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Abstract. We consider two transitive 3-dimensional Anosov flows which do not pre-
serve volume and which are continuously conjugate to each other. Then, disregarding
certain exceptional cases, such as flows with C1 regular stable or unstable distribu-
tions, we prove that either the conjugacy is smooth or it sends the positive SRB
measure of the first flow to the negative SRB measure of the second flow and vice
versa. We give a number of corollaries of this result. In particular, we establish lo-
cal rigidity on a C1-open C∞-dense subspace of transitive Anosov flows; we improve
the classical de la Llave-Marco-Moriyón rigidity theorem for dissipative Anosov dif-
feomorphisms on the 2-torus by merely assuming matching of (full) Jacobian data
at periodic points; we also exhibit the first evidence that the Teichmüller space of
smooth conjugacy classes of Anosov diffeomorphisms on the 2-torus is well-stratified
according to regularity.
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1. Overview

Let us recall that a diffeomorphism f : M → M on some closed smooth Riemannian
manifold M is called Anosov if the tangent bundle admits a Df -invariant splitting
TM = Es ⊕ Eu, where Es is uniformly contracting and Eu is uniformly expanding
under Df . Similarly, a flow Xt : M →M is called Anosov if the tangent bundle admits
a DXt-invariant splitting TM = Es ⊕RX ⊕Eu, where X is the generating vector field
of Xt, Es is uniformly contracting and Eu is uniformly expanding under DXt, t > 0.
The stable and unstable bundles Es, Eu integrate uniquely to Xt-invariant stable and
unstable foliations Ws and Wu, respectively.

The well-known examples of Anosov flows are geodesic flows on negatively curved
Riemannian manifolds and suspension flows of Anosov diffeomorphisms. Many more ex-
amples of 3-dimensional Anosov flows can be constructed by various surgery techniques,
especially in dimension 3 (see [Bar17] for a survey).
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Let Xt : M →M be an Anosov flow, and let Y t be a C1-small perturbation of Xt. By
Anosov’s structural stability, these two flows are orbit-equivalent, that is, there exists
a homeomorphism Φ: M → M which sends orbits of Xt to orbits of Y t. It is well-
known that such orbit equivalence usually cannot be improved to a conjugacy since the
difference of periods of corresponding periodic orbits provide obstructions. It is a well-
known corollary of the Livshits Theorem [Liv72] that matching of all periods for a pair
of transitive Anosov flows is a necessary and sufficient condition for the existence of a
continuous conjugacy.

In a different direction, one can ask if the orbit equivalence can be improved to be
smooth. Similarly, this cannot be expected and obstructions are given by the eigenvalues
of Poincaré return maps at corresponding periodic orbits. In fact, matching of eigenvalue
obstructions implies that the orbit equivalence can be chosen to be smooth (we include
a proof, which follows the strategy of de la Llave [dlL92] and Pollicott [Pol90] of this
fact in Appendix A).

Both the periods and eigenvalues obstructions discussed above are very natural mod-
uli. In this paper we explore a less obvious connection between periods and regularity
of the conjugacy.

Given a transitive Anosov flow Xt : M → M on a compact manifold M , we say
that Xt is conservative, or volume preserving, if it leaves invariant a smooth measure.
Otherwise, we will say that Xt is dissipative.

In the setting of volume preserving 3-dimensional Anosov flows the first and the last
authors proved that a continuous conjugacy is necessarily smooth unless both flows are
constant roof suspensions [GRH22]. Thus, in this paper, we focus on 3-dimensional
dissipative Anosov flows and carry out a similar program as well as explore some appli-
cations.

Theorem A. Let Xt : M → M and Y t : N → N be two transitive dissipative C∞

Anosov flows on 3-manifolds M and N . Assume that they are C0-conjugate by a home-
omorphism Φ: M → N , Φ◦Xt = Y t ◦Φ. Assume that for any periodic point p = XT (p)
Jacobians match, i.e.,

detDXT (p) = detDY T (Φ(p)).

Then, Xt and Y t are C∞-conjugate.

Corollary B. Let f, g : T2 → T2 be two dissipative C∞ Anosov diffeomorphisms that
are C0-conjugate by a homeomorphism h : T2 → T2, h ◦ f = g ◦ h. Assume that for any
periodic point p = fn(p) Jacobians match, i.e.,

detDfn(p) = detDgn(h(p)).

Then, f and g are C∞-conjugate.

Remark 1.1. Theorem A was stated in the C∞ category, but it also works for Cr Anosov
flows with r ≥ 4, which are (r− 1)-pinched in the sense of Definition 2.2 below. In that
case, the conjugacy Φ is going to be Cr∗, where

r∗ = r, if r /∈ N, and r∗ = (r − 1) + Lip, if r ∈ N. (1.1)

Accordingly, Corollary B works for Cr Anosov diffeomorphisms, r ≥ 5, which are (r−1)-
pinched.



4 ANDREY GOGOLEV, MARTIN LEGUIL, AND FEDERICO RODRIGUEZ HERTZ

We also show that we can drop the condition on Jacobians for generic transitive
Anosov flows on 3-manifolds and obtain local rigidity.

Theorem C. Let M be a 3-manifold such that the space A of C∞ vector fields on M
which generate transitive Anosov flows is non-empty. Then, there exists a C1-open and
C∞-dense subset U ⊂ A such that for any X ∈ U, the Anosov flow Xt generated by X
is locally rigid, i.e., if Y t is an Anosov flow whose generator Y is sufficiently C1-close
to X, then we have:

Xt and Y t are C0-conjugate ⇔ Xt and Y t are C∞-conjugate.

In fact, the C1-open and C∞-dense property underlying Theorem C stems from the
lack of C1-smoothness of both the stable and unstable foliations; see Proposition 7.11.

Note that we always assume that the 3-manifoldsM and N are homeomorphic, hence,
diffeomorphic. Therefore we could have assumed from the beginning that both flows
live on the same smooth manifold, however, we find that it is better to use distinct
notation for conceptual reasons. In fact, in higher dimensions this distinction becomes
more important because there exist homeomorphic but non-diffeomorphic manifolds
which support conjugate Anosov flows. Accordingly, in higher dimension, one could
only conclude that the manifolds are diffeomorphic if rigidity is established.

Finally we have the following application on stratification by finite regularity conju-
gacy classes of Anosov diffeomorphisms in dimension 2.

Corollary D. There exists a C1+Hölder Anosov diffeomorphism g : T2 → T2 which is
not C1 conjugate to any C3 diffeomorphism.

Acknowledgements. The first author was supported by the Simons Fellowship dur-
ing the 2024-25 academic year when the bulk of this paper was done. The first author
is grateful for excellent working conditions provided by IHES and by the Mathemat-
ics Department at Université Paris-Saclay and especially to Sylvain Crovisier for his
hospitality.

The authors are very grateful to Mihajlo Cekić and Gabriel Paternain for explaining
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the conjugacy. We also thank James Marshall Reber for his feedback on early drafts of
Section 5.

2. Detailed statements of results

2.1. Rigidity problem for Anosov flows and prior results. Consider two transitive
Anosov flows Xt : M → M and Y t : N → N which are C0-conjugate, that is, assume
that there is a homeomorphism Φ: M → N such that

Φ ◦Xt = Y t ◦ Φ. (2.1)

When does the conjugacy Φ have C1 or better regularity? Although (2.1) ensures that
the orbits of Xt and Y t have the same behavior from a topological point of view, a con-
tinuous conjugacy does not retain all the information about the flows. For instance, if Φ
is not C1, then it may send the physical (SRB) measure to some singular measure which
is not physical, or it may change the Hausdorff dimension of some relevant invariant set.
Put succinctly: the flows may have different statistical behavior.
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Let us recall the basic fact that if Xt and Y t are transitive, the conjugacy in (2.1)
is essentially unique within a given orbit equivalence class. This means that any other
conjugacy map Φ̃ in the same class (which means that Φ−1 ◦ Φ̃ : M → M fixes each
Xt-orbit) has the form Φ̃ = Φ ◦ Xτ , for some constant time τ ∈ R. Indeed, pick a
point x ∈ M with a dense orbit, then Φ̃(x) = Φ(Xτ (x)) for some τ ∈ R. Therefore
Φ̃|{Xt(x)}t∈R = Φ ◦Xτ |{Xt(x)}t∈R , by (2.1); in fact, the same relation holds for all points,
since the orbit {Xt(x)}t∈R is dense, and both Φ̃, Φ are continuous. Because of this
observation, it makes sense to speak about regularity of the conjugacy without specifying
the conjugacy map we choose in a given orbit equivalence class.

Basic obstructions to Φ being C1 are again carried by periodic orbits, namely, by
their multipliers in period. Indeed, if the conjugacy Φ is C1, then at any periodic point
p = XT (p), we can differentiate the conjugacy equation (2.1) and obtain

DΦ(p) ◦DXT (p) ◦ (DΦ(p))−1 = DY T (Φ(p)).

In particular, a necessary condition for Φ to be C1 is that

∀p = XT (p) =⇒ DXT (p) and DY T (Φ(p)) have the same eigenvalues. (2.2)

It is a well-known classical result that (2.2) is, actually, a complete set of moduli if
dimM = dimN = 3:

Theorem 2.1 (De la Llave-Moriyón [DlLM88, dlL92], Pollicott [Pol88] ). Let Xt, Y t be
two Cr, r ∈ (1,∞]∪{ω}, transitive Anosov flows on 3-manifolds which are continuously
conjugate as in (2.1) and satisfy the assumption (2.2). Then the conjugacy Φ is Cr∗
regular, with r∗ > 1 as in (1.1).

2.2. Main technical result. Let Xt : M →M be an Anosov flow on some Riemannian
3-manifold M . For ∗ = s, u, we define

λ∗x(t) := ‖DXt|E∗(x)‖, ∀ (x, t) ∈M × R.

By compactness, there exists an integer n ≥ 1 such that λsx(n) < 1 < λux(n), for all
x ∈M .

Definition 2.2 (k-pinching). Given k > 1, we say that the Anosov flow Xt is k-pinched
if there exists an n ≥ 1 such that for all x ∈M ,

λsx(n)kλux(n) < 1, and λux(n)kλsx(n) > 1.

To ease the notation, from now on we will always assume that the integer n appearing
in the pinching conditions above can be chosen to be equal to one — n = 1.

Note that given an arbitrary 3-dimensional Anosov flow Xt then there always exists
some k > 1 such that Xt is k-pinched. When the Anosov flow Xt is dissipative and
%-pinched for some % ∈ (1, 2], we say that Xt is %-mildly dissipative.

Let us recall the definition of SRB measures.

Definition 2.3. Let Xt : M →M be a transitive Anosov flow on a compact manifoldM.
The positive SRB measure is the unique Borel invariant probability measure m+

X whose
conditionals along the leaves of the unstable foliation are absolutely continuous with
respect to the volume measure on these leaves. The negative SRB measure m−X of Xt is
defined by the same property along the stable leaves.
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Remark 2.4. Both measures m+
X and m−X are ergodic. Moreover, by the work of

Gurevich-Oseledets [GO73] (in the diffeomorphism case), and Livshits-Sinai [LS72], a
transitive Anosov flow Xt : M →M is conservative if and only if m+

X = m−X .

Our main result is the following:

Theorem E. Let Xt, Y t be two 3-dimensional transitive Cr, r ≥ 3, Anosov flows that
are k-pinched with 1 < k ≤ r − 1, and which are C0-conjugate by a homeomorphism Φ
as in (2.1). Then, at least one of the following statements holds:

1. the flows Xt and Y t are Cr∗-conjugate;

2. Φ swaps SRB measures of the two flows, i.e., Φ∗m
+
X = m−Y and Φ∗m

−
X = m+

Y ;

3. at least one of the foliations Ws
X , Wu

X , Ws
Y or Wu

Y is of class C1+α for some
α ∈ (0, 1).

In fact, case 3 could alternatively be stated in terms of the C1+α regularity of the
stable and unstable distributions.

Addendum F. In the case 3 above we have more information. Assume, for the sake of
concreteness, that Wu

X is C1. Then one of the following holds:

1. both flows are constant roof suspensions and all foliations Ws
X , W

u
X , W

s
Y and Wu

Y

are of class C1;

2. the conjugacy Φ is Cr along stable leaves and Wu
Y is also C1;

3. the stable foliation Ws
Y is C1;

4. Φ∗m
−
X = m+

Y .

In particular, if Xt has one C1 foliation, then so does the conjugate flow Y t, unless,
possibly, when Φ∗m

−
X = m+

Y .
Moreover, if we additionally assume that both flows are C4 regular and 5

4 -mildly dis-
sipative then, in fact, one of the following holds:

1. both flows are constant roof suspensions and all foliations Ws
X , W

u
X , W

s
Y and Wu

Y

are of class C1;

2. the conjugacy Φ is Cr along stable leaves and Wu
Y is also C1;

3. Φ∗m
−
X = m+

Y and Ws
Y is C1.

In particular, in the 5
4 -mildly dissipative case, we have that at least one of the foliations

Ws
X or Wu

X is C1 and at least one of the foliations Ws
Y or Wu

Y is also C1, improving
case 3 in Theorem E.

In fact, our proof of the Addendum also works under 1+
√

3
2 -mildly dissipative as-

sumption and with some more effort should possible to establish for 2-mildly dissipative
Anosov flows. We also believe that for C∞ flows, by working with higher order as-
ymptotic formulae it should be possible to obtain a stronger version of the addendum.
Specifically, it should be possible to remove the mildly dissipative assumption altogether
and still obtain the latter trichotomy in the addendum.

Remark 2.5. Let us discuss the regularity requirements, specifically Cr for r ≥ 3, im-
posed on the flow Xt in our results. A key ingredient in our proof is the asymptotic
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formulae for certain periods, which are derived in Proposition 4.2. These formulae in-
volve second-order partial derivatives of the hitting times of the flow, which are computed
in specific normal coordinates (see, e.g., Proposition 3.2). Since these coordinates are
merely Cr−1, the flow Xt must be Cr with r ≥ 3 in Theorem E. Using alternative tech-
niques, we believe that it might be possible to relax the regularity requirement, allowing
the flow Xt to be merely Cr for r > 2.

The C4 requirement in the finite regularity version of Theorem A, as stated in Re-
mark 1.1, arises from the use of a more precise second-order asymptotic formula in the
proof (see Proposition 4.12). This formula requires the hitting times to be C2+Lip in
the normal coordinates. Similarly, the C5 requirement in the finite regularity version of
Corollary B, as noted in Remark 1.1, stems from suspending the diffeomorphism by its
Jacobian (of class C4), yielding a C4 flow to which we then apply the previous result.

2.3. Generic rigidity, local rigidity and rigidity from matching of abstract
potentials. We also show that generic transitive Anosov flows on 3-manifolds which are
C0-conjugate are smoothly conjugate, unless the conjugacy swaps positive and negative
SRB measures of the two flows:

Theorem G. Let M and N be 3-manifolds which support transitive Anosov flows. Let
AM and AN denote the spaces of C∞ vector fields on M and N , respectively, which
generate transitive Anosov flows. Then there exist C1-open and C∞-dense subsets UM ⊂
AM and UN ⊂ AN

1 such that, for any X ∈ UM and Y ∈ UN , the associated Anosov
flows Xt and Y t satisfy:

none of the four foliations Ws
X ,W

u
X ,W

s
Y ,W

u
Y is C1.

In particular, if Xt and Y t are C0-conjugate via Φ: M → N , Φ ◦Xt = Y t ◦ Φ, at least
one of the following holds:

1. the conjugacy Φ is a C∞ regular;
2. Φ∗m

+
X = m−Y and Φ∗m

−
X = m+

Y .

Remark 2.6. If both flows are assumed to be 5
4 -mildly dissipative, as in the Addendum F,

then, in fact one can drop the genericity assumption on Y and only assume that X is
generic.

Finally, we give variants of Theorem A and Corollary B, where we replace Jacobian
data with abstract smooth potentials data.

Theorem H. Let Xt : M → M and Y t : N → N be two transitive dissipative C∞

Anosov flows on 3-manifolds M and N . Assume that they are orbit equivalent via a
homeomorphism Φ: M → N , and that there exists periodic point p = XT (p) such that

log |detDXT (p)| log | detDY T ′(Φ(p))| > 0

where T ′ is the period of Φ(p).
There exist open and dense sets UX ,UY ⊂ C∞(M,R+) such that, if we can find

ϕ ∈ Uf , ξ ∈ Ug with the property that for any periodic point p = XT (p) and the
corresponding periodic point Φ(p) = Y T ′(Φ(p)),∫ T

0
ϕ(Xt(p)) dt =

∫ T ′

0
ξ(Y t(Φ(p))) dt,

1. Actually, the complements AM \ UM and AN \ UN have infinite codimension.
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then Xt and Y t are C∞ orbit equivalent.

Corollary I. Let f, g : T2 → T2 be two C∞ dissipative Anosov diffeomorphisms that are
C0-conjugate by a homeomorphism h : T2 → T2, h ◦ f = g ◦ h. Assume that there is a
periodic point p = fn(p) such that

log |detDfn(p)| log | detDgn(h(p))| > 0.

There exist open and dense sets Uf ,Ug ⊂ C∞(T2,R) such that, if we can find ϕ ∈ Uf ,
ξ ∈ Ug with the property that for any periodic point p = fn(p),

n−1∑
`=0

ϕ(f `(p)) =
n−1∑
`=0

ξ(g`(h(p))),

then the conjugacy h is C∞.

2.4. Stratification of the Teichmüller space of smooth conjugacy classes ac-
cording to regularity. We proceed to explain an application to the structure of smooth
conjugacy classes of Anosov diffeomorphisms. Let Xr(M) be the space of Anosov dif-
feomorphisms on M of some finite regularity r ≥ 1. Denote by Diffr(M) the space of
Cr diffeomorphisms of M which are homotopic to the identity. Then Diffr(M) acts on
Xr(M) by conjugation. Usually this action is either free or virtually free. Then one can
form the Teichmüller space by taking the quotient

Tr(M) = Xr(M)/Diffr(M).

There is little general understanding of topology and structure of these spaces, but when
dimM = 2 at least we know that these spaces are Hausdorff. For any r > s ≥ 1 we have
the stratification map of Teichmüller spaces πr→s : Tr(M) → Ts(M) which is induced
by inclusion and quotient maps

Tr(M) = Xr(M)/Diffr(M) ⊂ Xs(M)/Diffr(M)→ Xs(M)/Diffs(M) = Ts(M).

It is interesting to understand basic properties of maps πr→s. One expects that
maps πr→s are injective, at least away from exceptional loci. Injectivity of πr→s is
equivalent to a well-studied bootstrap problem in hyperbolic dynamics. It is was es-
tablished for 2-dimensional Anosov diffeomorphisms [DlLMM86, dlL92] as well as for
one-dimensional [SS85] and higher dimensional expanding maps [GRH23] (with some
caveats).

Surprisingly, to the best of our knowledge, surjectivity of maps πr→s was not con-
sidered in the literature. We provide evidence that, in general, one should not expect
πr→s to be surjective. Specifically, using Theorem E and Cawley’s realization theo-
rem [Caw93], we obtain the following result.

Corollary J. The map π3→1 : T3(T2) → T1(T2) is not surjective; that is, there exist
C1 Anosov diffeomorphism of the 2-torus which is not C1 conjugate to any C3 Anosov
diffeomorphism.

The proof and some further discussion are given in Section 8.
A similar stratification can be considered for the Teichmüller space of Riemannian

metrics on a given manifold, where one identifies two metrics if they are isometric via an
isometry which is homotopic to identity. Local description of such Teichmüller spaces
were given by Ebin [Ebi70]
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We note that the analogous question about surjectivity in this setting is well-
understood [DK81] and the Teichmüller space of Riemannian metrics is known to be
well-stratified according to regularity. For example, one can realize a particular curva-
ture function of some finite regularity Cr by some Riemannian metric, in which case this
metric cannot be more than Cr+2 regular. In fact, locally on a Riemannian manifold
there is a natural harmonic system of coordinates with respect to which the metric is
“as smooth as it can be”. For example, (1 + 3x|x|)(dx2 + dy2) is a C1+Lip metric and
cannot be made any better by coordinate changes.

One can also hold an analogous discussion for the Teichmüller space of expanding
maps f on a given manifold. We expect this space to be well-stratified as well. At
least in dimension one, we can similarly introduce harmonic coordinates by requiring
the eigenfunction for the Perron-Frobenius operator with respect to − log Jac(f) to be
the constant function. This harmonic coordinate system makes the expanding map “as
smooth as it can be”, implying that the Teichmüller space of one dimensional expanding
maps is stratified according to regularity. Specifically, given some target regularity Cr,
r > 1 consider any diffeomorphism T : S1 → S1 which is Cr but not Cr+ε and which is
not C0 conjugate to x 7→ x+ 1

d . Then define a Cr expanding map f : S1 → S1 of degree
d by

f(x) =
d−1∑
`=0

T `(x).

Then f is a covering map whose Deck group Z/dZ is generated by T . Using this
observation one can calculate that 1 is the eigenfunction of the transfer operator
L− log f ′,f : Cr−1(S1) → Cr−1(S1). According to [GRH23, Corollary 3.3] the expanding
map f has optimal smoothness in its C1 conjugacy class. Indeed, if f were C1 conjugate
to f̄ which is Cr+ε then the transfer operator L− log f̄ ′,f̄ : Cr−1+ε(S1)→ Cr−1+ε(S1) has
a Cr−1+ε eigenfunction u corresponding to the maximal eigenvalue (see, e.g., [GRH23,
Theorem 3.1]). By integrating u we can Cr+ε-conjugate f̄ to f̂ which is still Cr+ε and
preserves the Lebesgue measure. Now we have that f and f̂ are C1 conjugate and both
preserve the Lebesgue measure. It follows that this C1 conjugacy is a rotation of S1.
Hence, f is also Cr+ε, contradicting our construction of f .

2.5. Further questions. Let us list a few questions raised by our results.

Question 2.7. Given r > 2, let Xt and Y t be 3-dimensional transitive Cr Anosov flows
that are k-pinched as in Theorem E and C0 conjugate by a homeomorphism Φ. Similarly
to Theorem G, can one say that case 2 in Theorem E, where Φ swaps the SRB measures
of Xt and Y t, is exceptional?

Indeed, the existence of such a pair (Y t,Φ) can be regarded as a symmetry of the flow
Xt, and we expect a typical Anosov flow to have no such symmetry. In other words,
is it true that for a generic 3-dimensional dissipative Cr Anosov flow Xt, there is no
Cr Anosov flow Y t that is C0-conjugate to Xt by some map Φ which swaps the SRB
measures of the flows?

Question 2.8. Furthermore, can one classify exceptional transitive Anosov flows Xt

for which a pair (Y t,Φ) as in Question 2.7 exists? Must Xt be time-reversible, namely,
C0-conjugate to the inverse flow X−t? Does one always have that at least one of the
foliations Ws

X or Wu
X is C1, or even more regular?
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Question 2.9. Recall that according to Theorem E the case where either foliation Ws

or Wu is C1 (but not both) is problematic for the rigidity of Xt. On the other hand, by
Theorem G, for an open and dense set of 3-dimensional transitive Anosov flows, both
foliations are not C1. Can one go further and classify such exceptional Anosov flows
with C1 strong stable foliation?

Question 2.10. In Section 3.3, we introduce a twisted cocycle which is a generaliza-
tion of the longitudinal Anosov cocycle introduced by Foulon and Hasselblatt for volume
preserving Anosov flows in dimension 3 [FH03]. Foulon and Hasselblatt showed that, in
the volume preserving case, this cocycle is a coboundary if and only if the distribution
Es ⊕ Eu is smooth; this fact was utilized in the preceding work [GRH22] on the rigidity
of 3-dimensional volume preserving Anosov flows by the first and last author. While in
the dissipative case, we observe in Remark 3.11 that if Es or Eu is C1, then the twisted
counterpart to the cocycle introduced by Foulon and Hasselblatt has to be a cobound-
ary. However, currently we lack understanding of the implications of this cocycle being
a coboundary.

2.6. Structure of the paper. In the next section we setup notation and recall various
known results which will be used later. We also introduce stable (unstable) templates
which can be thought of as the “time coordinate” of stable (unstable) distribution re-
stricted to a local unstable (stable) manifold. Most importantly, we prove that the stable
(unstable) distribution is C1 regular if and only if the stable (unstable) template has
polynomial form for volume expanding (contracting) periodic points.

In Section 4 we setup a shadowing scheme associated to a homoclinic orbit of a
dissipative periodic orbit and prove an asymptotic formula for the periods of shadowing
periodic orbits. The leading exponentially small term in this formula will be the main
driver for the arguments in the paper. We also derive a version of this formula for a
conservative periodic orbit and a more precise two-term formula for a mildly dissipative
periodic orbit.

In Section 5 we recall the positive proportion Livshits Theorem and discuss various
related auxiliary results, such as density of a positive proportion set of periodic orbits and
full proportion property of volume contacting periodic points with respect to the SRB
measure. We also identify equilibrium states with respect to which mildly dissipative
periodic points have full proportion.

In Section 6 we still consider a single Anosov flow and present our main dichotomy
result, namely, that either eigenvalue data at periodic points can be recovered from the
periods or the stable (or unstable) foliation is C1 regular. Then in Section 7 we put
together all prior ingredients and use this dichotomy to establish the rigidity results
about conjugate flows which were stated in Sections 1 and 2.

In Section 8 we give a proof of Corollary J which has a different flavor and relies on
Cawley’s realization result [Caw93].

