corresponding return time to i]p(y)(Y) is also C' close to 7p. From the expression of 6p
n (7.22), we see that all ingredients — template, multipliers, derivatives of the return
time — are close to those for X*. Hence the associated function ép(y) for Yt is C9-close
to the function {,. Let us denote by ¢(Y) € WY 1o (P(Y)) the continuation of g. Given

the sections 2p(y) (Y) for Y, let us denote by Cp(y) the function for Yt analogous to the
one defined in (7.21) for X!. By (7.26) and Lemma 7.16 and observed continuity, we
deduce that for all Y is sufficiently C'-close to X, we have

Gy (a(Y)) #0
and, hence, by applying Lemma 7.16 again (,y)(q(Y)) # 0. Then, by Lemma 3.14, we
have that the stable distribution E$ is not C! along W 1o (P(Y))- O

7.7. Proofs of Theorem H and Corollary I. The proofs are based on exactly the
same ideas and arguments so we will be brief. Since ¢ and & are positive functions we
can consider reparametrized flows X}; and Yg generated by éX and %Y, respectively.
Then the matching condition of - and &-weights becomes matching of periods for Xi,
and Yg under the orbit equivalence ®. Hence, by Livshits Theorem, we can promote
® to a conjugacy ® such that ® o X }; = Yg o ®. This puts us into a position to apply
Theorem E and conclude smoothness of ® apart from exceptional cases. Hence, once
exceptional cases are ruled out, we have that homeomorphism ® is the posited smooth
orbit equivalence for X! and Y.
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The exceptional cases are taken care of by assumptions in Theorem H. Indeed, if ®
swaps the SRB measures then we have corresponding relationship between the stable and
unstable logarithmic infinitesimal Jacobians. Namely, @Z’}L(q, is cohomologous to Q/Jf/g od

and 1/13*(99 is cohomologous to 1/1%‘,5 o ®. Subtracting we have that the infinitesimal full
Jacobian w‘;(w — wg‘% is cohomologous to (wiu/& — wf@) o ®. In particular, this implies (in
fact, equivalent) that for every periodic point p = X, g (p) we have

log | det DX (p)| = —log | det DY (®(p))],

contradicting the assumption on the existence of a periodic point with logarithmic Ja-
cobians of the same sign.

Finally, in Lemma 7.12 we proved that for a generic reparametrization X; of X?
neither the stable Wg(w nor the unstable foliation Wuxw is C'. Hence for a generic choice

of ¢ and £ none of the foliations W5 n Qj(w, f/g and W’{,f is C! regular, thus ruling

out last exceptional case (Case 3) in Theorem E.

To obtain Corollary I note that if ¢ and & is a pair of functions with matching sums
over all matching periodic orbits, then so are ¢ + ¢ and & 4 ¢. For a sufficiently large
constant ¢ we have ¢ +c¢ > 0 and £ + ¢ > 0. Now we can suspend f and g using
@ + ¢ and & + ¢, respectively, to obtain conjugate flows X]; and Yg as in the proof of
Theorem H. Hence X}; and Yg are smoothly conjugate which implies that f and g are
smoothly conjugate. O

8. ON ¢ltHSlder ANoSOV DIFFEOMORPHISMS WHICH ARE NOT C' CONJUGATE TO
MORE REGULAR ONES

Here we provide a proof Corollary J. In fact, we expect that stronger results should
hold true and my_,1 is not surjective either. We briefly discuss possibility of such stronger
results at the end of this section.

Throughout we will fix a hyperbolic automorphism L: T? — T2 and work only with
Anosov diffeomorphisms homotopic to L. Accordingly, we consider the Teichmiiller
spaces J7 of C" conjugacy classes of C" Anosov diffeomorphisms which are homotopic
to L.

We will say that a diffeomorphism is C'*H-regular if it is C! with Hélder continuous
differential for some positive Holder exponent. Throughout this section we will use J f,
J°f and J"f to denote the Jacobian, the stable Jacobian and the unstable Jacobian
of an Anosov diffeomorphism f, respectively. Recall the following realization result of
Cawley [Caw93].

Theorem 8.1 ([Caw93]). Given a pair of C** potentials p,: T> — R such that
Pr(p) = P(v) = 0 there exists a C'TH Anosov diffeomorphism g conjugate to L via h,
hog= Loh such that

e —log J"g is cohomologous to @ o h over g;

e log J%g is cohomologous to 1 o h over g.

We note that in this result we can replace the “base-point” automorphism L with any
Anosov diffeomorphism f homotopic to L, since any such f is Holder conjugate to L.
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Remark 8.2. A different and very clean proof of this result (when ¢ = 1) was also
recently given by Kucherenko and Quas [KQ25]. Yet another version of Cawley’s con-
struction also appeared in [FG14, Appendix A|. The latter construction is more geometric
and allows for continuous realization of finite-parameter families of potentials into the
space of CYTH Anosov diffeomorphisms. In particular, if ¢ and ¢ are CO close to con-
stant then the diffeomorphism g can be constructed to be C' close to the “base-point”
automorphism L.

We proceed with a proof of Corollary J.

Proof. The spaces T} are connected components of J" (T?) which are respected by m3_,1.
Hence it is enough to verify that the restriction m3_,1: ‘J'% — Ti is not surjective.

The starting point of the construction is a dissipative Anosov diffeomorphism f: T? —
T? which is sufficiently C! close to L (to be specified in the course of construction).
We will use Cawley’s realization over f (that is, having f as a “base-point” instead
of L) to produce a C'*H Anosov diffeomorphism, which is not C' conjugate to a C3
diffeomorphism. Recall that this would mean that 7w3_,; is not onto.