Finally, in Section 9, we present examples of conjugate Anosov flows which illustrate
various aspects of our results.

3. Background knowledge on adapted charts and templates

3.1. Notation. We will begin by recalling some standard terminology and notation.
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Given an Anosov flow Xt, it is well-known that the strong stable bundle Es and
the strong unstable bundle Eu integrate uniquely to invariant foliations Ws and Wu,
respectively.

Throughout the paper we will always assume that the manifold M and the foliations
Ws and Ws are oriented. Indeed, we can do so without loss of generality because one can
always pass to an appropriate finite cover so that the manifolds and foliations become
orientable. We will also use the notation W∗X , ∗ = s, u, to emphasize the dependence of
these foliations on the flow, when several flows are involved. Further, we denote by Wcs

X

and Wcu
X the weak foliations with 2-dimensional leaves obtained by flowing the leaves of

Ws and Wu, respectively. For each x ∈M , and ∗ = s, u, cs, cu, we denote by W∗(x) the
leaf of W∗ containing x. We denote by dW∗ the distance along the leaves of W∗ induced
by the restriction of the Riemannian metric to TW∗. Finally, for x ∈ M and δ > 0 we
let W∗δ(x) := {y ∈ W∗(x) : dW∗(x, y) < δ} be the δ-neighbourhood of x within W∗(x).
In the following, we will use the notation W∗loc(x) to denote some local leaf W∗δ(x), for
δ > 0 of order 1.

We denote by P the set of periodic orbits of the flow Xt. Given a periodic orbit γ ∈ P,
and any point p in γ, we denote by T = T (γ) = T (p) > 0 its period, and let

µγ = µp := λsp(T ) ∈ (0, 1), λγ = λp := λup(T ) > 1.

be the eigenvalues of the linearized Poincaré return map at p. We will also use no-
tation Jacp(T ) for the Jacobian of the linearized return map, Jacp(T ) = Jacγ(T ) :=
detDXT (p) = µγλγ .

3.2. Adapted charts. In the following, we fix r ≥ 3, and consider a transitive Cr

Anosov flow on some 3-manifold M which is k-pinched for some 1 < k ≤ r − 1. Given
a k ∈ R, we will write [k] to denote the integer ceiling dk − 1e.

The following is a standard consequence of non-stationary linearization along 1-
dimensional stable and unstable foliations.

Proposition 3.1 (Katok-Lewis [KL91]). For ∗ = s, u, there exists a continuous family
of Cr charts {Φ∗x : TxW

∗(x) → W∗(x)}x∈M such that for any x ∈ M , and for any time
σ ∈ R,

1. Φ∗x(0) = x, and DΦ∗x(0) = Id;

2. Xσ(Φ∗x(ξ)) = Φ∗Xσ(x)(λ
∗
x(σ)ξ), for any ξ ∈ R.

The non-stationary linearization along stable and unstable foliations is a standard tool
in hyperbolic dynamics and Φ∗x, ∗ = s, u, are given by integrating properly normalized
densities of the SRB measure on the stable and unstable leaves.

Now we recall the construction of adapted charts for 3-dimensional Anosov flows,
due to Tsujii [Tsu18] in the volume preserving case, and Tsujii-Zhang [TZ23] in the
general case. This construction was later extended to the partially hyperbolic setting
by Eskin-Potrie-Zhang [EPZ23].

Proposition 3.2 (Adapted charts [TZ23]). Given a k-pinched Anosov flow, there exists
a continuous family of uniformly Cr−1 charts {ıx : (−1, 1)3 →M}x∈M such that for any
x ∈M , and any time σ ∈ R, we have:

1. ıx(ξ, 0, 0) = Φs
x(ξ), for any ξ ∈ (−1, 1);



12 ANDREY GOGOLEV, MARTIN LEGUIL, AND FEDERICO RODRIGUEZ HERTZ

2. ıx(0, 0, η) = Φu
x(η), for any η ∈ (−1, 1);

3. ıx(ξ, t, η) = Xt(ıx(ξ, 0, η)), for any (ξ, t, η) ∈ (−1, 1)3;

4. let F σx := (ıXσ(x))
−1 ◦Xσ ◦ ıx = (F σx,1, F

σ
x,2, F

σ
x,3); then, F σx,2(ξ, t, η) = t+ψσ(ξ, η),

and there exist polynomials P ∗x (σ)(z) =
∑[k]

`=1 α
∗,`
x (σ)z`, ∗ = s, u, of degree at

most [k], such that for ξ ∈ (−λsx(σ)−1, λsx(σ)−1) and η ∈ (−λux(σ)−1, λux(σ)−1),[
∂1F

σ
x,1 ∂2F

σ
x,1

∂1F
σ
x,2 ∂2F

σ
x,2

]
(0, 0, η) =

[
λsx(σ) 0

P sx(σ)(η) 1

]
,[

∂2F
σ
x,2 ∂3F

σ
x,2

∂2F
σ
x,3 ∂3F

σ
x,3

]
(ξ, 0, 0) =

[
1 P ux (σ)(ξ)
0 λux(σ)

]
,

where λsx(σ) := ‖DXσ(x)|Es‖, λux(σ) := ‖DXσ(x)|Eu‖.

We present the construction of adapted charts in Appendix B. It is essentially the
same construction as the one given in [Tsu18, TZ23], but we took special care and
constructed Cr−1 regular charts (other than Cr−2 regular constructed in [TZ23]) and
also extended the normalization of jets for all times σ (other than for time-1 only).

3.3. Hitting times and their jets. The adapted charts provide a family of local
transversals to the Anosov flow. Here we setup notation and summarize basic properties
of hitting (return) times relative to these transversals.

Definition 3.3. Given a family {ıx : (−1, 1)3 →M}x∈M as above, we let

Σx := ıx ((−1, 1)× {0} × (−1, 1)) .

Then {Σx}x∈M is a continuous family of uniformly Cr−1 transverse sections for the flow
Xt. By construction, for any point x ∈ M , the transversal Σx contains local stable and
unstable manifolds of the base point x, i.e., W∗loc(x) ⊂ Σx, ∗ = s, u.

For any point x ∈M , and σ ∈ R, there exists a neighborhood U(x, σ) ⊂ Σx of x such
that the Poincaré map Πσ

x : U(x, σ)→ ΣXσ(x) is well-defined, with Πσ
x(x) = Xσ(x). For

y ∈ U(x, σ), we denote by τσx (y) ∈ R the corresponding hitting time, Πσ
x(y) = Xτσx (y)(y).

Wu
loc(x)

x
•

Ws
loc(x)

Σx

Figure 1. Transveral Σx.

With a slight abuse of notation, we will also denote by τσx (ξ, η) the hitting time
in (ξ, η)-coordinates, i.e., if y := ıx(ξ, 0, η) ∈ U(x, σ), we let τσx (ξ, η) := τσx (y). By
construction of our charts, τσx (·) is a Cr−1 function which is constant when restricted to
the local strong stable and unstable manifolds of x, i.e., for σ ≥ 0,

τσx (·, 0)|(−1,1) ≡ σ, τσx (0, ·)|(−λux(σ)−1,λux(σ)−1) ≡ σ.
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Lemma 3.4. For any time σ ∈ R, any ξ ∈ (−λsx(σ)−1, λsx(σ)−1), and any η ∈
(−λux(σ)−1, λux(σ)−1), we have

∂2τ
σ
x (ξ, 0) = −P ux (σ)(ξ), ∂1τ

σ
x (0, η) = −P sx(σ)(η), (3.1)

where P ux (σ)(ξ), P sx(σ)(η) are the polynomials from Proposition 3.2(4).

Proof. Let us prove it for σ ≥ 0 and η ∈ (−λux(σ)−1, λux(σ)−1), the other cases being anal-
ogous. By using the normal forms given by Proposition 3.2(4), we have for sufficiently
small |ξ| � 1,

F σx (ξ, 0, η) = F σx (0, 0, η) + ∂1F
σ
x (0, 0, η)ξ +O(ξ2)

= (0, 0, λux(σ)η) + (λsx(σ), P sx(σ)(η), γσ(ξ, η))ξ +O(ξ2),

for some γσ(ξ, η) ∈ R. Therefore, by Proposition 3.2(3),

X−P
s
x (σ)(η)ξ ◦ ıXσ(x)(F

σ
x (ξ, 0, η)) = ıXσ(x)(λ

s
x(σ)ξ, 0, λux(σ)η + γσ(ξ, η)ξ) +O(ξ2),

with ıXσ(x)(λ
s
x(σ)ξ, 0, λux(σ)η + γσ(ξ, η)ξ) ∈ ΣXσ(x). Hence

τσx (ξ, η) = 1− P sx(σ)(η)ξ +O(ξ2),

and we deduce that ∂1τ
σ
x (0, η) = −P sx(σ)(η), as claimed. �

Remark 3.5. Although for a fixed σ the hitting time τσx is formally only Cr−1, as a
direct consequence of Lemma 3.4, we have that ∂2τ

σ
x (·, 0) and ∂1τ

σ
x (0, ·) are actually

polynomial functions; in particular, for j ∈ {1, · · · , [k]},
1

j!
∂j1∂2τ

σ
x (0, 0) = −αu,jx (σ),

1

j!
∂1∂

j
2τ
σ
x (0, 0) = −αs,jx (σ), (3.2)

where αu,jx (σ), αs,jx (σ) are the j-th coefficients of P ux (σ)(ξ) and P sx(σ)(η), respectively.
Moreover, if the flow Xt is C3, by Schwarz lemma, we have αu,1x = αs,1x .

Remark 3.6. By the chain rule, the map (x, σ) 7→ αs,jx (σ) is a twisted cocycle with
twisting given by the multiplicative cocycle (x, σ) 7→ λsx(σ)jλux(σ), i.e., for any point
x ∈M , and times σ, σ′ ∈ R, we have

αs,jx (σ + σ′) = αs,jx (σ) + λsx(σ)λux(σ)jαs,jXσ(x)(σ
′). (3.3)

Indeed, for |ξ| � 1, with the notation of Proposition 3.2, we have the following additivity
by the definition of hitting times

τσ+σ′
x (ξ, η) = τσx (ξ, η) + τσ

′

Xσ(x)(F
σ
x,1(ξ, 0, η), F σx,3(ξ, 0, η)).

Recall that F σx,1(ξ, 0, η) = λsx(σ)ξ + o(ξ), F σx,3(ξ, 0, η) = λux(σ)η + o(ξ). Hence, by differ-
entiating the above equation we have

∂1τ
σ+σ′
x (0, η) = ∂1τ

σ
x (0, η) + λsx(σ)∂1τ

σ′

Xσ(x)(0, λ
u
x(σ)η),

which yields (3.3) by differentiating j times with respect to the second component at
η = 0, by (3.2).

Remark 3.7. The twisted cohomology class of αs,jx is independent of our choice of
{Σx}x∈M given by adapted charts. Indeed, if {Σ̃x}x∈M is another continuous family of
Cr−1 transversals such that for x ∈ M , Σx ⊃ W∗loc(x), ∗ = s, u, then for any x ∈
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M , there exists a neighborhood Ux ⊂ (−1, 1)2 of (0, 0), εx > 0, and a Cr−1 function
ux : Ux → R such that

Σ̃x ∩B(x, εx) = {ıx (ξ, ux(ξ, η), η) : (ξ, η) ∈ Ux}.

Therefore, denoting by {τ̃σx }x,σ the hitting times for the family {Σ̃x}x∈M , the correspond-
ing cocycle M × R 3 (x, σ) 7→ α̃s,jx (σ) := − 1

j!∂
j
1∂2τ̃

σ
x (0, 0) differs from αs,jx by a twisted

coboundary:

α̃s,jx (σ)− αs,jx (σ) = ∂12ux(0, 0)− λsx(σ)λux(σ)j∂12uXσ(x)(0, 0).

Similarly, for j ∈ {1, · · · , [k]}, the map (x, σ) 7→ αu,jx (σ) is a twisted cocycle with
twisting given by the multiplicative cocycle (x, σ) 7→ λsx(σ)λux(σ)j.

In particular, the families of twisted cocycles {αs,jx }j=1,··· ,[k] and {α
u,j
x }j=1,··· ,[k] can be

regarded as a generalization of the longitudinal Anosov cocycle introduced by Foulon and
Hasselblatt for volume preserving Anosov flows in dimension 3 [FH03].

3.4. Templates and regularity of Es and Eu. Following the terminology of Tsujii-
Zhang [TZ23], we consider a family of functions called templates which are given by the
first jets of local strong stable and unstable manifolds through points on coordinate axes
in the adapted charts. Specifically templates are defined in the following way.

Definition 3.8 (Templates). For any ξ, η ∈ (−1, 1), we write:

ı−1
x

(
Ws

loc(Φ
u
x(η))

)
=
{

(ξ̃,Tsx(η)ξ̃ + bsx(ξ̃, η)ξ̃2, η + csx(ξ̃, η)ξ̃)
}
ξ̃∈(−1,1)

, (3.4)

ı−1
x

(
Wu

loc(Φ
s
x(ξ))

)
=
{

(ξ + cux(ξ, η̃)η̃,Tux(ξ)η̃ + bux(ξ, η̃)η̃2, η̃)
}
η̃∈(−1,1)

, (3.5)

where Tsx and Tux are called the stable and unstable templates, respectively, and
bsx, b

u
x, c

s
x, c

u
x are some functions.

Wu
loc(x)

Ws
loc(Φ

u
x(η))

x
•

•
•Φu

x(η)
•

“Tsx(η)”
Ws

loc(x)

Σx

Figure 2. The template can be informally thought of as a function
measuring the angle between the local stable manifold and the transversal
Σx.

One important point is that templates control the C1 smoothness of the strong stable
distribution Es along the unstable leaves.

Lemma 3.9. There exists an α > 0 such that the family of stable templates {Tsx}x∈M
is uniformly C1+α if and only if the strong stable distribution Es is C1+α.
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Proof. Assume that Es is C1+α. Then for any x ∈M , with respect to an adapted chart
ıx at x, the restriction of Es to Wu

loc(x) is given by

Es(0, 0, η) = R(1,Tsx(η), csx(0, η)), η ∈ (−1, 1). (3.6)

Since the adapted charts are uniformly Cr−1, we then conclude that the family of stable
templates {Tsx}x∈M is uniformly C1+α.

Recall that the weak stable distribution Es ⊕ RX of a 3-dimensional Anosov flow is
always uniformly C1+α for some α > 0 (see, e.g. [PS72]). Equivalently, the family of
functions {csx(0, ·)}x∈M is uniformly C1+α.

Now assume that {Tsx}x∈M are uniformly C1+α. From (3.6) we can see that the
restriction of the stable distribution to each local unstable leaf is uniformly C1+α. Since
Es is also uniformly C1+α along weak stable leaves we conclude that Es is globally
C1+α. �

Lemma 3.10. For any x ∈M , σ ∈ R and η ∈ (−λux(σ)−1, λux(σ)−1), we have

P sx(σ)(η) = λsx(σ)TsXσ(x)(λ
u
x(σ)η)− Tsx(η), (3.7)

where P sx(σ)(η) is the polynomial from Proposition 3.2(4).

Proof. Equation (3.7) follows from the invariance of the stable foliation Ws, expressed
in normal coordinates. Indeed, for η ∈ (−λux(σ)−1, λux(σ)−1), the image of (1,Tsx(η)) by
the differential DXσ in normal coordinates, namely[

λsx(σ) 0
P sx(σ)(η) 1

] [
1

Tsx(η)

]
=

[
λsx(σ)

P sx(σ)(η) + Tsx(η)

]
,

should be proportional to (1,TsXσ(x)(λ
u
x(σ)η))>, which yields

P sx(σ)(η) = λsx(σ)TsXσ(x)(λ
u
x(σ)η)− Tsx(η). �

Remark 3.11. If the stable distribution Es is C1+α, for some α > 0, then the twisted
cocycle (x, σ) 7→ αs,1x (σ) is a twisted coboundary. Indeed, by (3.9), the family of sta-
ble templates {Tsx}x∈M is uniformly C1+α, and then, for any x ∈ M and σ ∈ R, by
differentiating (3.7) and evaluating at η = 0, we have

αs,1x (σ) = λsx(σ)λux(σ)(TsXσ(x))
′(0)− (Tsx)′(0).

In other words, similarly to the observation of Foulon-Hasselblatt [FH03], the non-
vanishing of the cohomology class of the twisted cocycle (x, σ) 7→ αs,1x (σ) is an obstruction
to the C1 smoothness of Es.

Corollary 3.12. Let Xt be volume preserving 3-dimensional Anosov flow. Then Es is
C1+α, α > 0, if and only if Eu is C1+α′, α′ > 0, in which case Xt is a contact flow or
a constant roof suspension flow.

Proof. If Xt is volume preserving, then the map (x, σ) 7→ αs,1x (σ) is merely the lon-
gitudinal Anosov cocycle introduced by Foulon-Hasselblatt [FH03] (see Remark 3.6).
Moreover, if Es is C1+α, α > 0, then by Remark 3.11, the cocycle (x, σ) 7→ αs,1x (σ) is
a coboundary. By the work of Foulon-Hasselblatt [FH03], we deduce that Xt is either
a contact flow or a constant roof suspension flow. In both cases, Eu is also C1+α′ , for
some α′ > 0. �
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Lemma 3.13. If p ∈ M is a volume expanding periodic point, of period T > 0, with
eigenvalues µ = µp < 1 < λ = λp, Jacp(T ) = µλ > 1, then for any η ∈ (−1, 1), we have

Tsp(η)− lim
σ→+∞

λsp(−σ)TsX−σ(p)(λ
u
p(−σ)η) =

[k]∑
j=1

αs,jp (T )

µλj − 1
ηj .

Proof. Fix a periodic point p ∈ M , of period T > 0, with Jacp(T ) > 1. After a change
of variables in (3.7), for η ∈ (−1, 1) and σ ≥ 0, we obtain

Tsp(η)− λsp(−σ)TsX−σ(p)(λ
u
p(−σ)η) = λsp(−σ)P sX−σ(p)(σ)(λup(−σ)η). (3.8)

Let us show that the right hand side has a limit which is a polynomial of degree at most
[k]. As before, we use the following notation for coefficients: P sx(σ)(η) =

∑[k]
j=1 α

s,j
x (σ)η`.

Then

λsp(−σ)P sX−σ(p)(σ)(λup(−σ)η) =

[k]∑
j=1

λsp(−σ)
(
λup(−σ)

)j
αs,j
X−σ(p)

(σ)ηj . (3.9)

Take σ � 1, and write it as σ = nT +ρ, ρ ∈ [0, T ). By (3.3), the map (x, t) 7→ αs,jx (t)

is a twisted cocycle, with twisting given by (x, t) 7→ λsx(t) (λux(t))j , j ∈ {1, · · · , [k]},
hence

αs,j
X−σ(p)

(σ) = αs,j
X−σ(p)

(ρ) + λsX−ρ(p)(ρ)
(
λuX−ρ(p)(ρ)

)j
αs,jp (T )

n−1∑
`=0

(µλj)`,

and

λsp(−σ)
(
λup(−σ)

)j
αs,j
X−σ(p)

(σ) = λsp(−σ)
(
λup(−σ)

)j
αs,j
X−ρ(p)

(ρ) + αs,jp (T )
1− (µλj)−n

µλj − 1
.

The map [0, T ] 3 ρ 7→ αs,j
X−ρ(p)

(ρ) is continuous, hence the family {αs,j
X−ρ(p)

(ρ)}ρ∈[0,T ] is

bounded, while λsp(−σ)
(
λup(−σ)

)j
= O(Jacp(T )−n) goes to 0 as σ → +∞, and so does

the first term in the right hand side of the previous equation. Since µλj > 1, for j ≥ 1,
we deduce from (3.9) that

lim
σ→+∞

λsp(−σ)P sX−σ(p)(σ)(λup(−σ)η) =

[k]∑
j=1

αs,jp (T )

µλj − 1
ηj .

We conclude that the two sides in (3.8) have a limit as σ → +∞, which is equal to the

polynomial
∑[k]

j=1
αs,jp (T )

µλj−1
ηj . �

Lemma 3.14. Let p ∈ M be a volume expanding periodic point, of period T > 0,
with µ = µp < 1 < λ = λp, Jacp(T ) = µλ > 1. Let P̃ sp be the polynomial given by
Lemma 3.13:

P̃ sp (η) :=

[k]∑
j=1

αs,jp (T )

µλj − 1
ηj .

Then, the stable distribution Es is C1+α along Wu
loc(p) for some α > 0 if and only if

Tsp = P̃ sp . (3.10)
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Moreover, if Es is Cβ along the unstable manifold Wu
loc(p) for some β > − log µ

log λ ,
2 then

it is automatically C1+α along Wu
loc(p), α > 0 (note that − logµ

log λ ∈ (0, 1)).

Proof. If (3.10) is satisfied, then Tsp is obviously C1+α, α > 0. Conversely, let us assume
that there exists α > 0 such that Tsp is C1+α. After possibly taking α > 0 smaller, by
reasoning as in the proof of Lemma 3.9, we deduce that Es is C1+α along Wu

loc(p). Since
the sections {ΣXt(p)}t∈[0,T ] are uniformly Cr−1, and since Es(Xt(p)) = DXt(p)Es(p),
for t ∈ [0, T ], we deduce that the family of templates {TsXt(p)}t∈[0,T ] is uniformly C1+α.
Then, according to Lemma 3.13, for any η ∈ (−1, 1),

P̃ sp (η) = Tsp(η)− lim
n→+∞

λsp(−n)TsX−n(p)(λ
u
p(−n)η)

= Tsp(η)− lim
n→+∞

O
(

(µλ)−
n
T

)
= Tsp(η).

Finally, if we assume that Es is Cβ for some β > − logµ
log λ . Then,

λsp(−n)TsX−n(p)(λ
u
p(−n)η) = O

(
µ−

n
T λ−β

n
T

)
= o(1).

As before, we conclude that Tsp = P̃ sp , and that Es is C1+α along Wu
loc(p), for some

α > 0. �

Lemma 3.15. The strong stable distribution Es is C1+α for some α > 0 if and only
if there exists a dense set of volume expanding periodic points p ∈ M , Jacp(T (p)) > 1,
such that Tsp = P̃ sp .

Proof. The direct implication follows immediately from Lemma 3.14. Conversely, let us
assume that there exists a dense set S ⊂M of periodic points p such that Tsp = P̃ sp .

For each (x, η) ∈ M × (−1, 1), the stable template Tsx(η) essentially measures the
angle between the stable space Es at Φu

x(η) and the transversal Σx. Because the map
(−1, 1) 3 (x, η) 7→ Φu

x(η) is continuous, the stable space Es(y) depends continuously
on the point y ∈M , and {Σx}x∈M is a continuous family of uniformly Cr−1 transverse
sections, we conclude that the map

Ts : M × (−1, 1) 3 (x, η) 7→ Tsx(η)

is continuous.
Let I :=

[
−1

2 ,
1
2

]
. We let (C0(I,R), ‖·‖C0) be the Banach space of continuous functions

on I, where ‖ϕ‖C0 := supη∈I |ϕ(η)|, for ϕ ∈ C0(I,R).
By Lemma 3.13, for each periodic point p ∈M with Jacp(T (p)) > 1, we have that P̃ sp

is a polynomial of degree at most k−1. Let RI[k] ⊂ C
r−1(I,R) be the space of polynomial

functions of degree at most [k] on the interval I. It is a finite dimensional vector space,
hence all norms on this space are equivalent. For any Q : η 7→

∑[k]
`=0 q`η

` ∈ RI[k], let
‖Q‖`∞ := max`∈{0,··· ,[k]} |q`|. In particular, there exists a constant C > 0 such that for
any Q ∈ RI[k], ‖Q‖`∞ ≤ C‖Q‖C0 . Therefore, for any periodic points p, q ∈ S in the dense
set S, we have Ts∗ = P̃ s∗ ∈ RI[k], for ∗ = p, q, hence

‖Tsp − Tsq‖`∞ ≤ C‖Tsp − Tsq‖C0 . (3.11)

2. By Pugh-Shub-Wilkinson [PSW97], we also know that for any θ < − log µ
log λ

, Es is always Cθ along
Wu

loc(p).
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Moreover, the map Ts introduced above is continuous, hence it is uniformly continuous
when restricted to the compact set M × I. In particular, supx∈M ‖Tsx‖C0 ≤ K for some
K > 0, and for any ε > 0, there exists η > 0 such that

|x− y| ≤ η =⇒ ‖Tsx − Tsy‖C0 ≤ ε.
By (3.11), we deduce that

∀ p, q ∈ S, |p− q| ≤ η =⇒ ‖Tsp − Tsq‖`∞ ≤ Cε.

By the uniform Cauchy criterion for the finite dimensional vector space (RI[k], ‖ · ‖`∞),
and since the set S is dense in M , we conclude that the family {Tsx}x∈M is a family of
polynomial functions of degree at most [k], whose coefficients depend continuously on
the point x. In particular, the family {Tsx}x∈M is uniformly Cr−1, and by Lemma 3.9,
we conclude that Es is C1+α for some α > 0. �

Remark 3.16. In the previous results, we have focused on the stable distribution Es,
but clearly, the same results hold for the unstable distribution Eu, by reversing time. In
particular, the second statement in Lemma 3.13 can be made for the unstable template
Tup along the local stable manifold of a volume contracting periodic point p.

4. Asymptotic formula for periods

In the present section, we fix a 3-dimensional transitive Anosov flow Xt which is of
class Cr, with r ≥ 3.