We impose the following conditions on the dissipative Anosov diffeomorphism f which
will make it possible to apply Theorem E for a suspension flow over f:

e fis C3 regular;

e f is sufficiently close to L in C! topology so that a suspension flow is %—mildly
dissipative and log J f is sufficiently close to 0;

e let X denote the suspension flow over f with the roof function 1+log.J f; we can
pick f so that both stable and unstable foliations of X are not C'.

The last property can be arranged easily using arguments which almost the same as
those used to prove Lemma 7.12. Assume that, say, the stable foliation of X! is C!.
In Lemma 7.12 we have perturbed the roof function to destroy the C! property. In
the current setup, the roof, obviously, cannot be perturbed independently of the base
dynamics f, but we can still use the same approach. Namely we can consider a volume
expanding periodic point and the C' stable distribution along the unstable manifold
of this periodic point. Then we can perturb f in the neighborhood of a homoclinic
point of such a periodic point to ensure that the derivative of the Jacobian of f at the
homoclinic point along the stable direction changes slightly. Once such perturbation is
made, we have almost in the same setup as that in Lemma 7.12. The only difference is
that the perturbation is not a time change since we have perturbed the base dynamics
as well. However it is easy to see that this difference does not affect the arguments of
Lemma 7.12 which go through to yield that the stable foliation is no longer C' regular.
It could happen now that the unstable foliation is C'. The C! regularity of the unstable
foliation can be destroyed in the same way, using another, even smaller perturbation,
while the non-C'-smoothness of the stable foliation persists under this last perturbation,
by Lemma 7.14.

Now let ¢ be any Holder potential with zero pressure, P;(¢) = 0, which is not
cohomologous to —log J“f and which is sufficiently close to constant. Let ¢ =
—Py¢(log Jf +¢) € R. We note that c is close to 0 since we have assumed that log J f is
close to 0. Let ¥ =logJf 4+ ¢ + ¢. Then we clearly have

* Pr(p) =0;
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o Pr(¢) =0;

ey —p=c+logJf.
By applying Theorem 8.1 with “base-point” f, there exist a C'TH Anosov diffeomorphism
g: T? — T? and a bi-Holder homeomorphism A : T? — T? such that

e« hog=foh:
log Jg is close to 0 and g is %—mildly dissipative;

e —log J"g is cohomologous to ¢ o h over f;
e log J*g is cohomologous to 1 o h over f;
e log Jg is cohomologous to ¢ + log J f o h;

where the last item is the immediate consequence of the preceding two items. The
second property follows from the discussion in Remark 8.2 combined with the fact that
the potential ¢ was chosen sufficiently close to constant: then g can be chosen sufficiently
C! close to f, which in turn was assumed to be C! close to L.

Now, if g was C'! conjugate to a C? diffeomorphism, then all of the above items would
still be true for this new C? diffeomorphism. Thus, without loss of generality, we can
assume that g itself is C2 regular.

Since c and log J f are both close to 0 we have that 1—c+log Jg > 0 and 1+log Jf > 0.
Consider the suspension of g and f by 1 — ¢ + log Jg and by 1 + log J f, respectively.
By the last item above these suspension flows have matching periods and hence are C°
conjugate by the Livshits theorem. This puts us in the position to apply Theorem E to
the suspension flows with 7 = 3 and k = 2.° Further, both of the suspension flows were

5

constructed to be 3-mildly dissipative. Hence, Addendum F' also applies in this setting.

We recall that we have the following cases provided by Theorem E and Addendum F:
1. the flows X* and Y* are C3*-conjugate;
2. the conjugacy swaps SRB measures of the flows;

3. at least one of the foliations W5 and WY is C'*e o > 0; similarly, at least one
of foliation W5, W¥ is C1F.

If the conjugacy is at least C!, then — log J%g would be cohomologous to —log J*foh
contradicting to the fact that ¢ was chosen to be not cohomologous to —log J“ f.

In the second case, from swapping of SRB measures, we have that ¢ is cohomologous
to log J°f and v is cohomologous to —log J* f. Then we obtain that ¢ — ¢ is cohomol-
ogous to —log J f. On the other hand recall that ) — ¢ is cohomologous to ¢ + log J f.
This implies that logJf is cohomologous to the constant ¢/2. Hence ¢ = 0 and f is
conservative, again contradicting our assumptions.

Finally, we recall that we have arranged the suspension flow of f with the roof 1 +
log J f to have both stable and unstable foliations to be non-C', which rules out the last
case.

5. One caveat is that formally speaking the suspension flows are C? because we have suspended
using the Jacobians which are C? functions, however the C* regularity is needed only for the construc-
tion of C? adapted charts, and this construction still goes through for such suspension flows over C*
diffeomorphisms. Indeed, the loss of the derivative in the construction of the adapted charts occurs in
Lemma B.3. By inspecting the proof one can check that this lemma can be proved using the base C*
dynamics instead of using the flow directly, resulting in C? charts after the first adjustment. Recall
that the further adjustments in the proof in Appendix B do not result in any further loss of regularity.
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We have arrived at a contradiction in each case. Hence g is not conjugate to any C?3
diffeomorphism. O

Observe that since there is an open set of potentials ¢ which can be used in the
construction, that we in fact have an infinite dimensional family C(f) of C'*H diffeo-
morphisms which are not C''-conjugate to C? diffeomorphisms.