4.1. Shadowing setup. Let {ıx}x∈M be the uniform charts given by Proposition 3.2,
and for x ∈M , recall that we denote by Σx ⊂M the surface

Σx := ıx((−1, 1)× {0} × (−1, 1)).

Also recall that for (ξ, η) ∈ (−1, 1)2, y = ıx(ξ, 0, η) ∈ Σx, we denote by {τ tx(ξ, η) =

τ tx(y)}t the corresponding family of hitting times, and by Πt
x : y 7→ Xτ tx(y)(y) the Poincaré

map from Σx to ΣXt(x).
In the following, we consider a periodic point p ∈M , of period T > 0, with multipliers

0 < µ = λsp(T ) < 1 < λ = λup(T ). We assume that p is volume expanding, i.e.,
Jacp(T ) = µλ > 1. All the statements that follow will be given in that context, but they
all can be easily adapted to the case when the periodic point p is volume contracting,
i.e., Jacp(T ) < 1.

We fix some homoclinic point q ∈ Wu
loc(p). We fix a time T ′ > 0 with the property

that q′ = XT ′(q) ∈ Ws
loc(p). Without loss of generality, we can assume that q, q′ ∈ Σp.

Then, for some ξ∞, η∞ 6= 0, we have

ı−1
p (q) = (0, 0, η∞), ı−1

p (q′) = (ξ∞, 0, 0).

Let f = ΠT
p : Σp → Σp be the Poincaré map from Σp to itself.

Lemma 4.1. There exist a constant C0 > 0 and an integer n0 ∈ N such that for n ≥ n0,
there exists a unique periodic point pn ∈ Σp of period

Tn ' nT + T ′

and such that

d(Xt(pn), Xt(q)) ≤ C0µ
n
2 , ∀ t ∈

[
−nT

2
,
nT

2
+ T ′

]
.
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Proof. For n ≥ 0, we consider the periodic pseudo-orbit {Xt(q) : t ∈
[−nT

2 , nT2 + T ′
]
}

with a small jump at t = nT
2 + T ′. Because q is homoclinic to p, and µλ > 1, it is

easy to see that for some constant C > 0 independent of n, the jump is bounded above
by Cµ

n
2 . By Anosov closing lemma, for all sufficiently large n ≥ 0, we deduce that

this pseudo-orbit is C0µ
n
2 -shadowed by a unique periodic orbit {Xt(pn) : t ∈ [0, Tn]} of

period Tn ' nT + T ′, for some constant C0 > 0, with pn ∈ Σp close to q. �

4.2. Asymptotic formula for a volume expanding periodic point. As above, we
let p ∈ M be a volume expanding periodic point of period T > 0, with multipliers
0 < µ < 1 < λ, µλ = Jacp(T ) > 1. We fix some homoclinic point q ∈ Σp ∩Wu

loc(p) and
we let q′ := XT ′(q) ∈ Σp ∩Wu

loc(p) as above. Let (pn)n≥n0 be the sequence of periodic
points given by Lemma 4.1 whose orbits shadow the orbit of q. The main goal of this
section is to derive a certain asymptotic expansion of the period Tn of pn with respect
to n� 1. We fix θ ∈ (0, 1) such that

max
(
µ

3
2 , µ

2 log λ
log λ−log µ

)
< θ < µ. (4.1)

Proposition 4.2. As n→ +∞, the period Tn of the periodic point pn has the following
asymptotic expansion:

Tn = nT + T ′ + ξ∞

(
Tsp(η∞)− P̃ sp (η∞)

)
µn +O(θn),

with ξ∞ 6= 0, and where

P̃ sp (η) := −
[k]∑
j=1

1

j!

∂1∂
j
2τ
T
p (p)

µλj − 1
ηj

is the polynomial already introduced in Lemma 3.13.

We will split the proof of this result into several lemmata. Let us first derive some
asymptotic expansion for the coordinates of the periodic points pn ∈ Σp and p′n :=
f−n(pn) ∈ Σp in normal charts. For each integer n ≥ n0, let

(ξn, 0, ηn) := ı−1
p (pn), (ξ′n, 0, η

′
n) := ı−1

p (p′n).

Let κs ∈ R be such that vsq = (1, κs) ∈ Dı−1
p (q)EsΣ(q), where EsΣ(q) := (Es ⊕ RX)(q) ∩

TqΣp. For each time t ∈ [0, nT ], we let Π−tp : Σp → ΣX−t(p) be the Poincaré map, and
we let Π̂−tp := ı−1

X−t(p) ◦Π−tp ◦ ıp be its image in normal coordinates. We also denote

(ξn(−t), ηn(−t)) := Π̂−tp (ξn, ηn).

We also define the integer

`n :=

[
logµ

logµ− log λ
n

]
∈ N. (4.2)

Since λ−1 < µ, we note that `n < n
2 . Note that the choice of time `n is made so that

ξn(−`nT ) ≈ ηn(−`nT ); in other words, µn−`n ≈ λ−`n .

Remark 4.3. In what follows, we always denote by 0 < µ < 1 < λ the multipliers of the
periodic point p under consideration, with λ−1 < µ. The constant ν ∈ (0, µ) is auxiliary,
its value will be chosen differently for various lemmata.
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Lemma 4.4. Fix a number ν ∈ (0, 1) such that max(λ−1, µ
3
2 ) ≤ ν < µ. Then, for some

constant c∞ 6= 0, we have

(ξn, ηn)− (0, η∞) = c∞µ
n(1, κs) +O(νn). (4.3)

For any time t ∈ [0, nT ], we have

(ξn(−t), ηn(−t))− (0, η∞λ
u
p(−t)) = O(µn−

t
T ), if t ≤ `nT,

(ξn(−t), ηn(−t))− (ξ∞λ
s
p(nT − t), 0) = O(λ−

t
T ), if t ≥ `nT.

(4.4)

Proof. We abbreviate as f̂ := Π̂T
p the Poincaré map f = ΠT

p in normal coordinates.
Since the flow Xt is assumed to be of class Cr, r ≥ 3, by [Sto86, Theorem 2, case 3],
there exists a change of coordinates Φ: U → R2 of regularity class C

3
2 (in fact, of class

C
r
2 ), defined on some neighborhood U ⊂ (−1, 1)2 of (0, 0), with Φ(0, 0) = (0, 0), which

linearizes f̂ :
Φ ◦ f̂ ◦ Φ−1 = L : (ξ̃, η̃) 7→ (µξ̃, λη̃). (4.5)

Note that Φ preserves the horizontal and vertical axes {(ξ, 0) : |ξ| < 1} and {(0, η) :

|η| < 1}. Moreover, Φ can be extended to f̂±1(U) by setting Φ(f̂±1(x)) := L±1(Φ(x)),
for any x ∈ U . By repeating this construction finitely many times, we can extend
linearizing chart Φ to a neighborhood of the horizontal and vertical axes up to (ξ∞, 0)
and (0, η∞), respectively.

After replacing Φ with Φ ◦ Λ for some linear map Λ: (ξ, η) 7→ (aξ, bη), and since
L,Λ commute, we can also assume that Φ fixes the points (ξ∞, 0) and (0, η∞). More-
over, f̂ |{η=0} ≡ L|{η=0} : (ξ, 0) 7→ (µξ, 0) and f̂ |{ξ=0} ≡ L|{ξ=0} : (0, η) 7→ (0, λη); in
particular, for any integer ` ≥ 0, we have

(0, λ−`η∞) = Φ(0, λ−`η∞), (µ`ξ∞, 0) = Φ(µ`ξ∞, 0). (4.6)

For each integer n ≥ n0, let us denote

(ξ̃n, η̃n) := Φ(ξn, ηn), (ξ̃′n, η̃
′
n) := Φ(ξ′n, η

′
n).

By construction of the points pn, p′n, we have f̂n(ξ′n, η
′
n) = (ξn, ηn). Then, by Lemma 4.1,

we have the crude expansion 3

(ξn, ηn) = (0, η∞) +O(µ
n
2 ), (ξ′n, η

′
n) = (ξ∞, 0) +O(µ

n
2 ).

By (4.5), we thus obtain

(ξ̃n, η̃n) = (µnξ̃′n, λ
nη̃′n) =

(
ξ∞µ

n +O(µ
3
2
n), η∞ +O(µ

n
2 )
)
,

(ξ̃′n, η̃
′
n) = (µ−nξ̃n, λ

−nη̃n) =
(
ξ∞ +O(µ

n
2 ), η∞λ

−n +O(µ
n
2 λ−n)

)
.

(4.7)

Recall that vsq = (1, κs) ∈ Dı−1
p (q)EsΣ(q), and let

• ṽsq = (βsq , γ
s
q) := DΦ(0, η∞)vsq , with βsq 6= 0;

• vsq′ := D(ı−1
p ◦XT ′ ◦ ıp)(0, η∞)vsq ∈ Dı−1

p (q′)EsΣ(q′);

• ṽsq′ = (δsq′ , 0) := DΦ(ξ∞, 0)vsq′ , with δ
s
q′ 6= 0.

Indeed, we observe that vsq′ , ṽ
s
q′ ∈ (R \ {0})× {0}. Similarly, let

3. Using exponential slacking in the shadowing construction we could use O(µn) instead of O(µn/2),
however, due to loss which occurs later in the proof such precision is not needed here.
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• vuq′ = (κu, 1) ∈ Dı−1
p (q′)EuΣ(q′), where EuΣ(q′) := (RX ⊕ Eu)(q′) ∩ Tq′Σp;

• ṽuq′ = (βuq′ , γ
u
q′) := DΦ(ξ∞, 0)vuq′ , with γ

u
q′ 6= 0;

• vuq := D(ı−1
p ◦X−T

′ ◦ ıp)(ξ∞, 0)vuq′ ∈ Dı−1
p (q)EuΣ(q);

• ṽuq = (0, δuq ) := DΦ(ξ∞, 0)vuq , with δuq 6= 0.

Indeed, we also have vuq , ṽuq ∈ {0} × (R \ {0}).
Let an, bn ∈ R be such that

(ξ̃n, η̃n)− (0, η∞) = anṽ
s
q + bnṽ

u
q .

By (4.7), and since ṽsq = (βsq , γ
s
q), ṽuq = (0, δuq ), we see that an = c∞µ

n + O(µ
3
2
n), with

c∞ := (βsq)
−1ξ∞ 6= 0, and bn = O(µ

n
2 ). Similarly, let a′n, b′n ∈ R be such that

(ξ̃′n, η̃
′
n)− (ξ∞, 0) = a′nṽ

s
q′ + b′nṽ

u
q′ .

By (4.7), and since ṽsq′ = (δsq′ , 0), vuq′ = (βuq′ , γ
u
q′), we see that b′n = c̃∞λ

−n +O(µ
n
2 λ−n),

for some constant c̃∞ := (γuq′)
−1η∞ 6= 0, and an = O(µ

n
2 ).

Let Π: Uq → Uq′ be the Poincaré map of Xt between a small neighborhood Uq ⊂ Σp

of q and a small neighborhood Uq′ ⊂ Σp of q′ so that Π(q) = q′. Let Π̂ := ı−1
p ◦ Π ◦ ıp

be its expression in normal coordinates, and Π̃ := Φ ◦ Π̂ ◦ Φ−1 be its expression in the
linearizing chart. We then have

a′nṽ
s
q′ + b′nṽ

u
q′ = (ξ̃′n, η̃

′
n)− (ξ∞, 0)

= Π̃(ξ̃n, η̃n)− Π̃(0, η∞)

= DΠ̃(0, η∞)
(
anṽ

s
q + bnṽ

u
q

)
+O(max(|an|

3
2 , |bn|

3
2 ))

= anṽ
s
q′ + bnṽ

u
q′ +O(max(µ

3
2
n, |bn|

3
2 )).

By considering the projection onto Rṽuq′ parallel to Rṽsq′ , we thus see that

bn = O(νn),

where ν := max(λ−1, µ
3
2 ) ∈ (0, µ). From the above equation, we also deduce that

a′n = an +O(νn) = c∞µ
n +O(νn).

Therefore,

(ξ̃n, η̃n)− (0, η∞) = c∞µ
nṽsq +O(νn)

= (ξ∞µ
n +O(νn), O(µn)), (4.8)

(ξ̃′n, η̃
′
n)− (ξ∞, 0) = (c∞µ

n +O(νn))ṽsq′ + (c̃∞λ
−n +O(µ

n
2 λ−n))ṽuq′

= (O(µn), η∞λ
−n +O(µ

n
2 λ−n)). (4.9)

Now we go back to (ξn, ηn) y using Taylor’s formula for the C
3
2 diffeomorphism Φ−1,

and using 0 < λ−1 < µ.

(ξn, ηn)− (0, η∞) = DΦ(0, η∞)−1
(
c∞µ

nṽsq +O(νn)
)

+O(µ
3
2
n)

= c∞µ
n(1, κs) +O(νn),
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which concludes the proof of (4.3). Moreover, by (4.8)-(4.9), for any integer ` ∈
{0, · · · , n}, we have

L−`(ξ̃n, η̃n) = (ξ∞µ
n−` +O(µ2n−`), η∞λ

−` +O(µnλ−`)).

Applying the diffeomorphism Φ−1, by (4.6), we then obtain

(ξn(−`T ), ηn(−`T )− η∞λ−`) = f̂−`(ξn, ηn)− (0, η∞λ
−`) = O(µn−`), (4.10)

if ` is such that µn−` ≤ λ−`, and

(ξn(−`T )− ξ∞µn−`, ηn(−`T )) = f̂−`(ξn, ηn)− (ξ∞µ
n−`, 0) = O(λ−`),

if ` is such that µn−` ≥ λ−`. In particular, we note that in either case,

ξn(−`T )ηn(−`T ) = O((µλ)−`)µn.

Let us now finish the proof of (4.4). Fix a time t ∈ [0, nT ] such that µn−` ≤ λ−`, where
` := [ tT ] ≥ 0. Let t = `T + t′, with t′ := t− `T ∈ [0, T ). We have

Π̂−t
′

p (ξn(−`T ), ηn(−`T )) = (ξn(−t), ηn(−t)),

Π̂−t
′

p (0, η∞λ
−`) = (0, η∞λ

−`λup(−t′)) = (0, η∞λ
u
p(−t)).

Recall that Π̂−t
′

p := ı−1
X−t′ (p)

◦Π−t
′

p ◦ ıp is the notation for the Poincaré map Π−t
′

p : Σp →
ΣX−t′ (p) represented in normal coordinates. The time t′ ∈ [0, T ) is uniformly bounded
with respect to n, hence so are λup(−t′), λsp(−t′) and the differential of the map Π̂−t

′
p ; in

particular, µn−` ' µn−
t
T and λ−` ' λup(−t) ' λ−

t
T . By (4.10), we thus obtain

(ξn(−t), ηn(−t)− η∞λup(−t)) = O(µn−
t
T ),

as we claimed. Moreover, we see that µn−` ≤ λ−` if and only if ` ≤ − log µ
log λ−log µn. The

case where µn−` ≥ λ−` is analogous. �

Lemma 4.5. For any point x ∈M , and σ ≥ 0, let

Π̂−σx = (Π̂−σx,1, Π̂
−σ
x,3) = ı−1

X−σ(x)
◦Π−σx ◦ ıx

be the expression of the Poincaré map Π−σx : Σx → ΣX−σ(x) in normal charts. Then the
differential of the first component along the unstable manifold is given by

dΠ̂−σx,1(0, η) = λsx(−σ)dξ, ∀ η ∈ (−1, 1).

Proof. Let us denote by F−σx := (ıX−σ(x))
−1 ◦X−σ ◦ ıx = (F−σx,1 , F

−σ
x,2 , F

−σ
x,3 ) the inverse

of the time-σ map of the flow in normal coordinates based at x. Fix any η ∈ (−1, 1).
On one hand, by Proposition 3.2(2), F−σx preserves the vertical line {(0, 0)} × (−1, 1),
hence ∂3F

−σ
x,1 (0, 0, η) = ∂3F

−σ
x,2 (0, 0, η) = 0. Moreover, by Proposition 3.2(4), we have

∂1F
−σ
x,1 (0, 0, η) = λsx(−σ), ∂2F

−σ
x,1 (0, 0, η) = 0.

Therefore, if |ξ| � 1 is small, we have

F−σx (ξ, 0, η) = (0, 0, λux(−σ)η) + (λsx(−σ), ∂1F
−σ
x,2 (0, 0, η), ∂1F

−σ
x,3 (0, 0, η))ξ +O(ξ2).

By Proposition 3.2(3), we then have

(ıX−σ(x))
−1◦X−σ−∂1F

−σ
x,2 (0,0,η)◦ıx(ξ, 0, η) = (λsx(−σ)ξ, 0, λux(−σ)η+∂1F

−σ
x,3 (0, 0, η)ξ)+O(ξ2).
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We thus conclude that

Π̂−σx (ξ, η) = (λsx(−σ)ξ, λux(−σ)η + ∂1F
−σ
x,3 (0, 0, η)ξ) +O(ξ2),

and the result follows by differentiating the first coordinate with respect to ξ. �

In the following, we assume that the constant ν ∈ (0, 1) from Lemma 4.4 is chosen
such that max(λ−1, µ

3
2 ) < ν < µ.

Corollary 4.6. For any integer ` ∈ {0, · · · , `n}, with `n < n
2 given in (4.2), we have

ξn(−`T ) = ξ∞µ
n−` +O(νnµ−`). (4.11)

Therefore, for any integer ` ∈ {0, · · · , `n}, we have

τTp (ξn(−`T ), ηn(−`T )) = T − ξ∞P sp (T )(η∞λ
−`)µ−`(µn +O(νn)) +O(µ2(n−`)). (4.12)

Proof. Let ν̄ := max(λ−1, µ
3
2 ) ∈ (0, µ). By induction on ` ∈ {0, · · · , `n}, let us first

show that
ξn(−`T ) = ξ∞µ

n−` +O((`+ 1)ν̄nµ−`). (4.13)
For ` = 0, it is true by (4.3). Let us assume that it is true for some integer ` ∈

{0, · · · , `n − 1}, and let us show it for `+ 1. Recall that by (4.4), we have

(ξn(−`T ), ηn(−`T ))− (0, η∞λ
−`) = O(µn−`). (4.14)

By applying Lemma 4.5 and our induction hypothesis, since the normal charts are Cr−1,
with r − 1 ≥ 2, we have

ξn(−(`+ 1)T ) = Π̂−Tp,1 (ξn(−`T ), ηn(−`T ))

= Π̂−Tp,1 (0, η∞λ
−`) + µ−1ξn(−`T ) +O(µ2(n−`))

= c∞µ
n−(`+1) +O((`+ 1)ν̄nµ−(`+1)) +O(µ2(n−`))

= c∞µ
n−(`+1) +O((`+ 2)ν̄n−(`+1)).

Indeed, since ` ≤ `n < n
2 , and µ

3
2 ≤ ν̄, we have

µ2(n−`)

ν̄nµ−`
≤ µ

3
2
n

ν̄n
µ
n
2
−`n ≤ 1,

which justifies the last equality and concludes the proof of (4.13). Since we assumed that
max(λ−1, µ

3
2 ) < ν < µ, we deduce that for any integer ` ∈ {0, · · · , `n}, with `n < n

2 , we
have `ν̄n = O(nν̄n) = O(νn), and

ξn(−`T ) = c∞µ
n−` +O(νnµ−`).

Thus, to obtain (4.11) it remains to show that the constant c∞ is actually equal to
ξ∞. Set `′n := bn2 c. In particular, λ−`′n = O(λ−

n
2 ) = o(µ

n
2 ), while µnλsp(−`′nT ) = µn−`

′
n

is of the same order as µ
n
2 . By (4.4), we thus have

(ξn(−`′nT ), ηn(−`′nT )) = (ξ∞µ
n−`′n , 0) +O(λ−

n
2 ).

By Lemma 4.5, we have

dΠ̂−Tp,1 (0, ηn((−`′n + 1)T )) = µ−1dξ,

and then,
ξn((−`′n + 1)T ) = ξ∞µ

n−(`′n+1) + o(µn−(`′n+1)).
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By a straightforward induction, we obtain

ξn = ξn(0) = ξ∞µ
n + o(µn).

Comparing with (4.3), we conclude that c∞ = ξ∞, as claimed.
Now, for ` ∈ {0, · · · , `n}, by (4.11), (4.14), (3.1), and since τTp is C2, with τTp (0, ·) ≡ T ,

we have

τTp (ξn(−`T ), ηn(−`T )) = τTp (0, η∞λ
−`) + ∂1τ

T
p (0, η∞λ

−`)ξn(−`T ) +O(µ2(n−`))

= T − ξ∞P sp (T )(η∞λ
−`)µ−`(µn +O(νn)) +O(µ2(n−`)).

The proof is complete. �

Recall the expansions of local stable and unstable manifolds which we used to define
the stable and unstable templates in Subsection 3.4:

Ws
loc(Φ

u
x(η)) =

{
Qsη(ξ̃) := ıx(ξ̃,Tsx(η)ξ̃ + bsx(ξ̃, η)ξ̃2, η + csx(ξ̃, η)ξ̃)

}
ξ̃∈(−1,1)

,

Wu
loc(Φ

s
x(ξ)) =

{
Quξ (η̃) := ıx(ξ + cux(ξ, η̃)η̃,Tux(ξ)η̃ + bux(ξ, η̃)η̃2, η̃)

}
η̃∈(−1,1)

.
(4.15)

By construction, at the point (0, 0, η∞) = ı−1
p (q), we have

(1,Tsp(η∞), csp(0, η∞)) ∈ Dı−1
p (q)Es(q),

(1, 0, csp(0, η∞)) ∈ Dı−1
p (q)EsΣ(q).

In particular, using the notation introduced at the beginning of Subsection 4.2, we have

vsq = (1, κs) = (1, csp(0, η∞)) ∈ Dı−1
p (q)EsΣ(q).

Recall that we denote by Π: Uq → Uq′ the Poincaré map induced by Xt between a
neighborhood Uq ⊂ Σp of q and a neighborhood Uq′ ⊂ Σp of q′, and let Π̂ := ı−1

p ◦Π ◦ ıp
be its expression in normal coordinates. Now we define the return time τ̄ on Uq. For
z ∈ Uq, we have Π(z) = X τ̄(z)(z), for some time τ̄(z) close to τ̄(q) = T ′. Writing
z = ıp(ξ, 0, η), we also let τ̄(ξ, η) := τ̄(z).

As before, let us also consider

vuq′ := (κu, 1) = (cup(ξ∞, 0), 1) ∈ Dı−1
p (q′)EuΣ(q′);

vuq := DΠ̂−1(ξ∞, 0)vuq′ ∈ Dı−1
p (q)EuΣ(q) = {0} × R.

Lemma 4.7. We have

Dτ̄(0, η∞)(ξ̃ vsq + η̃ vuq ) = Tsp(η∞)ξ̃ − Tup (ξ∞)η̃. (4.16)

Proof. Given |ξ̃| � 1, let us consider the path Ls tangent to Uq and the weak stable
manifold at q, Ls : ξ̃ 7→ ıp(ξ̃, 0, η∞+csp(ξ̃, η∞)ξ̃). By Proposition 3.2(3), and with Qsη∞(ξ̃)
as in (4.15), we have

d(XTsp(η∞)ξ̃(Ls(ξ̃)), Qsη∞(ξ̃)) = O(ξ̃2).

Moreover, by definition Qsη∞(ξ̃) ∈ Ws
loc(q), hence X

T ′(Qsη∞(ξ̃)) ∈ Ws
loc(q

′) ⊂ Uq′ , and
thus,

τ̄(Ls(ξ̃)) = T ′ + Tsp(η∞)ξ̃ +O(ξ̃2).
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By definition, τ̄(Ls(0)) = τ̄(q) = T ′, and (Ls)′(0) = Dıp(0, 0, η∞)vsq , hence τ̄(Ls(ξ̃)) =

T ′ +Dτ̄(0, η∞)(ξ̃ vsq) +O(ξ̃2). Therefore,

Dτ̄(0, η∞)(vsq) = Tsp(η∞).

Similarly, given |η̃| � 1, let us consider the path Lu tangent to Uq′ and the weak
unstable manifold at q′, Lu : η̃ 7→ ıp(ξ∞ + cup(ξ∞, η̃)η̃, 0, η̃). For Quξ∞(η̃) as in (4.15), we
have

d(XTup (ξ∞)η̃(Lu(η̃)), Quξ∞(η̃)) = O(η̃2).

Moreover, by definition Quξ∞(η̃) ∈ Wu
loc(q

′), hence X−T ′(Quξ∞(η̃)) ∈ Wu
loc(q) ⊂ Uq,

and thus,
τ̄(Π̂−1 ◦ Lu(η̃)) = T ′ − Tup (ξ∞)η̃ +O(η̃2).

(Note that {X−T ′+Tup (ξ∞)η̃(Lu(η̃)), |η̃| � 1} is not in Σp, but is tangent to the path
Π̂−1 ◦ Lu ⊂ Σp and hence we use Π̂−1.) By definition, τ̄(Π̂−1 ◦ Lu(0)) = τ̄(q) = T ′, and
(Π̂−1 ◦Lu)′(0) = Dıp(0, 0, η∞)vuq , hence τ̄(Π̂−1 ◦Lu(η̃)) = T ′+Dτ̄(0, η∞)(η̃ vuq ) +O(η̃2).
As before, we thus conclude that

Dτ̄(0, η∞)(vuq ) = −Tup (ξ∞). �

Building on the previous lemmata, we will now give the proof of the main result of
this section, namely Proposition 4.2, which gives an asymptotic expansion of the period
Tn of pn as n → +∞. Let us recall the expression of the polynomial introduced in
Lemma 3.13:

P̃ sp (η) :=

[k]∑
j=1

αs,jp (T )

µλj − 1
ηj , αs,jp (T ) := − 1

j!
∂1∂

j
2τ
T
p (0, 0).