Remark 8.3. We believe that by going through the above arguments very meticulously,
tacking care of all regularities while using a Lipschitz potential ¢ we can improve Corol-
lary J. Namely, for any € > 0 the map Tore_a_c is not onto, that is, there exist C*—¢
Anosov diffeomorphisms which are not conjugate to any C**¢ diffeomorphism. Proving
non-surjectivity that both mws_so or mo_s1 or for higher reqularities requires a different
approach.

9. EXAMPLES

In this section we present examples of pairs of Anosov flows which are C° conjugate
but not C! conjugate. For all such examples we will always have that the strong stable
(or strong unstable) distribution is C* for some k& > 1. In particular we will see that
swapping of SRB measures case indeed occurs as was explained to us by Ceki¢ and
Paternain.

9.1. Perturbing along the strong stable foliation. Let X*: M — M be a smooth
transitive Anosov flow on a 3-dimensional manifold with C*, k& > 1, orientable stable
distribution E*. We denote by S a C* vector field which generates E*. Let p: M — R be
a smooth C'-small function. Then the vector field X p» = X + pS generates an Anosov
flow Xf). The flow Xf) is a perturbation of X* and we proceed to point out several
properties.

1. The flows Xt and Xf; have the same strong stable distribution E®.
Indeed, since the stable distribution of X/t, must be close to E? it suffices to check
that E* invariant under X}, that is, DX}(E®) = E° for all t. To check this we
show that the derivative of S along X, is in E*, and then the invariance follows
by integration. We have

LXpS =[X,,5] =[X,5]+[pS,S] = LxS - S(p)S € E*
since S is Xt-invariant.

2. The flows X' and Xf) are CO conjugate.
One could explicitly exhibit the conjugacy which slides the points along strong
stable leaves, but it is simpler to see that periods on periodic orbits remain the
same and, hence, by Livshits theorem, there exists a C% conjugacy. Recall that
these flows share the strong stable foliation. Hence, if p = X7 (p) is a periodic
point then corresponding periodic p for Xf, belongs to the same leaf W*(p). We
have XT(W3(p)) = W*(p). Because X, — X € E°, the same is true for X}
XE(WS(p)) = W5(p). In particular, X7 (p) = p.

3. For an appropriate choice of p the flows Xt and X,Z are not C! conjugate.

Consider a periodic orbit « of period T and a local weak-stable leaf ng’loc(v)
which is a cylinder. We can put linearizing coordinates on this leaf so that
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WS 10c(7) is identified with (—¢,e) x [0,T], (z,T) ~ (Az,0) and X is given by %

CS

Here A is the stable eigenvalue of 7. We now define p on W . (7) by the formula
plz,t) = coA"Ta, ¢y > 0.
Provided that the constant cg is sufficiently small such p can be extended to the
whole of M with a small C'! norm.
Notice that p vanishes on . Hence « remains periodic under X,. We can check

that the stable eigenvalue has increased in value. Indeed, if 2 € (0,£/2) then we
can estimate

T T
| oxo.yar= [ ooz et
0 0

Hence we have that X;;F(m,O) = (z,T) with # > x + coTwx. If X is the stable
eigenvalue of X, at v we have
A= limE > A+ e > .
z—0 T
We conclude that X* and X; have different stable eigenvalue at v and, hence,
cannot be C! conjugate.

Remark 9.1. Because the unstable eigenvalue of v remained the same and the stable
etgenvalue was perturbed, we have that Xz, 1s dissipative. From this fact it is easy to
conclude that the strong unstable distribution of X; is not C1. Indeed, if the unstable
distribution is also C*, then by Lemma 6.6, the flow X; has to be a constant a constant
roof suspension.

Remark 9.2. The above construction applies to any contact flow X*t, however the per-
turbed flow X;, generally speaking, is only CTTHO rogylar due to the CTHHOMer regy
larity of the strong stable distribution.

Remark 9.3. If Xt is the geodesic flow on a surface of constant negative curvature and
p € C®(M) then X; is a C'° smooth flow since the stable horocyclic foliation is C'™°.
By making two different perturbations one can easily produce a pair of C™° dissipative
Anosov flows X;tn and Xf,z which are merely C° conjugate.

9.2. Perturbing along both strong foliations. We point out that the above example
has two very special features:

1. the flows Xt and XZ share the strong stable foliation;

2. the flows X* and X; have matching unstable eigenvalues and hence the C° con-
jugacy between them is, in fact, smooth along unstable foliation.

Both of these features can be destroyed by further modifying the construction in the
following way.

Let X! and X; be as before. Assume that the strong unstable distribution of X is
also C*, k > 1, and generated by a vector field U. Then using the same idea, for an
appropriate ¢: M — R the flow Xf given by X, = X + ¢U is merely C° conjugate to
X* and has the same stable eigenvalues as X*.

By transitivity of the conjugacy relation, we now have that Xf) and Xf are conjugate
to each other. Because X! and X;; have different stable eigenvalue data, we have that X, é
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and X; also have different eigenvalue data. Similarly, because X* and Xg have different
unstable eigenvalue data, we have that Xf) and X§ also have different eigenvalue data.
Also it is easy to verify that X; and X! do not share any invariant foliations.

9.3. Swapping SRB measures: Ghys/Cekié¢-Paternain example. For the sake of
specificity let X* be the geodesic flow on a surface of constant negative curvature —1. If
7 is a periodic orbit -y, then the eigenvalues of the Poincaré return map at ~ are given
by =1 where |v| denotes the length of 7. We can perturb the hyperbolic metric in the
Teichmiiller space to obtain another surface which is not isometric to the initial metric.
Denote the corresponding geodesic flow by X?.

Now we explain the so-called quasi-Fuchsian Anosov flow construction due to
Ghys [Ghy92|. Ceki¢ and Paternain recently revisited the quasi-Fuchsian flows and
re-interpreted them as thermostat flows [CP25|. While we do not need the thermostat
interpretation, we follow closely Ceki¢ and Paternain [CP25] and explain how to con-
struct the flows Y* and Z! by “taking the bracket” of X! and X! and why the SRB
measures are being swapped under the conjugacy. Let H be the orbit equivalence given
by structural stability, which is C%-close to idy; and takes orbits of X? to the orbits
of X! in orientation preserving manner. For any p € M consider local weak unstable
leaves of X! and X! at p and H(p), respectively, and the (strong) stable holonomy map
between them given by sliding along the leaves of W%

Hol*: W¥'1,.(p) — W%‘,IOC(H(p)).
Define the generating vector field of Y by
Y (Hol*(p)) = DHol*(X (p)).

Similarly, let Hol": W | .(p) — Wg—?’loc(H (p)) be the strong unstable holonomy given

by sliding along the leaves of W% and define
Z(Hol"(p)) = DHol"(X (p).

Since all foliations and holonomies involved are C*° we have that both Y and Z are
C vector fields. The orbit foliation of Y is given by the intersection the weak foliations
WS NWSE and that of Z' by the intersection W N WS. Both flows “borrow” their
parametrization from X* and hence both are conjugate to X?, and, hence, to each other.
Specifically, the conjugacy between X! and, say Y? is given by

p— W.SX,loc(p) N W%JOC(H(p))'

Since this conjugacy is given by sliding along strong stable leaves we can notice the
following. Let 7 be a periodic orbit for X t and denote by 7, vy and 7z the corresponding
periodic orbits for Xt, Y* and Z!, respectively. The stable holonomy map

Hol”: Sgloc (’7) — Wg}floc (FYY)

conjugates the local dynamics of X! and Y*. Hence, v and ~y have the same unstable
cigenvalue A(yy) = el’l. By the same observation we have that the stable eigenvalue of
vy is u(yy) = e~ and, similarly, for vz we have A(yz) = ell, u(yz) = e .

Hence we have u(yy) = A(yz)~! and A(yy) = u(yz)~!. So, if ® is the conjugacy,
PoY!l=Zt0®, &(yy) = 7z, then we see that ® swaps the stable and the inverses of

unstable eigenvalues at every periodic orbit. Now, by the standard de la Llave argument,
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Wg{lfloc (p )

W)C_(u:loc (H(p))

FIGURE 3. The construction of quasi-Fuchsian flows by “taking the
bracket” of the flows X* and X' to produce conjugate flows Y and Z?.

using the Livshits theorem and the equilibrium state description of SRB measures (see
Section 5.4) we conclude that ®,(my.) = m and ®,(my) =m}.

Finally, since we took a non-isometric perturbation of the initial hyperbolic metric,
there exist an X‘-periodic orbit 4y such that the corresponding X! periodic orbit 7y has
a different length, 50| # |70|- It immediately follows that corresponding periodic orbis
for Y and Z¢ are both dissipative — one volume expanding and one volume contracting.
Hence both Y and Z! are dissipative flows.

9.4. Swapping SRB measures using Cawley’s realization. Another way to con-
struct an example of conjugate Anosov flows with a conjugacy which swaps the SRB
measures is to use Cawley’s realization Theorem 8.1 [Caw93|. Start with any dissipa-
tive Anosov diffeomorphism f: T? — T2. Then by Theorem 8.1 we can construct a
dissipative Anosov diffeomorphism g: T? — T? such that

e hog=foh;
e —log J"g is cohomologous to log J°f o h over g;
e log J%¢g is cohomologous to —log J*f o h over g.

The latter two properties provide the swapping property of the SRB measures as they
are equilibrium states for the corresponding potentials: h*m; = my, h.omg = m}r
Suspending both f and g with a constant roof 1, we obtain conjugated Anosov flows X*
and Y with the same swapping property of SRB measures.

The issue with this example is that diffeomorphism g is merely C'+H. Accordingly
the suspension flows Y has the same low regularity which doesn’t fall into the setting
of this paper as we always assume C" regularity for some r > 3. It is not clear to us
whether such suspension examples can be made more regular.
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APPENDIX A. SMOOTH RIGIDITY OF ORBIT EQUIVALENCES

The following theorems are essentially due to Rafael de la Llave [d1L92] and, inde-
pendently, to Mark Pollicott [Pol90]. Even though neither reference considered orbit
equivalences which are not conjugacies, very similar arguments which exploit SRB mea-
sure yield the following results.

Theorem A.1. Let X!, Yt be two C", r > 1, transitive Anosov flows on 3-manifold,
that are C° orbit equivalent via an orbit equivalence ® which preserves the time direction.
For any periodic point p = X (p) let T' be the period of ®(p) under Y and assume
that DX (p) and DY™' (®(p)) have the same eigenvalues. Then, there exists an orbit
equivalence which is C™, with r, as in (1.1).

Theorem A.2. Let X!, Yt be two C”, r > 1, transitive Anosov flows on 3-manifold,
that are C° orbit equivalent via an orbit equivalence ® which preserves the time direction.

Assume that ® and &1 absolutely continuous. Then, there exists an orbit equivalence
which is C™.