Proof of Proposition 4.2. We split the proof into three claims.

Claim 4.8. Recall that max(λ−1, µ
3
2 ) < ν < µ. With the notation of Lemma 4.7, we

have:
τ̄(pn) = T ′ + ξ∞Tsp(η∞)µn +O(νn).

Proof. By (4.3), (4.11) and (4.16) (recall that c∞ = ξ∞), we have

τ̄(pn) = τ̄(ξn, ηn)

= τ̄(0, η∞) +Dτ̄(0, η∞)ξ∞v
s
qµ

n +O(νn)

= T ′ + ξ∞Tsp(η∞)µn +O(νn). �

Let us recall that for x ∈ M , t ∈ R, τ tx(·) is the hitting time function associated to
the Poincaré map from Σx to ΣXt(x). Also let `n < nT

2 be the time defined in (4.2).

Claim 4.9. Let

θ̄ := max
(
λ−1, µ

3
2 , µ

2 log λ
log λ−log µ

)
= max

(
µ

3
2 , µ

2 log λ
log λ−log µ

)
∈ (0, µ),

and let θ ∈ (0, 1) be any number with θ̄ < θ < µ. Then, we have

τ `nTp (X−`nT (pn)) = `nT − ξ∞P̃ sp (η∞)µn +O(θn).
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Proof. It essentially follows from Corollary 4.6. Indeed, by (4.12), we have

τ `nTp (X−`nT (pn)) =

`n∑
`=1

τTp (ξn(−`T ), ηn(−`T ))

=

`n∑
`=1

(
T − ξ∞P sp (T )(η∞λ

−`)µ−`(µn +O(νn)) +O(µ2(n−`)).
)

= `nT − ξ∞
`n∑
`=1

(
P sp (T )(η∞λ

−`)µ−`
)

(µn +O(νn)) +O
(
µ2(n−`n)

)
. (4.17)

Since P sp (T )(η∞λ
−`)µ−` = O

(
(µλ)−`

)
, with µλ > 1, we can write

`n∑
`=1

P sp (T )(η∞λ
−`)µ−` =

+∞∑
`=1

(
P sp (T )(η∞λ

−`)µ−`
)

+O
(

(µλ)−`n
)
.

By (4.2), we have

(µλ)−`nµn = O
(

(µλ)
log µ

log λ−log µ
n
µn
)

= O
(
µ

log λ+log µ
log λ−log µ

n
µn
)

= O
(
µ

2 log λ
log λ−log µ

n
)
. (4.18)

Since λ−1 < µ, we have µ
2 log λ

log λ−log µ = λ
2 log µ

log λ−log µ ∈ (λ−1, µ), hence

θ̄ := max
(
λ−1, µ

3
2 , µ

2 log λ
log λ−log µ

)
= max

(
µ

3
2 , µ

2 log λ
log λ−log µ

)
∈ (0, µ).

By (4.2), we also have

µ2(n−`n) = O
(
µ

2 log λ
log λ−log µ

n
)

= O(θ̄n).

Finally, the exact same computation as in the proof of Lemma 3.13 gives

+∞∑
`=1

(
P sp (T )(η∞λ

−`)µ−`
)

+O
(

(µλ)−`n
)

=

[k]∑
j=1

αs,jp (T )

µλj − 1
ηj∞ = P̃ sp (η∞),

with αs,jp (T ) := − 1
j!∂1∂

j
2τ
T
p (0, 0), for j ∈ {1, · · · , [k]}. By (4.17), and because ν ∈ (0, 1)

was any number such that max(λ−1, µ
3
2 ) < ν < µ, this concludes the proof of the

claim. �

Claim 4.10. We have

τ (n−`n)T
p (p′n) = nT − `n +O(θn).

Proof. We write

τ (n−`n)T
p (p′n) =

n∑
`=`n+1

τTp (ξn(−`T ), ηn(−`T )). (4.19)

By (4.4), for any integer ` ∈ {`n + 1, · · · , n}, we have

(ξn(−`T ), ηn(−`T ))− (ξ∞µ
n−`, 0) = O(λ−`).
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Since τTp (·, 0) ≡ T , and τTp is C2, with DτTp (0, 0) = 0, we deduce that

τTp (ξn(−nT + `), ηn(−nT + `))

= τTp (ξ∞µ
n−`, 0) +O

(
DτTp (ξ∞µ

n−`, 0)λ−`
)

= T +O
(

(µλ)−`µn
)
.

By (4.19), adding up everything, and since µλ > 1, we thus obtain

τ (n−`n)T
p (p′n) = nT − `n +O

(
(µλ)−`nµn

)
= nT − `n +O (θn) ,

where the last equality follows from (4.18). �

Gathering Claims 4.8-4.9-4.10, we can now finish the proof of Proposition 4.2.

Tn = τnTp (p′n) + τ̄(pn)

= τ (n−`n)T
p (p′n) + τ `nTp (X−`nT (pn)) + τ̄(pn)

= nT − `n +O(θn) + `n − ξ∞P̃ sp (η∞)µn +O(θn) + T ′ + ξ∞Tsp(η∞)µn +O(νn)

= nT + T ′ + ξ∞

(
Tsp(η∞)− P̃ sp (η∞)

)
µn +O(θn). �

4.3. Second order asymptotic formula for mildly dissipative periodic points.
Here we derive a more precise second order asymptotic formula, but only for mildly
dissipative periodic orbits, when the flow Xt is of class Cr, r ≥ 4. This formula will be
used in Sections 7.3 and 7.5, where Theorem A and Addendum F are proved.

Recall that for any periodic orbit γ ∈ P for Xt, we denote by µγ < 1 < λγ its
stable and unstable multipliers. Recall Definition 2.2, where we have defined %-mildly
dissipative Anosov flows; now we need to define the same property for periodic orbits.

Definition 4.11 (%-mildly dissipative periodic orbits). For any % ∈ (1, 2], the set P% ⊂ P

of %-mildly dissipative periodic orbits is defined as follows:

P% :=
{
γ ∈ P : µ%γλγ < 1 and µγλ%γ > 1

}
.

For any γ ∈ P%, and any point p ∈ γ we also say that p is %-mildly dissipative.

Recall that the flow Xt is k-pinched for some k, 1 < k ≤ r − 1.

Proposition 4.12. If the periodic point p is volume expanding and 5
4 -mildly dissipative,

with eigenvalues µ < 1 < λ, then as n→ +∞, the period Tn of the periodic point pn has
the following asymptotic expansion:

Tn = nT + T ′ +
(
Tsp(η∞)− P̃ sp (η∞)

)
ξ∞µ

n −
(
Tup (ξ∞)− P̃ up (ξ∞)

)
η∞λ

−n +O(θn),

where θ := µ
5
4 ∈ (0, λ−1), and

P̃ sp (η) := −
[k]∑
j=1

1

j!

∂1∂
j
2τ
T
p (p)

µλj − 1
ηj , P̃ up (ξ) := −

[k]∑
j=1

1

j!

∂j1∂2τ
T
p (p)

µjλ− 1
ξj .

Remark 4.13. By optimizing the choice of exponents in the proof which follows one
can relax the assumption on mild dissipation and obtain the same formula for 1+

√
3

2 -
mildly dissipative volume expanding periodic points. We also believe that with some
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more efforts one can deduce the same formula for 2-mildly dissipative volume expanding
periodic points.

Below we explain how the previous arguments can be adapted to prove Proposi-
tion 4.12. Let p = XT (p) be a volume expanding periodic point which is 5

4 -mildly
dissipative, i.e., the multipliers µ < 1 < λ of p satisfy

µλ > 1, µ
5
4λ < 1. (4.20)

As in (4.2), let
4n

9
. `n :=

[
logµ

logµ− log λ
n

]
.
n

2
. (4.21)

In that case, similarly to estimate (4.3) in Lemma 4.4, and because we assume here
that Xt is C4, by [Sto86], we can consider C2 linearizing coordinates and obtain the
following expansions.

Lemma 4.14. For some constants c∞, c′∞, c′′∞, c′′′∞ 6= 0, we have the asymptotic formulae

(ξn, ηn)− (0, η∞) = c∞µ
n(1, κs) + c′∞λ

−n(0, 1) +O(µ2n),
(ξ′n, η

′
n)− (ξ∞, 0) = c′′∞µ

n(1, 0) + c′′′∞λ
−n(κu, 1) +O(µ2n).

(4.22)

In fact, arguing as in the proof of Corollary 4.6, we can show that c∞ = ξ∞ and
c′′′∞ = η∞. We will need the following more precise version of Lemma 4.5.

Lemma 4.15. For any point x ∈ M , and σ ∈ R, let us denote by Πσ
x : Σx → ΣXσ(x)

the Poincaré map of the flow Xt from Σx to ΣXσ(x), and let Π̂σ
x := ı−1

Xσ(x) ◦ Πσ
x ◦ ıx be

its expression in normal coordinates. For (ξ, η) ∈ (−1, 1), with |ξ| � 1, we have

DΠ̂−Tp (ξ, η) =

[
µ−1 0
O(η) λ−1

]
+O(ξ).

Similarly, for (ξ, η) ∈ (−1, 1), with |η| � 1, we have

DΠ̂T
p (ξ, η) =

[
µ O(ξ)
0 λ

]
+O(η).

Proof. Let us focus on the first case; the second one is shown analogously. As in the
proof of Lemma 4.5, this essentially follows from Proposition 3.2. In particular, for
ξ = 0, the matrix of the differential DΠ̂−Tp (0, η) is lower triangular, where the only non-
normalized coefficient, namely the bottom-left one, is of order O(η). Indeed, since the
dynamics is normalized along the axes {ξ = 0} and {η = 0}, the matrix at (ξ, η) = (0, 0)
is diagonal. �

Fix a constant ν ∈ (µ
3
2 , λ−1). Arguing as we did in the proof of Corollary 4.6, starting

from (4.22), and thanks to Lemma 4.15, we can obtain the following expansions.

Corollary 4.16. For any integer ` ∈ {0, · · · , n}, we have

(ξn(−`T ), ηn(−`T )) =
(
ξ∞µ

n−` +O(νnµ−`), η∞λ
−` +O(µn)

)
, ∀ ` ≤ `n,

(ξn(−`T ), ηn(−`T )) =
(
ξ∞µ

n−` +O(µn), η∞λ
−` +O(νnλn−`)

)
, ∀ ` ≥ `n.

(4.23)

Therefore, for any integer ` ∈ {0, · · · , `n}, we have

τTp (ξn(−`T ), ηn(−`T )) = T − ξ∞P sp (T )(η∞λ
−`)µn−` +O(µ

4
3
n), (4.24)
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and for any integer ` ∈ {`n, · · · , n}, we have

τTp (ξn(−`T ), ηn(−`T )) = T − P up (T )(ξ∞µ
n−`)η∞λ

−` +O(µ
4
3
n). (4.25)

Proof. Let ` ∈ {0, · · · , `n}. Since τTp is C3, by Taylor formula, we have the following
expansion for the hitting times

τTp (ξn(−`T ), ηn(−`T )) = τTp (0, ηn(−`T )) + ∂1τ
T
p (0, ηn(−`T ))ξn(−`T )

+O

(
sup

|ξ|≤ξn(−`T )
∂11τ

T
p (ξ, ηn(−`T ))ξn(−`T )2

)
= T − P sp (T )(ηn(−`T ))ξn(−`T ) +O

(
ηn(−`T )ξn(−`T )2

)
,

where we have used that ∂11τ
T
p (ξ, 0) = 0. By (4.23), we then obtain

τTp (ξn(−`T ), ηn(−`T )) = T − P sp (T )(ηn(−`T ))ξn(−`T ) +O
(
ηn(−`T )ξn(−`T )2

)
= T − P sp (T )(η∞λ

−`)ξ∞µ
n−` +O

(
max

(
µ2n−`, νn(µλ)−`, µn−`νn, µ2(n−`)λ−`

))
= T − P sp (T )(η∞λ

−`)ξ∞µ
n−` +O(νn).

Since ν can be chosen arbitrarily close to µ
3
2 , we can assume that ν < µ

4
3 . Let us now

consider the case where ` ∈ {`n, · · · , n}. By Taylor formula, we have

τTp (ξn(−`T ), ηn(−`T )) = τTp (ξn(−`T ), 0) + ∂2τ
T
p (ξn(−`T ), 0)ηn(−`T )

+O

(
sup

|η|≤ηn(−`T )
∂22τ

T
p (ξn(−`T ), η)ηn(−`T )2

)
= T − P up (T )(ξn(−`T ))ηn(−`T ) +O

(
ξn(−`T )ηn(−`T )2

)
,

where we have used that ∂22τ
T
p (0, η) = 0. By (4.23), we then obtain

τTp (ξn(−`T ), ηn(−`T )) = T − P up (T )(ξn(−`T ))ηn(−`T ) +O
(
ξn(−`T )ηn(−`T )2

)
= T − P up (T )(ξ∞µ

n−`)η∞λ
−` +O

(
max

(
µnλ−`, νn(µλ)n−`, µnνnλn−`, µn−`λ−2`

))
= T − P up (T )(ξ∞µ

n−`)η∞λ
−` +O(νn(µλ)n−`n).

Since ν can be chosen arbitrarily close to µ
3
2 , by (4.20)-(4.21), and since µn−`n ' λ−`n ,

we can ensure that

νn(µλ)n−`n < µ
1
4
nµ

5
2
`n < µ

4
3
n < λ−n. �

End of the proof of Proposition 4.12. We argue as in Claims 4.8-4.9-4.10. By (4.24), we
have

τ `nTp (X−`nT (pn)) =

`n∑
`=1

τTp (ξn(−`T ), ηn(−`T ))

= `nT − ξ∞
`n∑
`=1

(
P sp (T )(η∞λ

−`)µn−`
)

+O(nµ
4
3
n).
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Let us write P sp (T )(η) = αpη+Rsp(T )(η), where αp = αs,1p (T ) = αu,1p (T ) = −∂12τ
T
p (0, 0),

and Rsp(T )(η) = O(η2). We deduce that

τ `nTp (X−`nT (pn)) = `nT − αpξ∞η∞µn
1− (µλ)−`n

µλ− 1
− ξ∞

+∞∑
`=1

(
Rsp(T )(η∞λ

−`)µn−`
)

+O(µn−`nλ−2`n) +O(nµ
4
3
n)

= `nT − ξ∞P̃ sp (η∞)µn + αpξ∞η∞
µn−`nλ−`n

µλ− 1
+O(θn), (4.26)

where we recall that θ := µ
5
4 < λ−1.

Similarly, by (4.25), we have

τ (n−`n)T
p (p′n) = τ (n−`n)T

p (X−nT (pn)) =

n∑
`=`n+1

τTp (ξn(−`T ), ηn(−`T ))

= (n− `n)T − η∞
n∑

`=`n+1

(
P up (T )(ξ∞µ

n−`)λ−`
)

+O(nµ
4
3
n).

We deduce that

τ (n−`n)T
p (p′n) = (n− `n)T − η∞λ−n

[k]∑
j=1

αu,jp (T )ξj∞
1− (µjλ)n−`n

1− µjλ
+O(nµ

4
3
n)

= (n− `n)T − η∞λ−n
[k]∑
j=1

αu,jp (T )ξj∞
1

1− µjλ

− αpξ∞η∞
µn−`nλ−`n

µλ− 1
+O(µ2(n−`n)λ−`n) +O(nµ

4
3
n)

= (n− `n)T + η∞λ
−nP̃ up (ξ∞)− αpξ∞η∞

µn−`nλ−`n

µλ− 1
+O(θn), (4.27)

where (recall (3.2))

P̃ up (ξ) =

[k]∑
j=1

αu,jp (T )

µjλ− 1
ξj = −

[k]∑
j=1

1

j!

∂j1∂2τ
T
p (0, 0)

µjλ− 1
ξj .

Finally, by (4.16) and (4.22), the estimate in Claim 4.8 can be improved under the mildly
dissipative assumption in the following way.

τ̄(pn) = T ′ + ξ∞Tsp(η∞)µn − η∞Tup (ξ∞)λ−n +O(µ2n).

To conclude the proof of Proposition 4.12, it remains to add to τ̄(pn) the expressions
obtained in (4.26)-(4.27). �

4.4. Asymptotic formula in the volume preserving case. Let us now assume that
the Anosov flow Xt is Cr, r ≥ 3, and volume preserving. In particular, Xt is 2-pinched
in the sense of Definition 2.2, and by Lemma 3.4, for any time σ ∈ R, the polynomials
P sx(σ), P ux (σ) are merely linear maps:

P sx(σ)(η) ≡ ∂12τ
σ
x (x)η, P ux (σ)(ξ) ≡ ∂12τ

σ
x (x)ξ. (4.28)



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 31

Let p ∈ M be a periodic point, with period T > 0 and multipliers 0 < µ < 1 < µ−1.
As above we consider a sequence of periodic points (pn)n≥n0 whose orbits shadow some
orbit homoclinic to p.

Proposition 4.17. As n→ +∞, the period Tn of the periodic point pn has the following
asymptotic expansion:

Tn = nT + T ′ + ξ∞η∞∂12τ
T
p (p)nµn +

(
ξ∞Tsp(η∞)− η∞Tup (ξ∞)

)
µn + o(µn),

where ξ∞η∞ 6= 0.
Moreover, if Xt is Cr, r > 3, then the remainder is of order O(νn), with ν ∈ (0, µ).

Outline of the proof. We will not give a detailed proof of Proposition 4.17 as it is similar
to the proofs of Proposition 4.2, resp. Proposition 4.12, at a volume expanding, resp.
5
4 -midly dissipative volume expanding periodic point p. We will comment below how
the previous statements can be adapted to the volume preserving case. We use the same
notation as in Subsection 4.2.

By [Sto86], the dynamics near p can be C
3
2 -linearized, and the formulae in Lemma 4.4

are to be replaced with:

(ξn, ηn)− (0, η∞) = (ξ∞(1, κs) + c̃∞(0, 1))µn +O(µ
3
2
n),

(ξ′n, η
′
n)− (ξ∞, 0) =

(
c̃′∞(1, 0) + η∞(κu, 1)

)
µn +O(µ

3
2
n),

for some constants c̃∞, c̃′∞ 6= 0. Moreover, for any time t ∈ [0, nT ], we have

(ξn(−t), ηn(−t))− (0, η∞λ
u
p(−t)) = O(µn−

t
T ), if t ≤ nT

2 ,

(ξn(−t), ηn(−t))− (ξ∞λ
s
p(nT − t), 0) = O(µ

t
T ), if t ≥ nT

2 .

Then, the estimates in Corollary 4.6 now become: given ν ∈ (µ
3
2 , µ), then for any integer

` ≤ `n, with `n :=
[
n
2

]
, we have

ξn(−`T ) = ξ∞µ
n−` +O(νnµ−`),

ηn(−(n− `)T ) = η∞µ
n−` +O(νnµ−`).

Using (4.28), we thus have

τTp (ξn(−`T ), ηn(−`T )) = 1 + ξ∞η∞∂12τ
T
p (p)µn +O(νn) + o(µ2(n−`)),

τTp (ξn(−(n− `)T ), ηn(−(n− `)T )) = 1 + ξ∞η∞∂12τ
T
p (p)µn +O(νn) + o(µ2(n−`)).

Note that Lemma 4.7 applies in the volume preserving case, as it is insensitive to
whether or not the point p is dissipative.

Gathering the previous estimates, and following the steps of Proposition 4.2, we obtain
the following asymptotic expansions:

τ̄(pn) = T ′ +
(
ξ∞Tsp(η∞)− η∞Tup (ξ∞)

)
µn +O(µ

3
2
n),

τ `nTp (X−`nT (pn)) = `nT + `nξ∞η∞∂12τ
T
p (p)µn + o(µn),

τ (n−`n)T
p (p′n) = (n− `n)T + (n− `n)ξ∞η∞∂12τ

T
p (p)µn + o(µn).

We conclude the proof of Proposition 4.17 by adding up the above expansions. �
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Remark 4.18. Let us consider the case where Xt is a contact flow. Fix a periodic point
p = XT (p) and homoclinic points q, q′ = XT ′(q) as above. As observed by Foulon-
Hasselblatt [FH03], the coefficient ∂12τ

T
p (p) in Proposition 4.17 vanishes; but we claim

that the contact property ensures that the coefficient (ξ∞Tsp(η∞)−η∞Tup (ξ∞)) of the next
term in the asymptotic formula above is non-zero. Indeed, after possibly replacing q, q′

with X−`T (q), X`′T (q′) for some large integers `, `′ � 1, without loss of generality, we
can assume that 0 < |ξ∞| ≈ |η∞| � 1 are small. We claim that the coefficient

ζ̃p(q) :=
(
ξ∞Tsp(η∞)− η∞Tup (ξ∞)

)
is non-zero. Indeed, since Es, Eu are C1+α, α > 0, so are the stable and unstable
templates, and we can expand ζ̃p(q) =

(
(Tsp)

′(0)− (Tup )′(0)
)
ξ∞η∞ + o(ξ∞η∞). On the

one hand,
(
(Tsp)

′(0)− (Tup )′(0)
)
ξ∞η∞ is the first order approximation of the temporal

displacement between Ws
loc(q) and Wu

loc(q
′). On the other hand, by the contact property,

it is also the first order approximation of the transverse area, which has to be of order
ξ∞η∞. We deduce that (Tsp)

′(0)− (Tup )′(0) 6= 0, hence ζ̃p(q) 6= 0.

5. On asymptotic proportions of certain periodic points

In the following, we always assume that Xt : M →M is a transitive Anosov flow.

5.1. Pressure, equilibrium states and SRB measures. Let us recall that, given a
Hölder continuous function ψ, the pressure P (ψ) ∈ R is defined by

PX(ψ) := sup
µ∈M(Xt)

(
hµ(Xt) +

∫
M
ψ dµ

)
,

where M(Xt) is the set of Borel invariant probability measures of Xt, and hµ(Xt)
denotes the metric entropy of the time-one map of the flow Xt with respect to µ. The
equilibrium state µψ ∈M(Xt) associated to ψ is the unique measure in M(Xt) on which
the above supremum is achieved. It is known to be ergodic and fully supported.

We have defined the SRB measures in Definition 2.3 and now we need to recall few
more well-known facts about them. The positive SRB measure m+

X of a transitive
Anosov flowXt can also be characterized as the unique equilibrium state of the geometric
potential defined by

ψu : x 7→ − d

dt

∣∣∣
t=0

log ‖DXt(x)|Eu‖,

while m−X is the equilibrium state for the potential

ψs : x 7→ d

dt

∣∣∣
t=0

log ‖DXt(x)|Es‖.

Also recall that PX(ψu) = PX(ψs) = 0 [Bow75].

5.2. Positive proportion Livshits Theorem of Marshall Reber and Dilsavor.
We denote by P the set of periodic orbits of Xt, and given a periodic orbit γ ⊂ P, we
denote by T (γ) > 0 its period. For any Hölder function ψ : M → R, and for any γ ∈ P,
we let

Tψ(γ) :=

∫ T (γ)

0
ψ(γ(s)) ds.
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We say that ψ is a coboundary if there exists a Hölder continuous κ : M → R (which is
smooth along the flow) such that

ψ =
d

dt

∣∣∣
t=0

(
κ ◦Xt

)
.

Fix a Hölder function ψ : M → R, and a positive number ∆ > 0. For any T > 0,
and for any subset S ⊂ P, we denote by ST,∆ ⊂ S the set of periodic orbits γ ∈ S with
T (γ) ∈ (T, T + ∆], and we let

Σψ,T,∆(S) :=
∑

γ∈ST,∆

eTψ(γ).

It is well-known that

P (ψ) = lim
T→+∞

1

T
log Σψ,T,∆(P),

and if P (ψ) ≥ 0, we also have the Bowen formula, which expresses the equilibrium state
as a weak-∗ limit of discrete measure supported on periodic orbits [PP90]

µψ = lim
T→+∞

1

Σψ,T,∆(P)

∑
γ∈PT,∆

eTψ(γ)δγ .

Given a subset S ⊂ P, we say that S has positive proportion with respect to (ψ, µψ) if

lim sup
T→+∞

Σψ,T,∆(S)

Σψ,T,∆(P)
> 0.

Remark 5.1. If we replace ψ with ψ+c, where c is a constant, then P (ψ+c) = P (ψ)+c
and µψ+c = µψ. One advantage of working with geodesics whose length is in the interval
(T, T + ∆] is that we have obvious inequalities

ecTΣψ,T,∆(P) ≤ Σψ+c,T,∆(P) ≤ ec(T+∆)Σψ,T,∆(P)

and similarly for the subset S. It immediately follows that S has positive proportion with
respect to (ψ, µψ) if and only if it has positive proportion with respect to (ψ + c, µψ). It
is also well-known that two potentials have the same equilibrium state if and only if their
difference is cohomologous to a constant. It follows that the property of having a positive
proportion depends only the equilibrium state µψ and is independent of particular choice
of the potential ψ.

Let us now recall the positive proportion Livshits Theorem due to Marshall Reber
and Dilsavor [DMR24].