Sketch of the proof of Theorem A.1. We first smooth out the orbit equivalence along the
flow so that ® is C" smooth along the orbits.

Then @, the derivative of ® along the orbits is a well defined positive Holder continuous
function which is C"~! when restricted to an orbit of Xt. Let p=t = & 0 ®~1. Then we
have

D®(X)=p Yo,

and if we consider the reparametrization Y given by Y = p~ 'Y then ® conjugates X’
and Yt o Xt =Y'o ®.

Denote by mx = m} and my = mj. the (positive) SRB measures for X' and Y?,
respectively.

Lemma A.3. The pushforward measure ®,mx is in the same measure class as my .
Specifically,

Proof. Recall that mx and my are equilibrium states for the geometric potentials 1%
and Y%, respectively (see Section 5.1). Accordingly, since X' is conjugate to Y via @,
we have that ®,my is the equilibrium state over Y* for the potential Py o i

We also have that Y? is a reparametrization of Y! with ¥ = p~'Y and, hence,
by [GRH24, Proposition 4.3] we have that the measure

Mo — pmy
Y [ pdmy

is the equilibrium state for the potential p*1¢q{, with respect to Yt. We now claim that
the potentials p_lw;“, and 9% o ®~! are cohomologous. Indeed, let ¥ be a periodic orbit
of Yt of period T. Then

/wg( o ¢_1 = / wg( = —IOg JaC$,1(;f)(XT)
gl 21 ()
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Now let 7y be the corresponding orbit of Y of some period 7" = OT p~L(3(t))dt. Then

[t = [ vy = —toggacsr™),
v v

By the eigenvalue data assumption the above integrals are equal. Since we have it for
any periodic 4 we can use the Livshits theorem to conclude that p‘11/11“, and Y% o o1
are cohomologous, and, hence, have the same equilibrium states ®.mx = my-. O

Remark A.4. We have used [GRH24, Proposition 4.3], which is stated for smooth
reparametrizations, however the proof also works for Hdélder reparametrizations. Alter-
natively, a symbolically inclined reader, can arrive at the above lemma by considering the
suspension models for both flows and noticing that both models have the same base sub-
shifts but different Hélder roofs. Then the eigenvalue data assumption yields matching
of the SRB measures on the subshifts and the lemma follows by passing to equilibrium
states of the suspension, see |PP90, Proposition 6.1].

The same argument also proves that ® preserves the measure class of the negative
SRB measures. These properties allow to argue that ® is a C"* diffeomorphism “a la de
la Llave” [dIL92] after adjusting ® along the orbits. Namely, the needed property is the
following one: let S be a local C” section for X' then ®(S) is also a C" section for Y.
However, a priori, ®(S) is only topological section for Y. Locally in a chart, one can
easily adjust ® along the flow to make sure that ®(S) is C". Then it is easy make this
property global by using a partition of unity.

Once such adjustment is made one follows the de la Llave argument to show that
preservation of positive and negative SRB measure classes yield C” smoothness of one-
dimensional restrictions of ® to strong stable and strong unstable manifolds. Another
adjustment to this argument needs to be made to account for the fact that strong sta-
ble (unstable) manifolds of X! do not map to strong stable (unstable) manifolds of Y.
However, they map under orbit equivalence to C" curves, thanks to the previous ad-
justment, which are contained corresponding weak submanifolds, which is good enough.
The proof concludes with an application of the Journé’s regularity lemma [Jou88| as
in [d1L92]. O

The proof of Theorem A.2 begins in the same way. Then one still needs to prove
Lemma A.3, but without using the assumption on periodic data. This can be done with
an argument of de la Llave [dIL92, Lemma 4.6]. Namely, for any continuous function ¢
any point x, we have

T T
7| ert@@na =5 [ poaxi@)a

Since SRB measures are attractors, we have for Lebesgue almost every z,

T—o00

1 [T
lim T/ (po(I)(Xt(l‘))dt:/gDOq)dmx.
0

Similarly, for Lebesgue almost every y

L[ e wa= [ pans.
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Since ® and ®~! are absolutely continuous we have that for Lebesgue almost every x
and corresponding y = ®(x) the above three formulae hold true and hence

/gpoédmxz/gpdmy,

which implies that ®,.mx = my. The same argument also proves that ® preserves the
measure class of the negative SRB measures. The last step of the proof of Theorem A.2
is the same as that of Theorem A.1.

APPENDIX B. ADAPTED CHARTS

Recall that by Proposition 3.1 we have non-stationary linearizing charts
{P5 Y oenr, {P%} e along stable and unstable manifolds. From the classical construc-
tion of such charts [KL91|, it is clear that they are as regular as the flow, namely C". It
is standard to extend these non-stationary linearizations to actual 3-dimensional charts
{32: (=1,1)3 — M},cas such that the first three properties of Proposition 3.2 hold true:
for any x € M,

L. 72(£,0,0) = ®3(§), £ € (=1, 1);
2. 32(0,0,m) = ©3z(n), n € (—1,1);
3. 2u(&t,m) = X' (32(&,0,m)), (& t,m) € (—1,1)%.
Relative to the charts {7, }zenr, the dynamics 1:"; = ‘7;(17(1,) 0 X7 o g, takes the form

F;(é.vtvn) = ( ~a7c—71(‘£a 77),t + 7&;(57 77)7 ngs(fﬂ?)),

with all coordinate maps F;,p IL;, 13273 being C".

We first will proof the discrete, 7-time version of Proposition 3.2 and then show that
the resulting charts are, in fact, independent of 7 and deduce the continuous time normal
form posited in Proposition 3.2.

Proposition B.1. Fiz a time 7 > 0. There exists a continuous family of uniformly
C™ 1 charts {1,: (—=1,1)% = MYyenr such that for any x € M, we have:
1. 14(£,0,0) = @3(8), for any § € (—1,1);
12(0,0,n) = ®3(n), for any n € (=1,1);

2.
3. 12(&,t,m) = X*(12(&,0,m)), for any (&, t,m) € (=1, 1)%;
4. let ] o= (1xr(2)) 7 0 X7 01n = (F 1, FlL5, FJ3); then, Fio(&,t,m) =t+47(&m),

and there exist polynomials P} (7)(z) = Zgil a?f;’z(v')zZ

[k], such that for any &,n € (—1,1), we have

81FIT’1 (92FIT’1 _ )\;(T) 0
[alF;,g azF;,Q] (0.0,m) = [P;(rxn) 1]

0o FT, O3F] _ |1 B
[@F;; 33F7ﬂ (5’0’0)_[0 A (T) ]

, % = s,u, of degree at most

where we recall that \5(7) := || DX (z)|gs||, Ni(T) := | DX (2)|gu]|-
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Addendum B.2. The charts are independent of T and the polynomials satisfy the fol-
lowing twisted cocycle equations over the flow

Py (4 m2)(n) = Pr(m1)(n) + X5 (1) Pxry () (72) Az (7))

P (714 72)(€) = PATL)(E) + N2(r1) Plry (o (72) X (7))

for T, > 0.
Proof of Proposition B.1. The proof will proceed via three chart adjustments.

Lemma B.3. There exists a family {hy}zen of uniformly O™~ diffeomorphisms,

ha: (§t,m) = (pz(m)€,t,07(E)n),

such that the adjusted charts j, := ji © hy put dynamics in the form

FT = byt o FL o hat (§t,m) = (FT1(6m),t + $7 (&), FL5(E,m)),
with
OeF71(0,m) = AL(7),  OyF75(€,0) = Ai(7). (B.1)
Here, pT,0%: (=1,1) — Ry are C"~1 positive functions that satisfy pZ(0) = o7 (0) = 1.

Proof. We seek the adjustment h, in the form

he: (€,t,m) = (pz ()8, t, 07 (E)n),
where p,07: (=1,1) — Ry, p7(0) = 07(0) = 1, are two positive functions. The
adjusted charts 7, o h, put dynamics in the form F] = h;clf(w) o FT ohy: (&t,m) —
(F;l(ﬁ, n),t+ (€, ), F;,:s(f? 1)), with new coordinate maps given by
E7(m) = (0% (o (FT3 (05 (&, 07 (E)m)) 1 ET 1 (0 ()€, 07 (E)),

Y5 Em) = (e on(En), . (B.2)
Flz:(6m) = (0% (FL1(0i ()€, 07 () T (05 ()€, 0 (E)n).

Our goal now is to use the first adjustment to arrange (B.1).
Differentiating the expression of Fg , obtained in (B.2), while using F;l((), )
07(0) =1 and FT3(0 n) = AY(7)n, we rewrite the first equation of (B.1) as
(P NS (T)) ™ PR OEET1(0,) = X3 (7).

Observe that the above equation only involves the function p]. First we change the base
point from x to X 7 (x) and then take log:

log 7 (1) = 10g X —r () N (=7)1) = 108 DeF—r (4 1 (0, X (—T)1) — log A% (1 (7),

which we can solve for p] using the telescopic sum

Il
L

“+o00

log () = > (10g OcFT e (4 1 (0, N (—£7)) —log A% ir (T)) : (B.3)
/=1
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We see that the series converge and that the function pl obtained in this way indeed
satisfies pZ(0) = 1. Further, differentiating 0 < j < r — 1 times with respect to 7 also
yields converging series

400 ) B

> (1)) 05 (10806 Fir(yy 1) (0, N (=7,

(=1

Hence, by Weierstrass M-test, the infinite series gives the posited C”"~! solution p7
yielding the first property in (B.1). Also note that the exponential rate of convergence
is uniform in z, hence p7 is C"~! uniformly in € M. Note that the only restriction we
have put so far on the second function ¢, is that ¢7(0) = 1.

In the same manner, we can solve the second equation in (B.1) by choosing suitably
the function o]. Differentiating the expression of ]3';3 obtained in (B.2), and using

F:ET,S(WO) =0, p;(O) =1, and F;,l(é-’o) = )‘2(7—)57 we get
(0% () A (T)E) T 0T (E) D T 5(€,0) = Ay (7).

This again can be solved for o7 using the telescopic sum

“+oo

logol(6) =Y (1og Netr 1y (T) = 108 0y Fper g 5 (NS (7)€, 0)) .
/=0

As above, we see that the function o7 defined in this way satisfies 07(0) = 1 and gives
the posited C"~! solution o7 yielding the second property in (B.1). Again we observe
that o7 are C"~! unifomly in z. O

Unlike the previous step, we will make consecutive adjustments: first in order to
replace 851/3; (0,m) by a polynomial in 1 of degree at most [k], and then the final analogous
adjustment to replace 877@; (&,0) with a polynomial of degree at most [k]. We recall that
k is the pinching exponent as in Definition 2.2, i.e., for n > 1,

A ()AL (n) <1, A(n)kXS(n)>1, VoeM. (B.4)

Lemma B.4. There exists a family {uz }zenrr of uniformly C™=1 diffeomorphisms of the
form

uz: (§,t,m) = (&t +@z(mE + Kz (En,n),
such that the adjusted charts 1, := j; o ug put dynamics in the form
F] = uyt,y o F7 oug: (§8,m) = (FL1(&m),t+ (€ n), Frs(€m)),
such that for any € € (—1,1) andn € (—1,1),
OeF31(0,m) = AZ(1), OpFr3(§,0) = AZ(1),
ez (0,n) = PA(7)(n), Oz (£, 0) = P (7)(§).