Theorem 5.2 (Positive proportion Livshits Theorem [DMR24]). Let Xt be a transitive
3-dimensional Anosov flow which is not a constant roof suspension, and let ϕ : M → R
be a Hölder continuous function. If there exists a Hölder continuous function ψ : M → R
such that the set Sϕ := {γ ∈ P : Tϕ(γ) = 0} has positive proportion for µψ, then ϕ is a
coboundary.

In fact, the result of Marshall Reber and Dilsavor is valid in any dimension under the
condition that stable and unstable distributions do not jointly integrate. In dimension
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3 this is equivalent to the flow not being a constant roof suspension [Pla72, Theorem
3.4]. 4

5.3. Positive proportion and density. Here we show that sets of periodic orbits of
positive proportion are dense.

Proposition 5.3. Let U ⊂ M be a non-empty open set. Let PU ⊂ P be the set of
periodic orbits γ ∈ P such that γ ∩ U 6= ∅. Then for any Hölder potential ψ : M → R
with pressure P (ψ) ≥ 0, the set PU has full proportion for the equilibrium state µψ.

Proof. Assume by contradiction that it is not the case. Let U ⊂ M be a non-empty
open set, and let ψ : M → R be a Hölder potential with P (ψ) ≥ 0 such that the
complement P \ PU has positive proportion for µψ. The set F := M \ U is closed;
moreover, PF := P \ PU consists of periodic orbits γ ∈ P such that γ ⊂ F . Fix ∆ > 0.
For each T > 0, and for ∗ ∈ {U,F}, let us consider the invariant probability measure

µ∗ψ,T,∆ :=
1

Σψ,T,∆(P∗)

∑
γ∈P∗T,∆

eTψ(γ)δγ .

In particular, the support of µFψ,T,∆ is contained in the closed set F ⊂M . Moreover,

µψ,T,∆ :=
1

Σψ,T,∆(P)

∑
γ∈PT,∆

eTψ(γ)δγ =
Σψ,T,∆(PU )

Σψ,T,∆(P)
µUψ,T,∆ +

Σψ,T,∆(PF )

Σψ,T,∆(P)
µFψ,T,∆.

By weak-∗ compactness, and the assumption that PF has positive proportion for µψ, we
can take a sequence (Tn)n → +∞ such that

µ∗ψ,Tn,∆ ⇀n µ
∗
ψ, ∗ ∈ {U,F}, lim

n→+∞

Σψ,Tn,∆(PF )

Σψ,Tn,∆(P)
= ρ > 0.

Because P (ψ) ≥ 0 we can apply Bowen formula µψ = limT→∞ µψ,T,∆, and by taking
limit along Tn, n→∞, in the above decomposition we have

µψ = (1− ρ)µUψ + ρµFψ .

Since ρ > 0, and µψ is ergodic, we have ρ = 1, hence µψ = µFψ . But µ
F
ψ is supported in

F while the equilbrium state µψ has full support, a contradiction. �

We have the following direct consequence of the above result.

Corollary 5.4. For any Hölder potential ψ : M → R with pressure P (ψ) ≥ 0, and any
set S ⊂ P of periodic orbits with positive proportion for µψ, the set {p ∈ γ : γ ∈ S} is
dense in M .

4. In fact, the case of constant roof suspension reduces to the diffeomorphism case, hence, there are
no exception for positive proportion Livshits Theorem in dimension 3.
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5.4. Volume contracting periodic orbits and the SRB measure. Here we show
that if the Anosov flow Xt : M → M is dissipative, then volume contracting periodic
orbits have full proportion with respect to the positive SRB measure m+

X and, similarly,
volume expanding points have full proportion with respect to the negative SRB measure
m−X .

Recall that we have PX(ψu) = 0 and by the Bowen formula

µψu,T,∆ =
1

Σψu,T,∆(P)

∑
γ∈PT,∆

λ−1
γ δγ ⇀T m

+
X .

If we denote by χs(m+
X) and χu(m+

X) the stable and unstable Lyapunov exponents of
m+
X then h(m+

X) = χu(m+
X) by the Pesin formula and, since we are assuming that Xt

is dissipative, h(m+
X) < −χs(m+

X) by the Margulis-Ruelle inequality (strict inequality
holds because equality holds only for the negative SRB measure [Led84] andm+

X 6= m−X).
Hence for ψ : x 7→ d

dt |t=0 log Jacx(t), we have∫
M
ψ dm+

X = χs(m+
X) + χu(m+

X) < 0. (5.1)

Now we decompose the set of periodic orbits as the disjoint union P = C ∪ V ∪ E,
where γ ∈ C are volume contracting, Jacγ(T (γ)) < 1, γ ∈ V are volume preserving,
Jacγ(T (γ)) = 1, and γ ∈ E are volume expanding, Jacγ(T (γ)) > 1. We split the
approximating measure µψu,T,∆ according to this decomposition

µψu,T,∆ =
Σψu,T,∆(C)

Σψu,T,∆(P)
µCψu,T,∆ +

Σψu,T,∆(V)

Σψu,T,∆(P)
µVψu,T,∆ +

Σψu,T,∆(E)

Σψu,T,∆(P)
µEψu,T,∆.

After passing to suitable subsequence Tn → ∞, n → ∞ we can pass to a limit in the
above formula and obtain

m+
X = ρµCψu + ςµVψu + (1− ρ− ς)µEψu .

Now note that, by construction, we have inequalities µCψu,T,∆(ψ) < 0, µVψu,T,∆(ψ) = 0

and µEψu,T,∆(ψ) > 0 which persist under passing to the limit: µCψu(ψ) ≤ 0, µVψu(ψ) = 0

and µEψu(ψ) ≥ 0. Comparing to (5.1) we can conclude that ρ > 0. Finally, since m+
X

is ergodic it cannot be a non-trivial linear combination of invariant measures and we
conclude that ρ = 1 and ς = 0 which means, according to our definition, that volume
contracting periodic orbits have full proportion with respect to m+

X . Similarly, volume
expanding orbits from E have full proportion with respect to m−X .

Lemma 5.5. Let Xt be a dissipative transitive Anosov flow. Then volume contracting
periodic orbits C ⊂ P have full proportion with respect to the positive SRB measure m+

X ,
that is,

lim
T→+∞

Σψu,T,∆(C)

Σψu,T,∆(P)
= 1.

Similarly, volume expanding periodic orbits E ⊂ P have full proportion with respect to
the negative SRB measure m−X .

We leave it to the reader to adjust the argument to show that the limit in fact exists,
without passage to a subsequence.

As a direct corollary of Corollary 5.4 and Lemma 5.5 we have:
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Corollary 5.6. Let Xt be a dissipative transitive Anosov flow. Then both volume con-
tracting and volume expanding periodic points are dense in M .

5.5. Volume preserving periodic orbits. Let Xt be a dissipative transitive Anosov
flow. We say that a periodic orbit γ ∈ P is volume preserving if for p ∈ γ, we have
Jacp(T (γ)) = 1.

Proposition 5.7. Assume that Xt is not a constant roof suspension. Then, for any
Hölder potential ψ : M → R, the set V ⊂ P of volume preserving periodic orbits has zero
proportion with respect to µψ.

Proof. Fix ∆ > 0. Assume that for some Hölder potential ψ : M → R, the set V has
positive proportion. In particular, for a set of γ ∈ P of positive proportion, for p ∈ γ,∫ T (γ)

0

d

dt

∣∣∣
t=0

log JacXu(p)(t) du = 0.

By the positive proportion Livshits Theorem (Theorem 5.2), we conclude that
d
dt |t=0 log Jacx(t) is a coboundary. Thus, there exists a continuous function κ : M → R
such that for any (x, t) ∈M × R,

log Jacx(t) = κ(Xt(x))− κ(x).

In particular, for any periodic orbit γ ⊂ P, for any p ∈ γ, we have Jacp(T (γ)) = 1, and
then Xt is volume preserving (see [LS72]), which contradicts our assumption. �

5.6. Mildly dissipative equilibrium states. LetXt : M →M be a dissipative transi-
tive Anosov flow on a 3-dimensional manifoldM . Consider the logarithmic infinitesimal
Jacobian

ψ : x 7→ d

dt
|t=0 log detDXt(x).

Then ψ = ψs−ψu and we consider the following one parameter family {ϕt}t∈R of Hölder
potentials

ϕt := tψs + (1− t)ψu = ψu + tψ.

For each t ∈ R we denote by mt the equilibrium measure for Xt associated to the
potential ϕt. The path of equilibrium states {mt, t ∈ [0, 1]} connects the positive SRB
measure m0 = m+

X to the negative SRB measure m1 = m−X . Recall that the function
P̄ : t 7→ P (ϕt) which assigns to t ∈ R the pressure of the potential ϕt is smooth, with
P̄ ′(t) =

∫
M ψ dmt. In fact, P̄ is strictly convex, since ψ is not cohomologous to a

constant (see Parry-Pollicott [PP90, Proposition 4.10, Proposition 4.12]). Recall that
by the entropy formula for SRB measures P̄ (0) = P̄ (1) = 0. Let t0 = t0(Xt) ∈ (0, 1) be
the point at which P̄ achieves its minimum, so that

P̄ ′(t0) =

∫
M
ψ dmt0 = 0. (5.2)

Recall that for any periodic orbit γ ∈ P for Xt, we denote by µγ < 1 < λγ its
stable and unstable multipliers, and that for any % ∈ [1, 2), the set P% ⊂ P of %-mildly
dissipative periodic orbits is defined as follows:

P% :=
{
γ ∈ P : µ%γλγ < 1 and µγλ%γ > 1

}
.

Lemma 5.8. For any % ∈ (1, 2], the equilibrium state mt0 gives full proportion to the
collection P%.
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Proof. Assume by contradiction that there exists % ∈ (1, 2] such that the set P% does
not have full proportion for mt0 . We would like to use Bowen formula for mt0 , however
it has negative pressure. Thus we add constant a consider the family ϕt + c. Then
P (ϕt+ c) = P (ϕt) + c and for a large enough c we have P (ψt0 + c) > 0. The equilibrium
states remain the same, in particular, µϕt0+c = mt0 . And the property of having positive
proportion remains the same under such adjustment (recall Remark 5.1).

Let us decompose P \ P% = P̄%,1 ∪ P̄%,2, where

P̄%,1 :=
{
γ ∈ P : µ%γλγ ≥ 1

}
, P̄%,2 :=

{
γ ∈ P : µγλ

%
γ ≤ 1

}
.

Fix ∆ > 0. As previously, for any T > 0, and for any subset S ⊂ P, we denote by
ST,∆ ⊂ S the set of periodic orbits γ ∈ S with T (γ) ∈ (T, T + ∆]. Let

Σϕt0+c,T,∆(S) :=
∑

γ∈ST,∆

e
Tϕt0

(γ)+cT (γ)
,

and let
mS
ϕt0+c,T,∆ :=

1

Σϕt0+c,T,∆(S)

∑
γ∈ST,∆

e
Tϕt0

(γ)+cT (γ)
δγ ,

so that

mP
ϕt0+c,T,∆ =

Σϕt0+c,T,∆(P%)

Σϕt0+c,T,∆(P)
mP%

ϕt0+c,T,∆ +

2∑
i=1

Σϕt0+c,T,∆(P̄%,i)

Σϕt0+c,T,∆(P)
mP̄%,i

ϕt0+c,T,∆. (5.3)

Take a suitable sequence (Tn)n≥0 such that limn Tn = +∞, and

m∗ϕt0+c,Tn,∆ ⇀n m
∗, ∗ = P%, P̄%,1, P̄%,2.

Since we have assumed that P̄%,1 ∪ P̄%,2 has positive proportion with respect to mt0 , by
passing to a further subsequence we also arrange that for i = 1, 2,

lim
n→+∞

Σϕt0+c,Tn,∆(P̄%,i)

Σϕt0+c,Tn,∆(P)
= ρi,

with ρ1 + ρ2 > 0. By (5.3) and the Bowen formula, we then have

mt0 = (1− ρ1 − ρ2)mP% + ρ1m
P̄%,1 + ρ2m

P̄%,2 .

Without loss of generality, we assume that ρ1 > 0, since the case ρ2 > 0 is symmetric. By
ergodicity of the equilibrium measure mt0 , we conclude that mt0 = mP̄%,1 . By definition,
for any γ ∈ P̄%,1, we have

log Jacγ ≥ −(%− 1) logµγ ,

which can be written as∫
γ
ψ(γ(s)) ds ≥ −(%− 1)

∫
γ
ψs(γ(s)) ds.

Then, for any Tn ≥ 0,∫
M
ψ dmP̄%,1

ϕt0+c,Tn,∆ ≥ e
cTn

∫
M
ψ dmP̄%,1

ϕt0 ,Tn,∆
≥ −ecTn(%− 1)

∫
M
ψs dmP̄%,1

ϕt0 ,Tn,∆

≥ − ecTn

ec(Tn+∆)
(%− 1)

∫
M
ψs dmP̄%,1

ϕt0+c,Tn,∆ > 0.
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Taking the limit as Tn → +∞, and using that mP̄%,1

ϕt0+c,Tn,∆
⇀n mt0 , we deduce that∫

M
ψ dmt0 ≥ −(%− 1)

∫
M
ψs dmt0 > 0.

The last inequality is strict because integral of ψs is negative with respect to any
invariant measure. Indeed, ψs is cohomologous to the average Jacobian function
1
T0

∫ T0

0 ψs(Xt(·))dt which is negative for large enough T0.
The last inequality contradicts (5.2). We conclude that the set P% =

{γ ∈ P : µ%γλγ < 1 and µγλ
%
γ > 1} has full proportion, as claimed. �

Given % > 1, we introduce the two subsets E%,C% ⊂ P%,

E% :=
{
γ ∈ P : µγλγ > 1 and µ%γλγ < 1

}
, C% :=

{
γ ∈ P : µγλγ < 1 and µγλ%γ > 1

}
.

Corollary 5.9. For any % > 1, there exist t%E, t
%
C ∈ [0, 1] arbitrarily close to t0 such

that the expanding subset E% has positive proportion relative to mt%
E
and the contracting

subset C% has positive proportion relative to mt%
C
.

Proof. Let us prove the result for E; the other case being completely analogous. Fix any
% > 1. The pressure function P̄ is strictly convex, and has a critical point at t0, by (5.2).
Then, for any small ε > 0, there exists a unique tε ∈ [t0, 1], with limε→0 tε = t0, such
that

P̄ ′(tε) =

∫
M
ψ dmtε = ε > 0. (5.4)

By Proposition 5.7, the set of volume preserving periodic orbits has zero proportion
with respect to mtε . Arguing in the exactly same way as in the proof of Lemma 5.8,
we deduce that if ε is sufficiently small, then, the set E% ∪ C% ⊂ P% has full proportion
relative to mtε .

As in the previous proof we pick a constant c such that P (ϕtε + c) > 0 so that we can
apply Bowen formula. Let us show that the set C% cannot have full proportion. Indeed,
fix ∆ > 0; using similar notation as in the proof of Lemma 5.8, for any T > 0, we let

mC%

ϕtε+c,T,∆ :=
1

Σϕtε+c,T,∆(C%)

∑
γ∈C%T,∆

eTϕtε (γ)+cT (γ)δγ .

Note that by definition of C% we have
∫
ψdmC%

ϕtε+c,T,∆ < 0. If C% is full-proportion
relative to mtε , then,

0 ≥ lim
T→+∞

∫
M
ψ dmC%

ϕtε+c,T,∆ =

∫
M
ψ dmtε ,

which contradicts (5.4). We conclude that the set E% has positive proportion relative to
the equilibrium state mtε . In fact, it is easy to see that E% has full proportion relative
to mtε . �

6. A dichotomy: C1-smoothness of a strong subbundle or recovery of
eigendata

As previously, we consider a transitive Cr, r ≥ 3, Anosov flow Xt on some 3-manifold,
which is k-pinched for some 1 < k ≤ r−1. We let p ∈M be a volume expanding periodic
point of period T > 0, with multipliers 0 < µ = µp < 1 < λ = λp, µλ = Jacp(T ) > 1.
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We fix some homoclinic point q ∈ Wu
loc(p), we let T ′ = T ′q ∈ R and q′ := XT ′(q) ∈

Σp ∩Ws
loc(p) as in Section 4, and let (pn)n≥n0 be the sequence of periodic points given

by Lemma 4.1, whose orbits shadow the orbit of q. We use the same notation as in
Subsection 4.2. Let Σp := ıp((−1, 1)×{0}× (−1, 1)), let {Tsp(·)} be the stable template
along Wu

loc(p) ∩ Σp, and let P̃ sp be the polynomial of degree at most [k] introduced
in Lemma 3.13. By Proposition 4.2, the periods (Tn = T qn)n≥n0 obey the following
asymptotics:

Tn = nT + T ′ + ζp(q)µ
n +O(θn), (6.1)

with max
(
µ

3
2 , µ

2 log λ
log λ−log µ

)
< θ < µ, and

ζp(q) := ξ∞

(
Tsp(η∞)− P̃ sp (η∞)

)
,

where (0, η∞) := ı−1
p (q) and (ξ∞, 0) := ı−1

p (q′) denote the normal coordinates of q and
q′, respectively. Note that the excursion time T ′ = T ′q can always be recovered from the
periods (Tn = T qn)n≥n0 , since T ′ = limn→+∞(Tn − nT ).

Definition 6.1 (Recovery of eigendata from periods). Let

Hu(p) = Hu
X(p) := {q ∈Wu

loc(p) : q is homoclinic to p},
Hu

good(p) = Hu
X,good(p) := {q ∈ Hu(p) : ζp(q) 6= 0},

and let

Γp = ΓXp :

{
Hu(p) → R ∪ {−∞},

q 7→ lim sup
n→+∞

1
n log |T qn − nT − T ′q|.

We say that the stable eigenvalue µ = µp ∈ (0, 1) of the periodic point p can be recovered
from the periods if Hu

good(p) 6= ∅.

Indeed, by (6.1), if Hu
good(p) 6= ∅, then µ can be computed from the periods (Tn =

T qn)n≥n0 as follows:

logµ = sup
q̃∈Hu(p)

Γp(q̃) = Γp(q), ∀ q ∈ Hu
good(p), (6.2)

while if Hu
good(p) = ∅ then, by (6.1)

sup
q̃∈Hu(p)

Γp(q̃) ≤ log θ < logµ. (6.3)

Remark 6.2. By reversing time, we can analogously define the symmetric notion of
recovery of the unstable eigenvalue at a volume contracting periodic point. Indeed, fix
a periodic point p ∈ M , of period T > 0, with multipliers 0 < µp < 1 < λp, with
Jacp(T ) = µpλp < 1. Let

Hs(p) = Hs
X(p) := {q′ ∈Ws

loc(p) : q′ is homoclinic to p}.

For any point q′ ∈ Hs(p), similarly to Lemma 4.1, we can define a sequence of periodic
points (pn)n whose orbits shadow the orbit of q′. Denoting by (Tn = T q

′
n )n their periods,

formula (6.1) becomes

Tn = nT + T ′ + ζ ′p(q
′)λ−n +O(θn), (6.4)
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for some T ′ = T ′q′ ∈ R and θ ∈ (0, λ−1), and where

ζ ′p(q
′) := −η∞

(
Tup (ξ∞)− P̃ up (ξ∞)

)
,

denoting (ξ∞, 0) := ı−1
p (q′), q := X−T

′
(q′), (0, η∞) := ı−1

p (q), where {Tup (·)} is the
unstable template along Ws

loc(p) ∩ Σp, and P̃ up is a polynomial of degree at most [k]
(uniform in p) similar to those introduced in Lemma 3.13. We also denote by Hs

good(p) =

Hs
X,good(p) the set of points q′ ∈ Hs(p) such that ζ ′p(q′) 6= 0, and we let

Γp = ΓXp : Hs(p)→ R ∪ {−∞}, q′ 7→ lim sup
n→+∞

1

n
log |T q′n − nT − T ′q′ |.

Similarly, if Hs
good(p) 6= ∅, then by (6.4),

− log λ = sup
q̃′∈Hs(p)

Γp(q̃
′) = Γp(q

′), ∀ q′ ∈ Hs
good(p). (6.5)

In that case, we say that the unstable eigenvalue λp can be recovered from the periods.

Lemma 6.3. For any volume expanding periodic point p, we have the following di-
chotomy:
• either the stable eigenvalue µp ∈ (0, 1) can be recovered from the periods (Tn)n≥n0;

• or Tsp = P̃ sp ; moreover, the strong stable distribution Es is C1+α along Wu
loc(p)∩Σp

for some α > 0.

Proof. Assume that µ cannot be recovered from the periods (Tn)n≥n0 . By definition,
and since homoclinic points are dense along Wu(p), we thus have Tsp(η) − P̃ sp (η) = 0

for a dense set of η ∈ (−1, 1). By continuity of the function Tsp − P̃ sp , we deduce that
Tsp = P̃ sp . Lemma 3.14 then implies that the strong stable distribution Es is C1+α along
Wu

loc(p) ∩ Σp, for some α > 0. �

This result has the following global counterpart. Before stating the result, let us recall
that by Corollary 5.6, volume expanding periodic points are dense in M .

Proposition 6.4. The following global dichotomy holds:
• either there exists a non-empty open set V ⊂M such that for any volume expand-
ing periodic point p ∈ V , the stable eigenvalue µp ∈ (0, 1) can be recovered from
the periods;
• or there exists a dense set of volume expanding periodic points whose stable eigen-
value cannot be recovered from the periods; in that case, the stable distribution Es

is C1+α, for some α > 0.

Proof. Assume that we are not in the first case, namely, there exists a dense set Pexp ⊂M
of volume expanding periodic points p whose stable eigenvalue µp ∈ (0, 1) cannot be
recovered from the periods. Thus, by Lemma 6.3, for any p ∈ Pexp, we have Tsp = P̃ sp .
The conclusion then follows from Lemma 3.15. �

Remark 6.5. Let us recall that if the stable distribution Es is C1+α, α > 0, then so is
the stable foliation Ws (see e.g. Pugh-Shub-Wilkinson [PSW97, Section 6]).

Let us conclude this part by recalling the classical fact that 3-dimensional transitive
Anosov flows whose stable and unstable distributions Es and Eu are C1 can be classified:
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Lemma 6.6. Let Xt be a 3-dimensional transitive Anosov flow. Assume that both Es

and Eu are C1. Then,

• either Xt is a contact flow;

• or Es ⊕ Eu is integrable, and Xt is topologically conjugate to the suspension of
an Anosov diffeomorphism.

Proof. Let ω : M → R be the canonical 1-form such that

kerω = Es ⊕ Eu, ω(X) ≡ 1.

Clearly, ω is Xt-invariant. Assume now that Es, Eu are C1. Then so is ω, and the
form ω ∧ dω is Xt-invariant. In particular, since Xt is transitive, we have the following
dichotomy:

• either ω ∧ dω is a volume form, in which case, Xt is a contact flow;

• or ω ∧ dω ≡ 0.

In the latter case, by Frobenius Theorem, the distribution Es⊕Eu is integrable. More-
over, by Plante [Pla72, Theorem 3.1], we can then conclude that Xt is topologically
conjugate to a constant roof suspension of some Anosov diffeomorphism on T2. �

7. Proofs of main results: matching of eigendata

Let Xt, Y t be two transitive Cr, r ≥ 3, Anosov flows on 3-manifolds that are C0-
conjugate by a homeomorphism Φ as in (2.1). Let p ∈ M be periodic for Xt, of period
T > 0, let q ∈ Wu

loc(p) be homoclinic to p, let q′ = XT ′(q) ∈ Ws
loc(p), and let (pn),

n ≥ n0, be the sequence of periodic points given by Lemma 4.1 whose orbits shadow
the orbit of q. The points Φ(q) ∈ Wu

loc(Φ(p)), Φ(q′) = Y T ′(Φ(q)) ∈ Ws
loc(Φ(p)) are

homoclinic to Φ(p). Let {ı̃x}, x ∈M , be a family of adapted charts for the flow Y t, and
let {Σ̃x} x ∈ M , be the associated family of transverse sections. Let also (p̃n), n ≥ n1,
be the sequence of periodic points for Y t given by Lemma 4.1 associated to the points
Φ(p), Φ(q) and Φ(q′). Let n2 = max{n0, n1}.

Lemma 7.1. For all n ≥ n2, the points Φ(pn) and p̃n are in the same (periodic) orbit.

Proof. Let δY > 0 be some expansivity constant for the flow Y t. By construction,
for n � 1, large, the point p̃n is the unique periodic point in Σ̃Φ(p) near Φ(q)

whose orbit shadows the pseudo-orbit {Y t(Φ(p))}t∈[−nT
2
,nT

2
+T ′] with a jump at time

nT
2 + T ′. Moreover, by Lemma 4.1, for n � 1 large, the orbit of p̃n stays δY

10 -close
to this pseudo-orbit. The pseudo-orbit {Xt(p)}t∈[−nT

2
,nT

2
+T ′] is sent to the pseudo-

orbit {Y t(Φ(p))}t∈[−nT
2
,nT

2
+T ′] by Φ. Moreover, by Lemma 4.1, and by the conti-

nuity of Φ, for n � 1 large, the orbit of Φ(pn) stays δY
10 -close to the pseudo-orbit

{Y t(Φ(p))}t∈[−nT
2
,nT

2
+T ′]. Therefore, the orbits of p̃n and Φ(pn) δY

2 -shadow each other,
hence they are actually equal. �

As above, we denote by T qn > 0 the period of the orbit of pn. Similarly, we denote by
T

Φ(q)
n > 0 the period of the orbit of p̃n. By Lemma 7.1, for large n, we have

T qn = TΦ(q)
n . (7.1)
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7.1. The case when one of the flows is volume preserving. Here we consider the
case when one flow is conservative and the conjugate flow is dissipative. In Section 9,
we give certain non-trivial examples when this indeed happens. First we establish con-
sequences of the existence of a conjugacy.

Proposition 7.2. Assume that Xt is a 3-dimensional dissipative Anosov flow which
is conjugate to a conservative Anosov flow Y t by some homeomorphism Φ. Then, the
following statements hold:

1. both distributions EsY and EuY are of class C1+α, for some α > 0;
2. at least one of the distributions EsX and EuX is of class C1+α, for some α > 0.

Remark 7.3. In fact, the above dichotomy can be refined into the following trichotomy:
1. either both Xt and Y t are constant roof suspension flows, and all four distributions
EsX , E

u
X , E

s
Y and EuY are C1;

2. or Y t is a contact flow, EuX is C1+α, for some α > 0, EsX is not C1, and Φ is
smooth along stable leaves;

3. or Y t is a contact flow, EsX is C1+α, for some α > 0, EuX is not C1, and Φ is
smooth along unstable leaves.

Proof. If both EsX and EuX are C1+α, α > 0, then by Lemma 6.6, we have that Xt is
a constant roof suspension flow, and then so is Y t; in particular, both EsY and EuY are
C1+α̃, α̃ > 0. Hence, in what follows we will assume that neither Xt nor Y t is a constant
roof suspension flow.

If there exists a dense set of volume expanding periodic points of Xt at which the
stable eigenvalues cannot be recovered, then by Proposition 6.4, the distribution EsX
is C1+α, for some α > 0. Similarly, if there exists a dense set of volume contracting
periodic points of Xt at which the unstable eigenvalue cannot be recovered then EuX is
C1+α, for some α > 0.

Hence, using Corollary 5.4 we are free to assume that for a full proportion set of
volume expanding periodic points of Xt, with respect to the measure m−X , the stable
eigenvalue can be recovered. That is, for such points p, there exists a homoclinic point
q ∈ Hu

good(p) such that the periods (T qn)n of the periodic points (pn)n given by Lemma 4.1
whose orbits shadow the orbit of q satisfy (see (6.1)):

T qn = nT + T ′q + ζp(q)µ
n
p +O(θnp ), (7.2)

where we recall that µp ∈ (0, 1) is the stable eigenvalue of p, θp ∈ (0, µp), and the
coefficient ζp(q) 6= 0.

On the other hand, by the asymptotic formula obtained in Proposition 4.17 for the
volume preserving flow Y t at the periodic point Φ(p) = XT (Φ(p)), and by (7.1), for
n� 1, we have

T qn = nT + T ′q + C∞αΦ(p)(T )nµnΦ(p) +O(µnΦ(p)), (7.3)

where µΦ(p) ∈ (0, 1) is the stable eigenvalue of Φ(p), C∞ 6= 0, and αΦ(p)(T ) is the value
at (Φ(p), T ) of the longitudinal Anosov cocycle (x, t) 7→ αx(t) (see Remark 3.6). Clearly,
since the convergence rate of nµnΦ(p) is not precisely exponential we see that the above
formulae could only be compatible when αΦ(p)(T ) = 0. Hence the longitudinal Anosov
cocycle vanishes on a full proportion (with respect to the equilibrium measure Φ∗m

−
X)
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set of periodic points Φ(p), and by Theorem 5.2 the longitudinal Anosov cocycle is a
coboundary. Then, by [FH03], we conclude that both EsY and EuY are of class C1+α,
α > 0.

As we have already recalled in Lemma 6.6, using the results from [FH03, Pla72],
one can then conclude that Y t is either a contact flow or a constant roof suspension
flow, the latter case being ruled out by our assumption. By the formula obtained in
Proposition 4.17, formula (7.3) can then be refined as

T qn = nT + T ′q + ζ̃Φ(p)(q)µ
n
Φ(p) + o(µnΦ(p)), (7.4)

with ζ̃Φ(p)(q) 6= 0, due to the quantitative non-joint integrability of EsY and EuY in the
contact case, see Remark 4.18. Comparing (7.2) with (7.4), we deduce that for a full
proportion set of volume expanding periodic orbits γ, stable multipliers of γ and Φ(γ)
match. Applying Theorem 5.2, we conclude that for any periodic point p = XT (p),
stable multipliers of p and Φ(p) match, hence conjugacy Φ is smooth along stable leaves,
by the classical argument [dlL92].

To finish the proof, let us note that in the above situation, EuX has to be C1+α, for
some α > 0. Otherwise, by the same reasoning, for any periodic point p = XT (p), the
unstable multiplier of p would have to match the unstable multiplier of Φ(p). Together
with the matching of stable multipliers this immediately implies that all periodic orbits
of Xt are volume preserving (Jacobian is 1). This, by [LS72], implies that Xt is volume
preserving, contrary to our assumption. �

7.2. The trichotomy: proof of Theorem E. Let Xt, Y t be two transitive Cr Anosov
flows on 3-manifolds as before, that are C0-conjugate by a homeomorphism Φ. Assume
that they are k-pinched, k ≤ r − 1, and that none of the four foliations Ws

X ,W
u
X ,

Ws
Y ,W

u
Y is C1.

By Proposition 7.2, either both Xt and Y t are volume preserving, or both Xt and Y t

are dissipative.
If both Xt and Y t are volume preserving, then, by the work of Gogolev-Rodriguez

Hertz [GRH22], Xt and Y t are Cr∗-conjugate.
Let us now consider the case where both Xt and Y t are dissipative. For Z = X,Y ,

we denote by PZ the set of periodic orbits for Zt; we decompose the set of periodic
orbits — PZ = EZ ∪ VZ ∪ CZ , where γ ∈ EZ are volume expanding, JacZγ (T (γ)) > 1,
γ ∈ CZ are volume contracting, JacZγ (T (γ)) < 1, and γ ∈ VZ are volume preserving,
JacZγ (T (γ)) = 1. Then, by Proposition 6.4, for Z = X,Y , there exist non-empty open
sets V E

Z , V
C
Z ⊂M such that

• for any volume expanding periodic point p ∈ V E
Z ∩ EZ , the stable eigenvalue

µZp ∈ (0, 1) of Zt at p can be recovered from the periods;

• for any volume contracting periodic point p ∈ V C
Z ∩ CZ , the unstable eigenvalue

λZp > 1 of Zt at p can be recovered from the periods.

Since Zt is transitive, there exists tZ ∈ R such that VZ := V E
Z ∩ Z−tZ (V C

Z ) 6= ∅ is a
non-empty open set. Moreover, for any volume contracting point p ∈ V C

Z , the point
Z−tZ (p) is still a volume contracting periodic point, and its unstable eigenvalue can
still be recovered from the periods. By a similar argument, we can also assume that
V := VX ∩ Φ−1(VY ) 6= ∅.
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Let m−X be the negative SRB measure for the flow Xt; recall that it is the equilbrium
measure for the potential ψsX : x 7→ d

dt |t=0 log ‖DXt(x)|Es‖. By functoriality, the push-
forward measure Φ∗m

−
X is also an equilibrium measure for Y t, associated to the potential

ψsX ◦ Φ−1. By Proposition 5.3, and Subsection 5.4, the set P
V,E
X := PVX ∩ EX ⊂ PX of

volume expanding periodic orbits for Xt crossing the open set V has full proportion
for the measure m−X . By construction of V , we deduce that for the full proportion set
P
V,E
X of periodic orbits γ for Xt, the stable eigenvalue µγ ∈ (0, 1) can be recovered from

the periods. More precisely, denoting by ΓXp the function introduced in Definition 6.1
for the flow Xt, for any γ ∈ P

V,E
X , there exist p ∈ V ∩ γ and q ∈ Hu

X,good(p) such that
logµγ = ΓXp (q).

Let us also consider the set Φ(PV,EX ) = P
V,E
Y ∪ P

V,V
Y ∪ P

V,C
Y ⊂ PY , where P

V,E
Y :=

Φ(PV,EX ) ∩ EY , P
V,V
Y := Φ(PV,EX ) ∩ VY and P

V,C
Y := Φ(PV,EX ) ∩ CY are volume expanding,

volume preserving, and volume contracting periodic orbits for Y t, respectively. By
Proposition 5.7, the set PV,EY ∪ P

V,C
Y has full proportion with respect to the equilibrium

measure Φ∗m
−
X . We have two cases:

1. PV,EY ⊂ PY is a set of positive proportion for the equilibrium measure Φ∗m
−
X ;

2. PV,CY ⊂ PY is a set of positive proportion for the equilibrium measure Φ∗m
−
X .

Although it is not obvious, we will see that these two cases are actually mutually exclu-
sive. Below we treat these two cases separately.
Case 1. For any periodic orbit γ ∈ P

V,E
X ∩ Φ−1(PV,EY ), there exist points p ∈ V ∩ γ,

q ∈ Hu
X,good(p), and q̃ ∈ Hu

Y,good(Φ(p)) such that logµγ = ΓXp (q) and logµΦ(γ) =

ΓYΦ(p)(q̃), where µΦ(γ) ∈ (0, 1) is the stable eigenvalue of the volume expanding periodic
point Φ(p) of Y t, and ΓXp (ΓYΦ(p)) are the functions introduced in Definition 6.1 for
the flows Xt (Y t) at p (Φ(p)). In fact, since both functions ΓXp and ΓYΦ(p) are entirely
determined by the lengths of shadowing periodic orbits, and by (7.1) these lengths are
the same for any homoclinic point qX ∈ Hu

X(p) and the corresponding homoclinic point
Φ(qX) ∈ Hu

Y (Φ(p)) we have

ΓXp (qX) = ΓYΦ(p)(Φ(qX)).

Using (6.2) and (6.3) we deduce that

logµγ = ΓXp (q) = ΓYΦ(p)(Φ(q)) ≤ ΓYΦ(p)(q̃) = log µΦ(γ).

Similarly,
logµΦ(γ) = ΓYΦ(p)(q̃) = ΓXp (Φ−1(q̃)) ≤ ΓXp (q) = log µγ .

Hence
µγ = µΦ(γ). (7.5)

In particular, denoting by ϕ : M → R the Hölder potential

ϕ := ψsX − ψsY ◦ Φ: x 7→ d

dt
|t=0

(
log ‖DXt(x)|Es‖ − log ‖DY t(Φ(x))|Es‖

)
,

equation (7.5) implies that for any periodic orbit γ in the positive proportion set
P
V,E
X ∩ Φ−1(PV,EY ), we have Tϕ(γ) = 0. By the positive proportion Livshits Theorem

(Theorem 5.2), we thus conclude that ϕ is a coboundary. In particular, for any periodic
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point p ∈ M of Xt, denoting by µp, µΦ(p) ∈ (0, 1) the stable eigenvalues at p and Φ(p)

for the flows Xt and Y t, respectively, we have

µp = µΦ(p). (7.6)

Case 2. Let us now consider the second case. By the definition of V , and by (6.5),
for any periodic orbit γ ∈ P

V,E
X ∩Φ−1(PV,CY ), there exist points p ∈ V ∩γ, q ∈ Hu

X,good(p),
and q̃′ ∈ Hs

Y,good(Φ(p)) such that logµγ = ΓXp (q) and − log λΦ(γ) = ΓYΦ(p)(q̃
′), where

λΦ(γ) > 1 denotes the unstable eigenvalue of the volume contracting periodic point Φ(p)

of Y t, and ΓYΦ(p) is the function introduced in Remark 6.2 for the flow Y t at Φ(p). Let us

denote by (T qn)n and (T q̃
′

n )n the periods of the periodic orbits which shadow the orbits
of q and q̃′, respectively. Arguing as previously, and by (7.1), we deduce that

logµγ = sup
qX∈Hu

X(p)
ΓXp (qX) = sup

qY ∈Hs
Y (Φ(p))

ΓYΦ(p)(qY ) = − log λΦ(γ).

Since the set PV,EX ∩Φ−1(PV,CY ) has positive proportion, we conclude that for any periodic
point p ∈M for Xt, we have

µp = λ−1
Φ(p), (7.7)

where µp ∈ (0, 1) is the stable multiplier at p and λΦ(p) > 1 is the unstable multiplier at
Φ(p) for the flows Xt and Y t, respectively.

In particular, if cases 1 and 2 were occuring simultaneously, from (7.6)-(7.7), we would
conclude that the flow Y t is volume preserving, contrary to our assumption.

To finish the proof we need to repeat the whole argument again, but instead of starting
with m−X and considering volume expanding periodic points for Xt, we can start with
m+
X and consider volume contracting periodic points. Specifically, by construction of V ,

and Proposition 5.3, for the positive SRB measure m+
X , there exists a full-proportion

set PV,CX of volume contracting orbits γ for Xt (crossing the open set V ) whose unstable
eigenvalue λγ > 1 can be recovered from the periods. Similarly, we have Φ(PV,CX ) =

P̃
V,E
Y ∪ P̃

V,V
Y ∪ P̃V,CY , where P̃V,EY , P̃V,VY and P̃

V,C
Y are volume expanding, volume preserving,

and volume contracting periodic orbits for Y t, respectively, and the set P̃V,EY ∪ P̃
V,C
Y ⊂ PY

has full proportion for the equilibrium measure Φ∗m
+
X . For any periodic point p ∈ M

for Xt, we denote by µp < 1 < λp its eigenvalues, and we denote by µΦ(p) < 1 < λΦ(p)

the eigenvalues of the periodic point Φ(p) of Y t. Splitting into two cases as previously,
we deduce that

1. either for any periodic point p of Xt, we have λp = λΦ(p);

2. or for any periodic point p of Xt, we have λp = µ−1
Φ(p).

Notice that now we have arrived at four cases:

1. for any periodic point p we have µp = µΦ(p) and λp = λΦ(p);

2. for any periodic point p we have µp = λ−1
Φ(p) and λp = µ−1

Φ(p);

3. for any periodic point p we have µp = µΦ(p) and λp = µ−1
Φ(p);

4. for any periodic point p we have µp = λ−1
Φ(p) and λp = λΦ(p).
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In the latter two cases we conclude that Xt is volume preserving, which gives a contra-
diction. In the first case we apply Theorem 2.1 and conclude that the flows Xt and Y t

are smoothly conjugate. While in the second case, swapping of the eigenvalues at cor-
responding periodic points implies swapping of the positive and negative SRB measures
of the two flows. Indeed, by the Livschits theorem, both ψsX −ψuY ◦Φ and ψuX −ψsY ◦Φ
are cohomologous to 0 (recall the Definition 2.3) and Φ must swap the SRB measures
by functoriality property of equilibrium states. �

7.3. Jacobian rigidity for flows: proof of Theorem A. We begin with a remark
on a finite regularity version of Theorem A.

Remark 7.4. Theorem A was stated for C∞ flows for convenience, but it also works in
finite regularity, namely, Cr flows, r ≥ 4, which are k-pinched for some 1 < k ≤ r − 1.

Let Xt : M → M and Y t : N → N be two transitive dissipative C∞ Anosov flows
on 3-manifolds M and N . Assume that they are C0-conjugate by a homeomorphism
Φ: M → N , Φ ◦Xt = Y t ◦Φ. Assume that for any periodic point p = XT (p) Jacobians
match, i.e.,

detDXT (p) = detDY T (Φ(p)). (7.8)
We apply Theorem E and conclude that Xt and Y t are C∞-conjugated, except, possibly,
in one of the following two cases:

1. the positive and negative SRB measures of the flows Xt, Y t are swapped by Φ;

2. at least one of the foliations Ws
Z and Wu

Z is C1+α for some α > 0, Z = X,Y .

We claim that the former case never happens; indeed, swapping of SRB measures implies
that any volume expanding periodic point for Xt is mapped to a volume contracting
periodic point for Y t, which is ruled out by (7.8).

Let us then assume that we are in the latter case. After possibly reversing time,
without loss of generality, we can assume that Wu

X is C1+α, α > 0.

Claim 7.5. The foliation Ws
X is C1 if and only if both Xt and Y t are constant roof

suspension flows.

Proof of the claim: The reverse implication is clear, so let us focus on the direct one,
and assume that Ws

X is C1. Now we have that both Ws
X and Wu

X and we can apply
Lemma 6.6. Taking into account that Xt is dissipative we have that Xt must be (topo-
logically conjugate to) a constant roof suspension flow (over an Anosov diffeomorphism
of T2). Let us denote by EsZ and EuZ the (strong) stable and unstable bundles of the
flow Zt, for Z = X,Y . In particular, the distribution EsX ⊕ EuX is integrable. Since
the latter condition is topological, it is preserved by the C0-conjugacy map Φ, hence
the distribution EsY ⊕ EuY is integrable too. By Plante [Pla72, Theorem 3.1], we then
conclude that Y t is also a constant roof suspension flow. �

First assume that that Xt and Y t are not constant roof suspension flows. By the
above claim, the foliation Ws

X cannot be C1. Similarly, the flow Y t cannot have both
foliations Ws

Y and Wu
Y of class C1; we then have two cases:

1. Ws
Y is not C1;

2. Wu
Y is not C1.
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Case 1. Let us assume that Ws
Y is not C1. By Proposition 6.4 and the transitivity

of the flows Xt, Y t, we deduce that there exists a non-empty open set V ⊂ M such
that for any volume expanding periodic orbit γ for Xt crossing V , the periodic orbit
Φ(γ) is also volume expanding because of the Jacobian matching (7.8). Moreover, the
stable eigenvalues µXγ , µYΦ(γ) ∈ (0, 1) of Xt and Y t at γ and Φ(γ), respectively, can be

recovered from the periods. Let PV,EX be the set of volume expanding periodic orbits for
Xt crossing V . We have

logµγ = sup
Hu
X(p)

ΓXp = sup
Hu
Y (Φ(p))

ΓYΦ(p) = logµΦ(γ), ∀ γ ∈ P
V,E
X , p ∈ γ. (7.9)

Consider the Hölder potential ϕ : M → R,

ϕ : x 7→ d

dt
|t=0

(
log ‖DXt(x)|Es‖ − log ‖DY t(Φ(x))|Es‖

)
.

By Proposition 5.3, and Subsection 5.4, the set P
V,E
X has full proportion with respect

to the negative SRB measure m−X , and by (7.9), for any γ ∈ P
V,E
X , we have Tϕ(γ) = 0.

By the positive proportion Livshits Theorem (Theorem 5.2), we conclude that ϕ is a
coboundary. Therefore, for any periodic point p for Xt, the stable multipliers of Xt

and Y t at p and Φ(p) match. By (7.8), we deduce that for any periodic point p of Xt,
the stable and unstable multipliers of p and Φ(p) match, and hence, the conjugacy map
Φ between Xt and Y t is C∞ [DlLMM86, dlL87], as claimed.

Case 2. Let us now consider the second case, i.e., Wu
X is C1+α, for some α > 0, but

neither Ws
X nor Wu

Y is C1. Our goal is to show that this case is actually ruled out by
the Jacobian assumption (7.8).

For Z = X,Y , recall that the potentials for SRB measures m−Z and m+
Z are ψsZ : x 7→

d
dt |t=0 log ‖DZt(x)|EsZ‖ and ψuZ : x 7→ − d

dt |t=0 log ‖DZt(x)|EuZ‖, respectively. For each
t ∈ R, we denote bymt the equilibrium measure forXt associated to the Hölder potential
ϕt := tψsX + (1− t)ψuX .

Let γ ∈ PX be a periodic orbit of Xt, of period T > 0, with multipliers 0 < µ =
µγ < 1 < λ = λγ . We fix p ∈ γ, a homoclinic point q ∈Wu

loc(p), we let T ′ = T ′q ∈ R, so
that q′ := XT ′(q) ∈ Σp ∩Ws

loc(p). Let (pn)n≥n0 be the sequence of periodic points given
by Lemma 4.1 whose orbits shadow the orbit of q. We use the same notation that we
used in Section 4.2. Recall that Σp := ıp((−1, 1)×{0}× (−1, 1)) is the local transversal,
that {Tsp(·)} is the stable template along Wu

loc(p) ∩Σp, and that {Tup (·)} is the unstable
template along Ws

loc(p) ∩ Σp. Also recall from Lemma 3.14

P̃ sp (η) := −
[k]∑
j=1

1

j!

∂1∂
j
2τ
T
p (p)

µλj − 1
ηj , P̃ up (ξ) := −

[k]∑
j=1

1

j!

∂j1∂2τ
T
p (p)

µjλ− 1
ξj .

Recall that for any % > 1, we denote by P
%
X ⊂ PX the set of %-mildly dissipative

periodic orbits,
P
%
X :=

{
γ ∈ PX : µ%γλγ < 1 and µγλ%γ > 1

}
.

As in the proof of Proposition 4.12, we will consider %0-mildly dissipative periodic orbits,
with %0 := 5

4 . By Corollary 5.9, there exists t%0

C ∈ [0, 1] such that the subset C%0

X ⊂ P
%0

X
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of volume contracting periodic orbits,

C
%0

X :=
{
γ ∈ PX : µγλγ < 1 and µγλ%0

γ > 1
}

has positive proportion with respect to m := mt
%0
C
.

Claim 7.6. If the periodic point p is %0-mildly dissipative, and µλ 6= 1, then as n→ +∞,
the periods Tn of the periodic point pn admit the following asymptotic expansion:

Tn = nT + T ′ + ζp(q)µ
n +O(θn), (7.10)

for some θ ∈ (0, µ), where ζp(q) :=
(
Tsp(η∞)− P̃ sp (η∞)

)
ξ∞.

Moreover, there exists a subset P̃%0

X ⊂ P
%0

X of full proportion with respect to m such
that for any γ ∈ P̃

%0

X and any p ∈ γ, there exists a homoclinic point q ∈ Wu
loc(p) such

that ζp(q) 6= 0.

Proof. If p is volume expanding, namely µλ > 1, then the claim follows directly from
Proposition 4.2. So consider the case when p is volume contracting, namely, µλ < 1. By
Proposition 4.12 applied to the inverse flow X−t, the point p becomes volume expanding,
hence as n→ +∞, the periods Tn of the periodic point pn obey the following asymptotic
expansion:

Tn = nT + T ′ +
(
Tup (ξ∞)− P̃ up (ξ∞)

)
η∞λ

−n +
(
Tsp(η∞)− P̃ sp (η∞)

)
ξ∞µ

n +O(θn).

Since Wu
X is C1+α, α > 0, by Lemma 3.14, for any choice of p and q, the term ζ ′p(q) :=

(Tup (ξ∞)− P̃ up (ξ∞))η∞ vanishes, hence the expansion of Tn is of the form (7.10) as well.
Now, by Proposition 5.7, we know that the set of periodic orbits γ ∈ PX for which

µγλγ = 1 has zero proportion with respect to m. Let P̄%0

X ⊂ P
%0

X be the subset of periodic
orbits γ ∈ P

%0

X such that µγλγ 6= 1, and such that for any p ∈ γ, and any homoclinic point
q ∈ Wu

loc(p), we have ζp(q) = 0. If P̄%0

X has positive proportion, then by Corollary 5.4,
and arguing as in Lemma 3.15, we conclude that the stable bundle EsX is C1+α for some
α > 0, hence also Ws

X (see Remark 6.5), contrary to our assumption on Xt. �

Claim 7.7. The potential ψsX − ψuY ◦ Φ is a coboundary.

Proof. Let C̃%0

X := C
%0

X ∩ P̃
%0

X be the subset of volume contracting periodic orbits within
P̃
%0

X . By Corollary 5.9 and the preceding claim, C̃%0

X has positive proportion with respect
to m.

By (7.8), any γ ∈ Φ(C̃%0

X ) is a volume contracting periodic orbit for the flow Y t.
Moreover, Φ(C̃%0

X ) has positive proportion with respect to the equilibrium state m̃ :=

Φ∗m. We claim that for a subset C̃
%0

Y ⊂ Φ(C̃%0

X ) of full proportion with respect to m̃
within Φ(C̃%0

X ), the unstable multiplier λγ̃ > 1 of any periodic orbit γ̃ ∈ C̃
%0

Y can be
recovered from the periods. Indeed, otherwise, by Lemma 6.3 (for volume contracting
periodic points in place of volume expanding periodic points), and by Corollary 5.4, we
deduce that the unstable distribution EuY of Y t (hence also the unstable foliation Wu

Y )
is C1+α, for some α > 0, contrary to our assumption.

Arguing as in the proof of Theorem E in Subsection 7.2, for any periodic orbit γ in
the set Φ−1(C̃%0

Y ), the stable multiplier µγ ∈ (0, 1) of γ for Xt matches the inverse of the
unstable multiplier λΦ(γ) > 1 of Φ(γ) for Y t, i.e.,

µγ = λ−1
Φ(γ).
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Since the set Φ−1(C̃%0

Y ) has positive proportion for m, by the positive proportion Livshits
Theorem (Theorem 5.2), we conclude that ψsX − ψuY ◦ Φ is a coboundary. �

Let us now explain how to reach a contradiction. By (7.8), the potential

(ψsX − ψuX)− (ψsY − ψuY ) ◦ Φ

is a coboundary. Combining with the last claim, we deduce that

ψsY ◦ Φ is cohomologous to 2ψsX − ψuX = ϕ2. (7.11)

As we have already discussed in Subsection 5.6, the function P̄ : t 7→ P (ϕt) is strictly
convex, due to the fact that Xt is dissipative. But it always vanishes at 0, 1, and
by (7.11), it also vanishes at 2, a contradiction.