Proof. Let us first adjust the charts so that 8,51&; (0,m) is replaced by a polynomial of
degree at most [k]. We seek the adjustment in the form

ga: (&1,m) = (&, + @r(mE;n),
with ¢7(0) = 0. The adjusted chart j; := j; o g, puts dynamics in the form

F; = g;(}'(:c) © F:Z OJgz: (gatvn) = (_az—,l(é?n))t +QZ):71:—(5577)’ _;,3(577]))»
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ot _ T LT _ T
where F[y = F[,, F 4= F]4, and

x,10 ~x,

b (6m) = DR(Em) + @R (ME = @er oy (FT 5 (&) EL 1 (€,m)- (B.5)

Differentiating with respect to £ at (0,7) while using F;ﬁl(O, ) =0, 13';73(0, n) = A%(7)n,
and (B.1), we obtain

Dty (0,1) = Dby (0,m) + @5 (1) = Pler (g N (1) A (7).
Formally, 8§1ﬁ;(0, 1) is a C"2 function. We claim it is in fact C"~L.
Claim B.5. The function (951]);(0, 2) s CT1 uniformly in x € M.

Proof of the claim: To check this recall that ¢7(&,1) = 7 (p7(n)E, o7 (€)n), where ¢7 is
C". Calculating with the chain rule gives

e (&) = PO (pp ()€, o7 (E)n) + o3 () - Dydby (L (m)E, o7 (E)n),
recalling that o7 (0) = 1, and evaluating at (0,7) yields

0 (0,m) = pf ()0 (0,m) + 07 (0)m - Dy (0, ),
which is clearly C"~! uniformly in . 0

Since r > k + 1, the above claim ensures that (951[1; (0,-) is at least C*¥ and we can use

the Taylor expansion
Oep;(0,m) = BE(7)(n) + wg (), (B.6)
where w7 is O™, w7 (n) = O(n¥) uniformly in 2, and P2(7)(n) is a polynomial of degree

at most [k]. Our goal now is to find ¢ such that
etz (0,m) = P(7) ().

Hence we need to solve

(@) A2 (T)MAL(T) = @3 (n) + wi(n).
Changing the base point we have

L) = A (=T)P% e oy L= I) + A= D) oy (NE(—T)).
We solve for ¢7 by summing into the past

+0o0o

L) = 3 N (—r) e oy N ().

=1
Indeed, since wZ(n) = O(n¥) uniformly in z, the k-pinching (B.4) guarantees that the
series converges yielding the posited adjustment. Note that ¢7(0) = 0 and also differen-
tiating formally, using Weierstrass M-test, and since w? is C"~! uniformly in z, we have
that 7 is C"~1 uniformly in .

Finally, we will adjust the charts once more in the similar way to replace 9,97 (¢, 0)

by a polynomial of degree at most [k]. We seek for this final adjustment in the following
form

(& t,m) = (&t + k. (En,m),
which puts the dynamics in the form

F.tT: (f,t,’l’]) = ( ;,1(5777)7154'¢;(f,77),FzT,3(§a77))~
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Claim B.6. The function 9,17(-,0) obtained above is still C"=* uniformly x.
Proof of the claim: By (B.2)-(B.5), and since F;J = 13';1, F£3 = F;& we have

Oyp(&n) = p3' (M€ BT (pp ()€, o7 (E)n) + o (€)Ad (PF ()€, o7 (€)n)

+ 01 (M€ = Pxr ) (FL3(&m)OET 5(6m) Fy 1(6,m) = 0xr () (Fi 5 (€,m) 0 F 1 (€, m).
Since p}(0) = 1, F75(€,0) = 0, 9% (,y(0) = 0, F71(£,0) = A3(7)¢, and 9,F74(¢,0) =
AY(7) (by (B.1)), evaluating the former expression of 8,97 at (£,0) yields

Otz (&, 0) = p7 (0)€ D7 (€, 0) + oL (M7 (£, 0)
+ 03 (0)€ = @r () (AZ(T)AL(T)E,

which is clearly C™~! uniformly in z. U

Since r > k + 1, the above claim ensures that 9,97 (-,0) is at least C¥ and we can use
the Taylor expansion

Oy (&,0) = P (7)(8) + @(8),

where @7 is C"1, @7 (€) = O(¢F) uniformly in 2, and P¥(7)(€) is a polynomial of degree
(

at most [k]. We then look for x], such that 0,97(&,0) = P (7)(§). As above, the solution

T

k7 is defined by a series, which actually converges by the k-pinching (B.4). Moreover,

kZ(0) = 0, and since @7 is C"~! uniformly in z, the function x7 is also C"~! uniformly

in x.
Similarly to what was obtained in (B.5), we have

by (€m) = D3 (€m) + KL(E)n — Kr () (Fr1(6,m) Fy 5(€,m).-

Let us check that the final adjustment did not destroy the polynomial form of 05171_17(0, )
obtained in the previous step. We calculate

023 (0,m) = K5 (0)+0eb (0,7) =K Xr (1) (0)D Fy 1 (0,1) 7 3(0,1m) =K r (1 (0) 0 F7 5(0, 7).

Note that the last term vanishes since £, (0) = 0, and we obtain

Op5(0.m) = PE(r)(m) + (K7 (0) = Kir () (O)XS (F)NE(T) )

which is the sought polynomial PS(7)(n) of degree at most [k]. This concludes the proof
of Lemma B.4. O

The proof of Proposition B.1 is complete. O
Proof of Addendum B.2. We first prove the following lemma.
Lemma B.7. For any 7 > 0 and any rational number p/q we have
ph=pL, and of =0l ,x € M,
where 7 = %7’.

Proof. Clearly the rational case is implied by the integer case. For the sake simplicity, let
us consider the case when 7/ = 27, the general case being essentially the same calculation.
One can check that p?” = p by using the series formula, or, instead we can show that
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these functions satisfy the same equation. Indeed, from the proof of Proposition B.1 we
have that p] satisfies

log py (1) = 10g X+ () N (=7)1) = 10g D+ (4 1 (0, X (—T)1) — log A%+ () (7)-

Changing the base-point to X " (x) the same equation reads

1og pl (2 (1) =108 p—2r (1) (N~ (1) (=T)7]) =
log a&F;(—QT(x)’l (O, )\uqu—(x) (_T)ﬁ) - log )\SX72T(Z‘) (7—)

Using 77 = AY(—7)n and adding the above two equation while using the cocycle property
of non-stationary linearizations gives

10g i (1) — 108 pX —2r (4 (N (—27)1) = 10g De FG (1 (0, A (—7)m)+
log 8515)7(,27(1)71(0, Az(=27)n) — log Ay —2r () (27).

Now we recall that F27

X-2r(z) = o () © FX 2 ()" Specifically for the first coordinate

we have

FX 27( (f n) = r(x)1( X- 27(35)1(5 77) X- 27( (f n))-

Qiﬁerentiating Wlth respect to £ and evaluating at )\;(—27)77 while recalling that
F71(0,-) =0 gives

log afF)Q(T_QT (2),1 (O’ )‘5(727—)77) =

log 8513';(,7(1)71 (0, \o(—7)n) + log 8513;(,27(%)71(0, As(—27)n).

Hence the equation we derived on p], simplifies to

log p7,(n) —10g P —2r () (Az (—=27)n) =
log 85}5)2{,27(3;)71 (0, AZ(=27)n) — log A% —2r () (27).

It remains to observe that p2” satisfies the same equation. Since this equation has a
unique solution given by (B.3) satisfying p,(0) = 1 we conclude that indeed p2™ = pT.
By identical arguments o}, = a;/. U

Since the initial charts j, vary contionously with respect to z € M in C" topology we
have that the functions p7 and o7 given by (B.3) vary continuously in C"~! topology
with respect to 7. Now given any 7 consider a sequence of rationals p, /¢, — 7, n — 0.
Then for any x € M

= 1 n/n — ,l
Pt =
by the preceding lemma. Hence, indeed, pI does not depend on 7. Similarly, o7 does

not depend on 7, and we can conclude that the charts 7, = h; 0 3., € M, do not
depend on the choice of 7 > 0.

Lemma B.8. For any 7 > 0 and any rational number p/q we have
or = 4,0;/, and Kk = Ii;l,.iv e M,

where 7' = %7’.
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Proof. Similarly to the previous lemma, it is enough to check the case when ¢ = 1 and
we only give a proof in the case when 7 = 27, the case 7/ = pr being fully analogous
but requiring summing m equations instead of just 2.

Recall that with respect to adjusted charts j, dynamics has the form Fg (& t,m) —

(F71(&m)st + 07 (&m), FL5(E,m)). Since FZ7 = FT, () 0 Ff we have

27 (6 m) = G(E ) + e oy (FL1 (6,m), EL5(6,m))-

Differentiating with respect to £ and then evaluating at (0, ), and using that Qﬁ; (0,-)=0
we have X R R

D27 (0.m) = D (0, ) + Dty (0. AL(TIMAL(7) (B.7)
Now we consider Taylor expansions for each of the three terms in this equation according
to (B.6). The Taylor remainders on both sides of the equation are the same, hence we
deduce an equation on the remainders

Wy (1) = wi(n) + X (T)wr (o) (N (7)),

Similarly to the proof of the previous lemma, we will show that ©?” and ¢7 satisfy
the same equation and, hence, must be equal by uniqueness of the solution. Recall that
the equation for ¢ is

P (@) A2 (TIMAL(T) = @p(n) + wz(n).
We use this equation twice to derive an equation on 2
Px2r () (Axr () (TN AX 7 () (T) = @m0y () + Wi (4 (71)-
Substituting 7 = A%(7)n and multiplying by A\*(7) gives:

o oy ALTINAL2T) = e (o) ALTIMA(T) + X () 0y N (7)) =
L)+ WT0) + N (wer oy X (7)) = 9Tm) + w27 ().

But this is precisely the defining equation of ¢27. Hence 2™ = 7, x € M.
By identical arguments ], = mg/. U

We can conclude that the adapted charts defined by 1, = j, o u,, * € M, do not
depend on the choice of 7 > 0.

Finally the twisted cocycle equations on the polynomials PZ(7) follow easily by Taylor
expanding all terms in (B.7) and matching the main polynomial terms, with a similar
argument for P¥(7). O
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