To finish the proof, it remains to consider the case where Xt and Y t are topologically
conjugate to constant roof suspensions over two Anosov diffeomorphisms f and g of T2,
respectively. In particular, f and g are conjugate by some homeomorphism h : T2 → T2,
h ◦ f = g ◦ h, and by (7.8), for any periodic point p = fn(p), we have

detDfn(p) = detDgn(h(p)). (7.12)

Fix a sufficiently large constant κ > 0 such that log detDf+κ > 0 and log detDg+κ > 0.
Let us consider the suspension flows X̃t, Ỹ t over f and g, respectively, with roof functions
given by log detDf+κ and log detDg+κ. Then, X̃t and Ỹ t are transitive Anosov flows
(recall that f and g are always transitive) which are also dissipative. Since f and g are
conjugate, the suspension flows X̃t and Ỹ t are orbit equivalent; actually, by (7.12) and
Livshits Theorem, the flows X̃t and Ỹ t are C0-conjugate.

We claim that neither X̃t nor Ỹ t is a constant roof suspension flow. Indeed, if X̃t

is conjugate to a constant roof suspension flow, then we have that log detDf is con-
tinuously cohomologous to a constant cf ∈ R. If cf = 0, then the diffeomorphism f is
conservative, contrary to our assumption. On the other hand, if log detDf = γ◦f−γ+cf
for a constant cf > 0 and a continuous transfer function γ : T2 → R, then we can take
nf ∈ N large enough such that for any n ≥ nf , log detDfn = γ ◦fn−γ+ncf > 0, which
is incompatible with f being a diffeomorphism. The case where cf < 0 is impossible for
similar reasons.

Now we have that X̃t and Ỹ t are transitive dissipative C∞ Anosov flows on 3-
manifolds which are C0-conjugate by a homeomorphism Φ̃, Φ̃◦X̃t = Ỹ t◦Φ̃, and by (7.12),
for any periodic point p = X̃T (p), T > 0, Jacobians match, i.e.,

detDX̃T (p) = detDỸ T (Φ̃(p)).

Since X̃t and Ỹ t are not constant roof suspension flows, by the previous discussion, we
deduce that they are C∞-conjugate. This implies that for any periodic point p = X̃T (p),
stable and unstable multipliers of p and Φ̃(p) match. This in turn implies that for any
periodic point p of f , the multipliers of p and h(p) match, and hence, the conjugacy
map h between f and g is C∞ [DlLMM86, dlL87]. Since the initial conjugated flows Xt

and Y t are constant roof suspension flows over f and g, we conclude that Xt and Y t

are, in fact, C∞-conjugate. The proof is complete. �
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7.4. Jacobian rigidity for diffeomorphisms: proof of Corollary B. It is a direct
consequence of Theorem A. Indeed, let f, g : T2 → T2 be two dissipative C∞ Anosov
diffeomorphisms that are C0-conjugate by a homeomorphism h : T2 → T2, h ◦ f = g ◦ f .
Assume that for any periodic point p = fn(p) Jacobians match, i.e.,

detDfn(p) = detDgn(h(p)). (7.13)

Let us show that f and g are C∞-conjugate.
Fix a sufficiently large constant κ > 0 such that log detDf+κ > 0 and log detDg+κ >

0. LetXt : M →M , Y t : N → N be the suspension flows over f and g, respectively, with
roof functions given by log detDf+κ and log detDg+κ. Then, Xt and Y t are transitive
Anosov flows (recall that f and g are always transitive) which are also dissipative. Since
f and g are conjugate, the suspension flows Xt and Y t are orbit equivalent; actually,
by (7.13) and Livshits Theorem, the flows Xt and Y t are conjugate by some C0 map
Φ: M → N .

By Theorem A, we conclude that Xt and Y t are C∞-conjugated. In particular, for
each periodic orbit γ of Xt, the multipliers of γ and Φ(γ) match; this in turn implies
that for any periodic point p of f , the multipliers of p and h(p) match, and hence, the
conjugacy map h between f and g is C∞ [DlLMM86, dlL87], as claimed.

Although it is not needed for the proof, let us note that in fact, neither Xt nor Y t is
a constant roof suspension flow. Indeed, as we observed in the proof of Theorem A the
case where log detDf is cohomologous to a constant is ruled by our assumption that f
is dissipative.

7.5. Improving to two C1 foliations: proof of Addendum F. Given r ≥ 3, let Xt,
Y t be two 3-dimensional transitive Cr Anosov flows that are k-pinched, 1 < k ≤ r − 1,
and which are C0-conjugate by a homeomorphism Φ as in (2.1).

If both flowsXt and Y t are conservative, then by [GRH22], at least one of the following
holds:

• Xt and Y t are constant roof suspension flows, and all four foliations Ws
X ,W

u
X ,

Ws
Y and Wu

Y are C1;

• the conjugacy Φ is smooth.

Now, if Xt is dissipative but Y t is conservative, then the result follows from Proposi-
tion 7.2. In the following, we thus assume that both Xt and Y t are dissipative, and that
at least one of the foliations Ws

X ,W
u
X is of class C1. Up to reversing time, without loss

of generality, we will assume that Wu
X is C1.

On the one hand, if Ws
X is also C1, then as we saw in Claim 7.5, both Xt and Y t are

constant roof suspension flows, in which case, all four foliations Ws
X , W

u
X , W

s
Y and Wu

Y

are C1.
On the other hand, if Ws

X is not C1, then by Lemma 6.6, Xt and Y t are not constant
roof suspension flows, and at least one of the foliations Ws

Y and Wu
Y is not C1. To

conclude the proof of the first half of Addendum F, it remains to show that if the stable
foliation Ws

Y is not C1, then one of the following holds:

a. the conjugacy Φ is smooth along stable leaves and the foliation Wu
Y is also C1;

b. Φ∗m
−
X = m+

Y .
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In the following, we thus assume that Wu
X is C1, but neither Ws

X nor Ws
Y is. We split

the proof into two cases. In the following, given a periodic point p = XT (p), we denote
by µp := λsX,p(T ) < 1, resp. λp := λuX,p(T ) > 1 its stable, resp. unstable multipliers
for Xt, and by µΦ(p) := λsY,Φ(p)(T ) < 1, resp. λΦ(p) := λuY,Φ(p)(T ) > 1, the stable, resp.
unstable multipliers of Φ(p) = Y T (Φ(p)) for Y t.
Case 1. Assume that for some equilibrium state m for Xt, m and Φ∗m give positive

proportion to the set of volume expanding periodic orbits of Xt and Y t respectively.
Then, arguing in exactly same way as in the first case 1 of the proof of Theorem E, we
deduce that

µp = µΦ(p), ∀ p = XT (p). (7.14)
The following proposition shows that we are necessarily in case a. above:

Proposition 7.8. Assume that the flow Xt has C1 unstable foliation Wu
X , and that

stable multipliers of Xt and Y t at corresponding periodic points match as in (7.14).
Then the conjugacy Φ is smooth along stable leaves, and the unstable foliation Wu

Y of
Y t is C1.

Proof. By (7.14), the conjugacy Φ is smooth along stable leaves (see [dlL92]). But Φ
is always smooth along flow lines; by Journé’s lemma [Jou88], we deduce that Φ is also
smooth along the leaves of Wcs

X .
By [PSW97, Section 6], Wu

Y is C1 if and only if local unstable holonomy maps of Y t

are uniformly C1. For Z = X,Y , given two points x, y with y ∈ Wu
Z,loc(x), we denote

by
HoluZ,x,y : Wcs

Z,loc(x)→Wcs
Z,loc(y)

the local unstable holonomy map. The conjugacy map Φ sends the foliations Wu
X ,W

cs
X

to the corresponding foliations Wu
Y ,W

cs
Y respectively; as a result, for any points x, y with

y ∈Wu
X,loc(x), we have

Φ
∣∣
Wcs
X,loc(y)

◦HoluX,x,y ◦
(

Φ
∣∣
Wcs
X,loc(x)

)−1

= HoluY,Φ(x),Φ(y). (7.15)

Since Wu
X is C1, by [PSW97, Section 6], the local holonomy maps HoluX,x,y, y ∈

Wu
X,loc(x), are uniformly C1. Moreover, as recalled above, Φ is uniformly C1 along local

leaves of Wcs
X . By (7.15), we deduce that local holonomy maps HoluY,x̃,ỹ, ỹ ∈ Wu

Y,loc(x̃),
are uniformly C1, which concludes the proof. �

Case 2. Assume now that for any equilibrium state m for Xt such that the set of
volume expanding periodic orbits of Xt has positive proportion with respect to m (such
as the negative SRB measure m−X , by Lemma 5.5), the equilibrium state Φ∗m gives full
proportion to the set of volume contracting periodic orbits of Y t.

Let us first assume that Wu
Y is not C1. Then, considering the equilibrium states m−X ,

Φ∗m
−
X , and arguing in exactly same way as in case 2 of the proof of Theorem E, we

deduce that
µp = λ−1

Φ(p), ∀ p = XT (p).

This implies that Φ∗m
−
X = m+

Y , i.e., we are in case b. above.
On the other hand, if Wu

Y is also C1, then according to the following proposition, we
are in case a., which completes the proof of the first point of Addendum F:



52 ANDREY GOGOLEV, MARTIN LEGUIL, AND FEDERICO RODRIGUEZ HERTZ

Proposition 7.9. If Xt and Y t are not constant roof suspension flows, and both Wu
X

and Wu
Y are C1, then the conjugacy Φ is C1 along stable leaves.

Proof. As above, for Z = X,Y , given two points x, y with y ∈Wu
Z,loc(x), we denote by

HoluZ,x,y the local unstable holonomy map. Let us also denote by

HolcuZ,x,y : Ws
Z,loc(x)→Ws

Z,loc(y)

the holonomy map along the leaves of Wcu
Z . In particular, for any z ∈ Ws

Z,loc(x), there
exists a unique δZ(z) = δZ,x,y(z) ∈ R such that

HoluZ,x,y(z) = ZδZ(z) ◦HolcuZ,x,y(z).

Moreover, the function δZ : Ws
Z,loc(x)→ R is C1; indeed, Wu

Z is C1, hence by [PSW97,
Section 6], so is the unstable holonomy map HoluZ,x,y. Since the conjugacy map Φ
preserves dynamical foliations, we see that

δY,Φ(x),Φ(y) ◦ Φ
∣∣
Ws

loc(x)
= δX,x,y. (7.16)

Claim 7.10. There exists a point y ∈Wu
X,loc(x) such that

δ′Y,Φ(x),Φ(y)(Φ(x)) 6= 0. (7.17)

Proof. Otherwise for any y ∈ Wu
X(x), we have that DHoluY,Φ(x),Φ(y)E

s
Y (Φ(x)) =

EsY (Φ(y)). By minimality of the unstable foliation Wu
Y , we deduce that EsY ⊕ EuY is

integrable, hence Y t is a constant roof suspension flow, by Lemma 6.6, a contradiction.
See e.g. [ALOS24, Lemma 5.8] for more details. �

Let us fix a point y such that (7.17) holds; then, by the implicit function theorem,
δY,Φ(x),Φ(y)|U is a local C1-diffeomorphism, for some neighborhood U ⊂ Ws

Y,loc(Φ(x))

of Φ(x). By (7.16), we deduce that Φ
∣∣
Φ−1(U)

= (δY,Φ(x),Φ(y)|U )−1 ◦ δX,x,y|Φ−1(U) is C1.
Since this is true for any point x, we deduce that Φ is C1. �

Let us now show the second half of Addendum F, when both flows are C4 regular
and 5

4 -mildly dissipative. We will also need to use the second order asymptotic formula
derived in Section 4.3. By [GRH22] and Proposition 7.2, we are free to assume that
both flows Xt and Y t are dissipative. According to the preceding proof, we see that the
case which remains to be considered is when

• Wu
X is C1 regular but Ws

X is not;

• the conjugacy Φ satisfies Φ∗m
−
X = m+

Y .

In particular, by the latter property, we have

µp = λ−1
Φ(p), ∀ p = XT (p). (7.18)

Let us show that Ws
Y is C1. Assume by contradiction that it is not the case. By

Lemma 5.5, the negative SRB measure m−Y gives full proportion to the set of volume
expanding periodic orbits of Y t. Since we assume that Ws

Y is not C1, by Lemma 6.3
and Corollary 5.4, for a full proportion set of volume expanding periodic points of Y t

with respect to m−Y , the stable eigenvalues can be recovered. That is, for such points
Φ(p) = Y T (Φ(p)), with multipliers 0 < µΦ(p) < 1 < λΦ(p), there exists a homoclinic
point Φ(q) ∈ Hu

good(Φ(p)) such that the periods (Tn)n of the periodic points (Φ(pn))n
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given by Lemma 4.1 whose orbits shadow the orbit of Φ(q) satisfy the asymptotic formula
(see (6.1)):

Tn = nT + T ′ + ζΦ(p)(Φ(q))µnΦ(p) +O(θnΦ(p)),

with ζΦ(p)(Φ(q)) 6= 0, and θΦ(p) ∈ (0, µΦ(p)).
Recall that we denote by µp < 1 < λp the eigenvalues of the periodic point p = XT (p).

The flows Xt and Y t are globally 5
4 -mildly dissipative and we can apply the two-term

asymptotic formula deduced in Proposition 4.12. Since Wu
X is C1, by Lemma 3.14, the

unstable template Tup is equal to the (linear) polynomial P̃ up defined therein. Hence the
leading term in the formula vanishes and we are left with only one exponential term in
the asymptotics,

Tn = nT + T ′ +
(
Tsp(η∞)− P̃ sp (η∞)

)
ξ∞µ

n
p +O(θnp ), (7.19)

where (0, η∞) and (ξ∞, 0) are the normal coordinates of the points q and XT ′(q), re-
spectively, θp ∈ (0, µp), and where Tsp is the stable template, and P̃ sp is the polynomial
defined in Lemma 3.14. Since Ws

X is not C1, by Lemma 3.14 and Corollary 5.4, for a
positive proportion set of periodic orbits γ relative to (Φ−1)∗m

−
Y , p ∈ γ, and for any

homoclinic point q in an open subset of Wu
loc(p), we have T

s
p(η∞)−P̃ sp (η∞) 6= 0, hence µp

can be recovered from (7.19). By the previous discussion, we conclude that µp = µΦ(p)

for a positive proportion set of periodic orbits relative to m−Y . Therefore, by the positive
proportion Livshits Theorem 5.2, we conclude that

µp = µΦ(p), ∀ p = XT (p).

Comparing to (7.18), and applying Livshits Theorem, we conclude that the flow Y t is
volume preserving. We have thus arrived at a contradiction; in other words, the foliation
Ws
Y is C1, as claimed. The proof of Addendum F is complete. �

7.6. Exceptionality of C1 foliations: proofs of Theorem G and Theorem C.
The main technical result in this section is that having C1 stable (and similarly unstable)
foliation is not a generic property in the space of Anosov vector fields.

Proposition 7.11. Let M be a 3-manifold which supports an Anosov flow. Denote by
AM the spaces of C∞ vector fields on M , which generate transitive Anosov flows. Then
there exists a C1-open and C∞-dense subset UsM ⊂ AM such that for any X ∈ UsM the
(strong) stable foliation Ws

X is not C1 regular.

Using this proposition we can easily derive Theorem G and Theorem C.

Proof of Theorem G. We apply Proposition 7.11 for Anosov flows on M : first for the
stable and then for the unstable foliation (we can reverse the time and apply the propo-
sition), we obtain two open and dense sets whose intersection UM forms an open and
dense set on which both the stable and the unstable foliations are not C1. Similarly we
obtain an open and dense set of Anosov flows on N on which both foliations are not C1.
Now, if we have conjugate flows from these sets, then applying Theorem E immediately
yields Theorem G. �

Proof of Theorem C. Let M and UM ⊂ AM be as in Theorem G. Let us note that if
Xt, Y t are C0-conjugate Anosov flows with respective generators X,Y ∈ UM , then by
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Theorem G, the conjugacy Φ is C∞, unless Φ swaps positive and negative SRB measures
of the two flows, i.e.,

Φ∗m
+
X = m−Y , Φ∗m

−
X = m+

Y . (7.20)
If Xt is conservative, then (7.20) implies that Y t is also conservative, hence by [GRH22],
Xt and Y t are smoothly conjugate (note that the exceptional case where Xt and Y t are
constant roof suspension flows is ruled out by the assumption that X,Y ∈ UM , so that
the invariant foliations of Xt, Y t are not C1).

Otherwise, if Xt is dissipative, then so is Y t. Fix any volume expanding periodic point
p = XT (p). If X,Y are sufficiently C1-close, then the periodic point Φ(p) = Y T (Φ(p))
is also volume expanding, while (7.20) implies that Φ(p) has to be volume contracting,
a contradiction. Therefore, (7.20) does not occur, and Φ is C∞. �

The proof of Proposition 7.11 consists of two steps. First we will show in Lemma 7.12
that if the stable foliation Ws is C1 then this property can be destroyed by arbitrarily
C∞-small perturbations. The second step, in Lemma 7.14, is to prove that the property
of the stable foliation of not being C1 is stable under C1 perturbations of the flow.

Lemma 7.12. Let Xt : M → M be a 3-dimensional transitive Anosov flows with C1

stable foliation Ws
X . Then there exists a C∞-small perturbation Y t : M → M whose

stable foliation Ws
Y is not C1. In fact, we can choose Y t to be dissipative and such that

there is a periodic point p for Y t such that EsY is not C1 along Wu
Y,loc(p).

Remark 7.13. A similar lemma for higher dimensional Anosov flows appears
in [FMT07, Lemma 4.2(2)].

Proof. Without loss of generality, after a C∞-small perturbation of Xt if needed, we
can assume that p = XT (p) is a volume expanding periodic point, with multipliers
µ < 1 < λ, µλ > 1.

The perturbation Y t will be a time change of Xt localized in a neighborhood of a
periodic point. We define a local transversal to the flow in the following way

Σp =
⋃

x∈Wu
loc(p)

Ws
loc(x).

Since the stable foliation is C1 this transversal is also C1 with constant return time T . We
consider the Poincaré return map Π: Σ̂p → Σp, where Σ̂p ⊂ Σp is an appropriately small
sub-transversal which contains p. Further, recall that we can C1 linearize the Poincaré
map so that it takes the form Π(ξ, η) = (µξ, λη) with the local stable manifolds being
the axes: Wu

loc(p) = {(0, η) : |η| < ε0} and Ws
loc(p) = {(ξ, 0) : |ξ| < ε0}.

Now we pick a homoclinic point (0, η̄) ∈ Σp such that its forward orbit under Xt

intersects Σp only on the local stable manifold Ws
loc(p). To construct perturbation we

pick a smooth function ρ : Σp → R with the following properties:
1. the function ρ is C∞ small;
2. the function ρ vanishes on the local unstable manifold: ρ(0, η) = 0 for all |η| < ε0;

3. ∂
∂ξρ(0, λ−1η̄) < 0;

4. the function ρ has localized support: supp(ρ) ⊂ Bδ((0, λ−1η̄)) = Bδ(Π
−1(0, η̄)) ⊂

Σ̂p, where δ > 0 is sufficiently small so that supp(ρ) is disjoint with Π(supp(ρ))
and Π−1(supp(ρ)).
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We define Y t as a local reparametrization of Xt. Namely, locally at p, the flow Y t is
defined as the suspension of Π with the roof function T+ρ. Since ρ has localized support
we can let the flows be the same away from p. It is easy to see that since ρ is C∞ small
we also have that Y and X are C∞ close.

Further, note that since ρ vanishes on both axes we have that local stable and unstable
manifolds through p remain the same for Y . Also, since the forward orbit of (0, η̄) is
disjoint with supp(ρ) we have that Ws

X,loc(0, η̄) = Ws
Y,loc(0, η̄).

We now proceed to calculate the stable distribution of Y t along the forward orbit
of (0, η̄) and show that it is not C1 at p. As usual, we will use (ξ, t, η) coordinates to
express the stable vector field along Wu

loc(p), which we will normalize to have unit first
coordinate. For the stable vector based at (0, η) ∈Ws

loc(p) we write v
s
X(η) = (1, 0, cs(η))

for the vector which spans the stable distribution of Xt. By the above observations we
also have that EsY (0, η̄) = span(vsY (η̄)) with vsY (η̄) = vsX(η̄) = (1, 0, cs(η̄)). To obtain
the stable vector at λ−1η̄ we go backwards and apply DY −T (0, η̄):

DY −T (0, η̄)vsY (η̄) = (µ−1, `, λ−1cs(η̄)).

After normalizing we have vsY (λ−1η̄) = (1, µ`, µλ−1cs(η̄)). Here ` defined by ` :=
−∂ρ/∂vsX(0, λ−1η̄) is positive since ∂ρ/∂e(0, λ−1η̄) < 0 for any unit vector e based
at (0, λ−1η̄) which points into positive quadrant. Indeed, this fact follows directly from
the properties (2) and (3) imposed on ρ above. (In fact, vsX is almost horizontal vector
and ∂ρ/∂vsX(0, λ−1η̄) ' ∂ρ/∂ξ(0, λ−1η̄).) Calculating vsY (λ−`η̄) further for ` ≥ 2 is
straightforward since return time is now constant again and the second coordinate of
the vector under iteration remains the same:

DY −(`−1)T (0, η̄)vsY (λ−1η̄) = (µ−`+1, µ`, µλ−`cs(η̄)).

After normalizing we obtain

vsY (λ−`η̄) = (1, µ``, µ`λ−`cs(η̄)).

Recall that vsY (0) = (1, 0, 0). Since µ > λ−1 we see that the second coordinate of vsY
cannot be better than Hölder with exponent − logµ

log λ . Hence the stable distribution (and
hence foliation) of Y t is not C1 at p. �

Lemma 7.14. Let Xt : M →M be a 3-dimensional transitive Anosov flow whose stable
distribution EsX is not C1 along Wu

X(p) for some volume expanding periodic point p =
XT (p), Jacp(T ) > 1. Then there exists a C1-small neighborhood U of X in the space of
smooth Anosov vector fields such that for any Y ∈ U the stable distribution EsY is also
not C1 regular.

The idea of the proof is to use the characterization of the C1-smoothness of the stable
distribution provided by Lemma 3.14. Namely, we know for Xt that the asymptotic
formula (6.1) at p holds with a non-zero coefficient ζp(q) by the exponential term. We
would like to claim that the coefficient ζp(q) varies continously as we vary the generator
of the flow in C1 topology, as this implies stability of non-C1-smoothness of stable
distribution. While this strategy is sound the approach faces a technical obstacle.
Formula (6.1) was derived with the help of adapted charts given by Proposition 3.2. The
adapted charts depend continuously on the flow (in C1-topology on charts), but only if
one varies the flow continuously in C2 topology (this can be checked by examining the
construction of adapted charts in Appendix B). Hence, directly from the proof, we can
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only say that ζp(q) varies continuously as we continuously vary the generator of the
flow in C2 topology. To overcome this issue we will reinterpret the main coefficient in
asymptotic formulae for periods in simpler crude charts which have the advantage of
varying continuously with the flow in the C1 topology.

Let {ıx : (−1, 1)3 →M}x∈M be a family of Cr−1 adapted charts as in Proposition 3.2,
let {Σx}x∈M be the associated family of transverse sections, Σx := ıx((−1, 1) × {0} ×
(−1, 1)), let τp : Σp → R be the first return time to Σp, and let Π: Σp → Σp, ıp(ξ, 0, η) =

x 7→ Xτp(x)(x) be the first return map of Xt to the section Σp. For each x ∈ M , we
denote by Tsx(·) the stable template along Wu

loc(x) ∩ Σx as in (3.4).
Fix a volume expanding periodic point p ∈ M , of period T > 0, with multipliers

0 < µ < 1 < λ, µλ > 1. We let P̃ sp be the polynomial introduced in Lemmata 3.13-3.14:

P̃ sp (η) := −
[k]∑
j=1

1

j!

∂1∂
j
2τp(p)

µλj − 1
ηj .

For any point q = ıp(0, 0, η) ∈Wu
loc(p), we let

ζp(q) := Tsp(η)− P̃ sp (η). (7.21)

Recall that if, moreover, q is a homoclinic point, then ζp(q) is the coefficient that ap-
pears in front of the exponentially small term in the asymptotic formula derived in
Proposition 4.2.

Now, let ı̂p : (−1, 1)3 → M be any other smooth chart such that Σ̂p := ı̂p((−1, 1) ×
{0} × (−1, 1)) is a transverse section at p, with Ws

loc(p),W
u
loc(p) ⊂ Σ̂p being the axes,

and Xt ◦ ı̂p(ξ, 0, η) = ı̂p(ξ, t, η), for ξ, t, η ∈ (−1, 1).

Remark 7.15. Since Ws
loc(p) and Wu

loc(p) depend C
1 continuously on X in C1 topology.

As we vary X we can ensure that the parametrized sections Σ̂p(X)(X) also depend C1-
continuously on X in the C1 topology.

Let T̂sp(·) be the associated stable template along Wu
loc(p) ∩ Σ̂p, namely, for q =

ı̂p(0, 0, η̂) ∈Wu
loc(p), we can write

Ws
loc(q) =

{
ı̂p(ξ̂, T̂

s
p(η̂)ξ̂ + b̂sx(ξ̂, η̂)ξ̂2, η̂ + ĉsx(ξ̂, η̂)ξ̂)

}
ξ̂∈(−1,1)

.

Denote by τ̂p : Σ̂p → R the first return time to Σ̂p, and let Π̂ : Σ̂p → Σ̂p, ı̂p(ξ̂, 0, η̂) =

x 7→ X τ̂p(x)(x) be the first return map of Xt to the section Σ̂p. As previously, we slightly
abuse notation and write τ̂p(x) = τ̂p(ξ̂, η̂). For any q = ıp(0, 0, η) = ı̂p(0, 0, η̂) ∈Wu

loc(p),
denote

vsp(q) := Dıp(0, 0, η)(1, 0, csx(0, η)) ∈ Ecs(q) ∩ TqΣp,

v̂sp(q) := Dı̂p(0, 0, η̂)(1, 0, ĉsx(0, η̂)) ∈ Ecs(q) ∩ TqΣ̂p.

For any ` ≥ 1, we have

DΠ−`(q)vsp(q) = µ−`vsp(Π
−`(q)),

DΠ̂−`(q)v̂sp(q) = λ̂sp,q(−`)v̂sp(Π̂−`(q)),
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where λ̂sp,q(−`) is defined by the above formula, and 0 < µ < 1 is the stable multiplier
at p. Note that we have used the properties given by Proposition 3.2. Now, define

ζ̂p(q) := T̂sp(η̂) +
+∞∑
`=1

λ̂sp,q(−`)∂1τ̂p(Π̂
−`(q)). (7.22)

(This definition is fully analogous to (7.21), only using Σ̂p instead of Σp.)

Lemma 7.16. There exists a positive function ϑp : Wu
loc(p)→ R+ \ {0} such that ζp =

ϑp · ζ̂p.

Remark 7.17. Validity of this lemma is fairly clear from the role ζp and ζ̂p. Namely,
these are coefficients in the asymptotics (7.10), relative to two different transversals, Σp

and Σ̂p. Notice that while the chart is important for the derivation of the asymptotic
formula, the formula itself is coordinate free since all that matters are periods and the
eigenvalue µ. Hence the coefficient by µn is the same relative to either chart. Hence,
the lemma is the observation that relative to Σ̂p this coefficient is given by ϑp · ζ̂p. We
still give a formal proof starting with the definition of ϑp.

Proof. With the notation introduced in (3.4), for any point q = ıp(0, 0, η) = ı̂p(0, 0, η̂) ∈
Wu

loc(p), we have

Dıp(0, 0, η)(1,Tsp(η), csx(0, η)) = ϑp(q) ·Dı̂p(0, 0, η̂)(1, T̂sp(η̂), ĉsx(0, η̂)) ∈ Es(q),

for some function ϑp : Wu
loc(p)→ R+.

For a small neighborhood Up of Wu
loc(p), we write Σ̂p ∩ Up = {(Xγp(z)(z)) : z ∈

Σp ∩ Up}. Again, we abuse notation by writing γp(z) = γp(ξ, η). Then we have the
following relationship between the templates

Tsp(η) = ∂1γp(0, η) + ϑp(q)T̂
s
p(η̂). (7.23)

Moreover, for any point z ∈ Σp∩Up, and any integer n ≥ 0 such that Π−1(z), · · · ,Π−n(z)

are well defined, we let ẑ := Xγp(z)(z), so that
n∑
`=1

τp(Π
−`(z)) =

n∑
`=1

τ̂p(Π̂
−`(ẑ)) + γp(Π

−n(z))− γp(z).

Differentiating the above equation at q = ıp(0, 0, η) = ı̂p(0, 0, η̂) ∈ Wu
loc(p) along the

weak stable direction (namely, along vsp(q)) yields
n∑
`=1

µ−`∂1τp(Π
−`(q)) =

n∑
`=1

λ̂sp,q(−`)∂1τ̂p(Π̂
−`(q))ϑp(q) + µ−n∂1γp(0, λ

−nη)− ∂1γp(0, η),

(7.24)
where 0 < µ < 1 < λ are the multipliers at p. In the above formula, we have used that
the holonomy map Xγp(·)(·) from Σp to Σ̂p preserves the weak stable foliation Wcs, and
that the return times τp and τ̂p are flat along Wu

loc(p), which in our charts is the η-axis.
Since γp is smooth, by Taylor expansion, we also have

µ−n∂1γp(0, λ
−nη) = O((µλ)−n),

which goes to 0 as n→ +∞ since µλ > 1.
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Addding up (7.23) and (7.24), and letting n→ +∞ gives

Tsp(η) +
+∞∑
`=1

µ−`∂1τp(Π
−`(q)) = ϑp(q)

(
T̂sp(η̂) +

+∞∑
`=1

λ̂sp,q(−`)∂1τ̂p(Π̂
−`(q))

)
. (7.25)

Moreover, by (3.1), we have ∂1τp(0, η) =
∑[k]

j=0
1
j!∂1∂

j
2τp(0, 0)ηj , hence

+∞∑
`=1

µ−`∂1τp(Π
−`(q)) =

+∞∑
`=1

µ−`∂1τp(0, λ
−`η) =

[k]∑
j=0

1

j!
∂1∂

j
2τp(0, 0)ηj

+∞∑
`=1

(µλj)−` = −P̃ sp (η).

With the notation introduced in (7.21)-(7.22), we see that the left hand side of (7.25) is
indeed equal to ζp(q), while the right hand side is equal to ϑp(q)ζ̂p(q), which gives the
posited equality ζp(q) = ϑp(q)ζ̂p(q). �

We can finish the proof of Lemma 7.14:

Proof of Lemma 7.14. Let Xt : M → M be a 3-dimensional transitive Anosov flow
whose stable distribution EsX is not C1 alongWu

X(p) for some volume expanding periodic
point p = XT (p), Jacp(T ) > 1.

Then, by Lemma 3.14, there exists a point q ∈Wu
loc(p) such that

ζp(q) = Tsp(q)− P̃ sp (q) 6= 0. (7.26)

By Lemma 7.16, we deduce that ζ̂p(q) 6= 0.
By Remark 7.15, if Y is C1-close to X, then, for the Anosov flow Y t, we can choose a

transverse section Σ̂p(Y )(Y ) adapted to Y t which is close to Σ̂p in the C1 topology. The
corresponding return time to Σ̂p(Y )(Y ) is also C1 close to τ̂p. From the expression of ζ̂p
in (7.22), we see that all ingredients — template, multipliers, derivatives of the return
time — are close to those for Xt. Hence the associated function ζ̂p(Y ) for Y t is C0-close
to the function ζ̂p. Let us denote by q(Y ) ∈ Wu

Y,loc(p(Y )) the continuation of q. Given
the sections Σ̂p(Y )(Y ) for Y t, let us denote by ζp(Y ) the function for Y t analogous to the
one defined in (7.21) for Xt. By (7.26) and Lemma 7.16 and observed continuity, we
deduce that for all Y is sufficiently C1-close to X, we have

ζ̂p(Y )(q(Y )) 6= 0

and, hence, by applying Lemma 7.16 again ζp(Y )(q(Y )) 6= 0. Then, by Lemma 3.14, we
have that the stable distribution EsY is not C1 along Wu

Y,loc(p(Y )). �

7.7. Proofs of Theorem H and Corollary I. The proofs are based on exactly the
same ideas and arguments so we will be brief. Since ϕ and ξ are positive functions we
can consider reparametrized flows Xt

ϕ and Y t
ξ generated by 1

ϕX and 1
ξY , respectively.

Then the matching condition of ϕ- and ξ-weights becomes matching of periods for Xt
ϕ

and Y t
ξ under the orbit equivalence Φ. Hence, by Livshits Theorem, we can promote

Φ to a conjugacy Φ̄ such that Φ̄ ◦Xt
ϕ = Y t

ξ ◦ Φ̄. This puts us into a position to apply
Theorem E and conclude smoothness of Φ̄ apart from exceptional cases. Hence, once
exceptional cases are ruled out, we have that homeomorphism Φ̄ is the posited smooth
orbit equivalence for Xt and Y t.
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The exceptional cases are taken care of by assumptions in Theorem H. Indeed, if Φ̄
swaps the SRB measures then we have corresponding relationship between the stable and
unstable logarithmic infinitesimal Jacobians. Namely, ψuXϕ is cohomologous to ψsYξ ◦ Φ̄

and ψsXϕ is cohomologous to ψuYξ ◦ Φ̄. Subtracting we have that the infinitesimal full
Jacobian ψsXϕ − ψ

u
Xϕ

is cohomologous to (ψuYξ − ψ
s
Yξ

) ◦ Φ̄. In particular, this implies (in
fact, equivalent) that for every periodic point p = XT

ϕ (p) we have

log |detDXT
ϕ (p)| = − log |detDY T

ξ (Φ̄(p))|,

contradicting the assumption on the existence of a periodic point with logarithmic Ja-
cobians of the same sign.

Finally, in Lemma 7.12 we proved that for a generic reparametrization Xt
ϕ of Xt

neither the stable Ws
Xϕ

nor the unstable foliation Wu
Xϕ

is C1. Hence for a generic choice
of ϕ and ξ none of the foliations Ws

Xϕ
, Wu

Xϕ
, Ws

Yξ
and Wu

Yξ
is C1 regular, thus ruling

out last exceptional case (Case 3) in Theorem E.
To obtain Corollary I note that if ϕ and ξ is a pair of functions with matching sums

over all matching periodic orbits, then so are ϕ + c and ξ + c. For a sufficiently large
constant c we have ϕ + c > 0 and ξ + c > 0. Now we can suspend f and g using
ϕ + c and ξ + c, respectively, to obtain conjugate flows Xt

ϕ and Y t
ξ as in the proof of

Theorem H. Hence Xt
ϕ and Y t

ξ are smoothly conjugate which implies that f and g are
smoothly conjugate. �

8. On C1+Hölder Anosov diffeomorphisms which are not C1 conjugate to
more regular ones

Here we provide a proof Corollary J. In fact, we expect that stronger results should
hold true and π2→1 is not surjective either. We briefly discuss possibility of such stronger
results at the end of this section.

Throughout we will fix a hyperbolic automorphism L : T2 → T2 and work only with
Anosov diffeomorphisms homotopic to L. Accordingly, we consider the Teichmüller
spaces TrL of Cr conjugacy classes of Cr Anosov diffeomorphisms which are homotopic
to L.

We will say that a diffeomorphism is C1+H-regular if it is C1 with Hölder continuous
differential for some positive Hölder exponent. Throughout this section we will use Jf ,
Jsf and Juf to denote the Jacobian, the stable Jacobian and the unstable Jacobian
of an Anosov diffeomorphism f , respectively. Recall the following realization result of
Cawley [Caw93].

Theorem 8.1 ([Caw93]). Given a pair of C1+α potentials ϕ,ψ : T2 → R such that
PL(ϕ) = PL(ψ) = 0 there exists a C1+H Anosov diffeomorphism g conjugate to L via h,
h ◦ g = L ◦ h such that

• − log Jug is cohomologous to ϕ ◦ h over g;

• log Jsg is cohomologous to ψ ◦ h over g.

We note that in this result we can replace the “base-point” automorphism L with any
Anosov diffeomorphism f homotopic to L, since any such f is Hölder conjugate to L.
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Remark 8.2. A different and very clean proof of this result (when ϕ = ψ) was also
recently given by Kucherenko and Quas [KQ25]. Yet another version of Cawley’s con-
struction also appeared in [FG14, Appendix A]. The latter construction is more geometric
and allows for continuous realization of finite-parameter families of potentials into the
space of C1+H Anosov diffeomorphisms. In particular, if ϕ and ψ are C0 close to con-
stant then the diffeomorphism g can be constructed to be C1 close to the “base-point”
automorphism L.

We proceed with a proof of Corollary J.

Proof. The spaces TrL are connected components of Tr(T2) which are respected by π3→1.
Hence it is enough to verify that the restriction π3→1 : T3

L → T1
L is not surjective.

The starting point of the construction is a dissipative Anosov diffeomorphism f : T2 →
T2 which is sufficiently C1 close to L (to be specified in the course of construction).
We will use Cawley’s realization over f (that is, having f as a “base-point” instead
of L) to produce a C1+H Anosov diffeomorphism, which is not C1 conjugate to a C3

diffeomorphism. Recall that this would mean that π3→1 is not onto.
We impose the following conditions on the dissipative Anosov diffeomorphism f which

will make it possible to apply Theorem E for a suspension flow over f :

• f is C3 regular;

• f is sufficiently close to L in C1 topology so that a suspension flow is 5
4 -mildly

dissipative and log Jf is sufficiently close to 0;

• let Xt denote the suspension flow over f with the roof function 1+log Jf ; we can
pick f so that both stable and unstable foliations of Xt are not C1.

The last property can be arranged easily using arguments which almost the same as
those used to prove Lemma 7.12. Assume that, say, the stable foliation of Xt is C1.
In Lemma 7.12 we have perturbed the roof function to destroy the C1 property. In
the current setup, the roof, obviously, cannot be perturbed independently of the base
dynamics f , but we can still use the same approach. Namely we can consider a volume
expanding periodic point and the C1 stable distribution along the unstable manifold
of this periodic point. Then we can perturb f in the neighborhood of a homoclinic
point of such a periodic point to ensure that the derivative of the Jacobian of f at the
homoclinic point along the stable direction changes slightly. Once such perturbation is
made, we have almost in the same setup as that in Lemma 7.12. The only difference is
that the perturbation is not a time change since we have perturbed the base dynamics
as well. However it is easy to see that this difference does not affect the arguments of
Lemma 7.12 which go through to yield that the stable foliation is no longer C1 regular.
It could happen now that the unstable foliation is C1. The C1 regularity of the unstable
foliation can be destroyed in the same way, using another, even smaller perturbation,
while the non-C1-smoothness of the stable foliation persists under this last perturbation,
by Lemma 7.14.

Now let ϕ be any Hölder potential with zero pressure, Pf (ϕ) = 0, which is not
cohomologous to − log Juf and which is sufficiently close to constant. Let c =
−Pf (log Jf +ϕ) ∈ R. We note that c is close to 0 since we have assumed that log Jf is
close to 0. Let ψ = log Jf + ϕ+ c. Then we clearly have

• Pf (ϕ) = 0;
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• Pf (ψ) = 0;
• ψ − ϕ = c+ log Jf .

By applying Theorem 8.1 with “base-point” f , there exist a C1+H Anosov diffeomorphism
g : T2 → T2 and a bi-Hölder homeomorphism h : T2 → T2 such that
• h ◦ g = f ◦ h;
• log Jg is close to 0 and g is 5

4 -mildly dissipative;
• − log Jug is cohomologous to ϕ ◦ h over f ;
• log Jsg is cohomologous to ψ ◦ h over f ;
• log Jg is cohomologous to c+ log Jf ◦ h;

where the last item is the immediate consequence of the preceding two items. The
second property follows from the discussion in Remark 8.2 combined with the fact that
the potential ϕ was chosen sufficiently close to constant: then g can be chosen sufficiently
C1 close to f , which in turn was assumed to be C1 close to L.

Now, if g was C1 conjugate to a C3 diffeomorphism, then all of the above items would
still be true for this new C3 diffeomorphism. Thus, without loss of generality, we can
assume that g itself is C3 regular.

Since c and log Jf are both close to 0 we have that 1−c+log Jg > 0 and 1+log Jf > 0.
Consider the suspension of g and f by 1 − c + log Jg and by 1 + log Jf , respectively.
By the last item above these suspension flows have matching periods and hence are C0

conjugate by the Livshits theorem. This puts us in the position to apply Theorem E to
the suspension flows with r = 3 and k = 2. 5 Further, both of the suspension flows were
constructed to be 5

4 -mildly dissipative. Hence, Addendum F also applies in this setting.
We recall that we have the following cases provided by Theorem E and Addendum F:
1. the flows Xt and Y t are C3∗-conjugate;
2. the conjugacy swaps SRB measures of the flows;
3. at least one of the foliations Ws

X and Wu
X is C1+α, α > 0; similarly, at least one

of foliation Ws
Y , W

u
Y is C1+α.

If the conjugacy is at least C1, then − log Jug would be cohomologous to − log Juf ◦h
contradicting to the fact that ϕ was chosen to be not cohomologous to − log Juf .

In the second case, from swapping of SRB measures, we have that ϕ is cohomologous
to log Jsf and ψ is cohomologous to − log Juf . Then we obtain that ψ−ϕ is cohomol-
ogous to − log Jf . On the other hand recall that ψ − ϕ is cohomologous to c+ log Jf .
This implies that log Jf is cohomologous to the constant c/2. Hence c = 0 and f is
conservative, again contradicting our assumptions.

Finally, we recall that we have arranged the suspension flow of f with the roof 1 +
log Jf to have both stable and unstable foliations to be non-C1, which rules out the last
case.

5. One caveat is that formally speaking the suspension flows are C2 because we have suspended
using the Jacobians which are C2 functions, however the C3 regularity is needed only for the construc-
tion of C2 adapted charts, and this construction still goes through for such suspension flows over C3

diffeomorphisms. Indeed, the loss of the derivative in the construction of the adapted charts occurs in
Lemma B.3. By inspecting the proof one can check that this lemma can be proved using the base C3

dynamics instead of using the flow directly, resulting in C2 charts after the first adjustment. Recall
that the further adjustments in the proof in Appendix B do not result in any further loss of regularity.
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We have arrived at a contradiction in each case. Hence g is not conjugate to any C3

diffeomorphism. �

Observe that since there is an open set of potentials ϕ which can be used in the
construction, that we in fact have an infinite dimensional family C(f) of C1+H diffeo-
morphisms which are not C1-conjugate to C3 diffeomorphisms.

Remark 8.3. We believe that by going through the above arguments very meticulously,
tacking care of all regularities while using a Lipschitz potential ϕ we can improve Corol-
lary J. Namely, for any ε > 0 the map π2+ε→2−ε is not onto, that is, there exist C2−ε

Anosov diffeomorphisms which are not conjugate to any C2+ε diffeomorphism. Proving
non-surjectivity that both π3→2 or π2→1 or for higher regularities requires a different
approach.

9. Examples

In this section we present examples of pairs of Anosov flows which are C0 conjugate
but not C1 conjugate. For all such examples we will always have that the strong stable
(or strong unstable) distribution is Ck for some k ≥ 1. In particular we will see that
swapping of SRB measures case indeed occurs as was explained to us by Cekić and
Paternain.

9.1. Perturbing along the strong stable foliation. Let Xt : M → M be a smooth
transitive Anosov flow on a 3-dimensional manifold with Ck, k ≥ 1, orientable stable
distribution Es. We denote by S a Ck vector field which generates Es. Let ρ : M → R be
a smooth C1-small function. Then the vector field Xρ = X + ρS generates an Anosov
flow Xt

ρ. The flow Xt
ρ is a perturbation of Xt and we proceed to point out several

properties.

1. The flows Xt and Xt
ρ have the same strong stable distribution Es.

Indeed, since the stable distribution of Xt
ρ must be close to Es it suffices to check

that Es invariant under Xt
ρ, that is, DXt

ρ(E
s) = Es for all t. To check this we

show that the derivative of S along Xρ is in Eu, and then the invariance follows
by integration. We have

LXρS = [Xρ, S] = [X,S] + [ρS, S] = LXS − S(ρ)S ∈ Es

since S is Xt-invariant.

2. The flows Xt and Xt
ρ are C0 conjugate.

One could explicitly exhibit the conjugacy which slides the points along strong
stable leaves, but it is simpler to see that periods on periodic orbits remain the
same and, hence, by Livshits theorem, there exists a C0 conjugacy. Recall that
these flows share the strong stable foliation. Hence, if p = XT (p) is a periodic
point then corresponding periodic p̄ for Xt

ρ belongs to the same leaf Ws(p). We
have XT (Ws(p)) = Ws(p). Because Xρ − X ∈ Es, the same is true for Xt

ρ:
XT
ρ (Ws(p)) = Ws(p). In particular, XT (p̄) = p̄.

3. For an appropriate choice of ρ the flows Xt and Xt
ρ are not C1 conjugate.

Consider a periodic orbit γ of period T and a local weak-stable leaf Wcs
X,loc(γ)

which is a cylinder. We can put linearizing coordinates on this leaf so that
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Wcs
X,loc(γ) is identified with (−ε, ε)× [0, T ], (x, T ) ∼ (λx, 0) and X is given by ∂

∂t .
Here λ is the stable eigenvalue of γ. We now define ρ on Wcs

X,loc(γ) by the formula

ρ(x, t) = c0λ
−t/Tx, c0 > 0.

Provided that the constant c0 is sufficiently small such ρ can be extended to the
whole of M with a small C1 norm.

Notice that ρ vanishes on γ. Hence γ remains periodic under Xρ. We can check
that the stable eigenvalue has increased in value. Indeed, if x ∈ (0, ε/2) then we
can estimate ∫ T

0
ρ(Xt

ρ(0, x)) dt ≥
∫ T

0
ρ(x, t) dt ≥ c0Tx.

Hence we have that XT
ρ (x, 0) = (x̄, T ) with x̄ ≥ x + c0Tx. If λ̄ is the stable

eigenvalue of Xρ at γ we have

λ̄ = lim
x→0

λx̄

x
≥ λ+ λc0T > λ.

We conclude that Xt and Xt
ρ have different stable eigenvalue at γ and, hence,

cannot be C1 conjugate.

Remark 9.1. Because the unstable eigenvalue of γ remained the same and the stable
eigenvalue was perturbed, we have that Xt

ρ is dissipative. From this fact it is easy to
conclude that the strong unstable distribution of Xt

ρ is not C1. Indeed, if the unstable
distribution is also C1, then by Lemma 6.6, the flow Xt

ρ has to be a constant a constant
roof suspension.

Remark 9.2. The above construction applies to any contact flow Xt, however the per-
turbed flow Xt

ρ, generally speaking, is only C1+Hölder regular due to the C1+Hölder regu-
larity of the strong stable distribution.

Remark 9.3. If Xt is the geodesic flow on a surface of constant negative curvature and
ρ ∈ C∞(M) then Xt

ρ is a C∞ smooth flow since the stable horocyclic foliation is C∞.
By making two different perturbations one can easily produce a pair of C∞ dissipative
Anosov flows Xt

ρ1
and Xt

ρ2
which are merely C0 conjugate.

9.2. Perturbing along both strong foliations. We point out that the above example
has two very special features:

1. the flows Xt and Xt
ρ share the strong stable foliation;

2. the flows Xt and Xt
ρ have matching unstable eigenvalues and hence the C0 con-

jugacy between them is, in fact, smooth along unstable foliation.
Both of these features can be destroyed by further modifying the construction in the
following way.

Let Xt and Xt
ρ be as before. Assume that the strong unstable distribution of Xt is

also Ck, k ≥ 1, and generated by a vector field U . Then using the same idea, for an
appropriate ς : M → R the flow Xt

ς given by Xς = X + ςU is merely C0 conjugate to
Xt and has the same stable eigenvalues as Xt.

By transitivity of the conjugacy relation, we now have that Xt
ρ and Xt

ς are conjugate
to each other. Because Xt and Xt

ρ have different stable eigenvalue data, we have that Xt
ς
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and Xt
ρ also have different eigenvalue data. Similarly, because Xt and Xt

ς have different
unstable eigenvalue data, we have that Xt

ρ and Xt
ς also have different eigenvalue data.

Also it is easy to verify that Xt
ρ and Xt

ς do not share any invariant foliations.

9.3. Swapping SRB measures: Ghys/Cekić-Paternain example. For the sake of
specificity let Xt be the geodesic flow on a surface of constant negative curvature −1. If
γ is a periodic orbit γ, then the eigenvalues of the Poincaré return map at γ are given
by e±|γ|, where |γ| denotes the length of γ. We can perturb the hyperbolic metric in the
Teichmüller space to obtain another surface which is not isometric to the initial metric.
Denote the corresponding geodesic flow by X̄t.

Now we explain the so-called quasi-Fuchsian Anosov flow construction due to
Ghys [Ghy92]. Cekić and Paternain recently revisited the quasi-Fuchsian flows and
re-interpreted them as thermostat flows [CP25]. While we do not need the thermostat
interpretation, we follow closely Cekić and Paternain [CP25] and explain how to con-
struct the flows Y t and Zt by “taking the bracket” of Xt and X̄t and why the SRB
measures are being swapped under the conjugacy. Let H be the orbit equivalence given
by structural stability, which is C0-close to idM and takes orbits of Xt to the orbits
of X̄t in orientation preserving manner. For any p ∈ M consider local weak unstable
leaves of Xt and X̄t at p and H(p), respectively, and the (strong) stable holonomy map
between them given by sliding along the leaves of Ws

X

Hols : Wcu
X,loc(p)→Wcu

X̄,loc(H(p)).

Define the generating vector field of Y t by

Y (Hols(p)) = DHols(X(p)).

Similarly, let Holu : Wcs
X,loc(p) → Wcs

X̄,loc
(H(p)) be the strong unstable holonomy given

by sliding along the leaves of Wu
X and define

Z(Holu(p)) = DHolu(X(p)).

Since all foliations and holonomies involved are C∞ we have that both Y and Z are
C∞ vector fields. The orbit foliation of Y t is given by the intersection the weak foliations
Wcs
X ∩Wcu

X̄
and that of Zt by the intersection Wcu

X ∩Wcs
X̄
. Both flows “borrow” their

parametrization from Xt and hence both are conjugate to Xt, and, hence, to each other.
Specifically, the conjugacy between Xt and, say Y t is given by

p 7→Ws
X,loc(p) ∩Wcu

X̄,loc(H(p)).

Since this conjugacy is given by sliding along strong stable leaves we can notice the
following. Let γ be a periodic orbit for Xt and denote by γ̄, γY and γZ the corresponding
periodic orbits for X̄t, Y t and Zt, respectively. The stable holonomy map

Hols : Wcu
X,loc(γ)→Wcu

Y,loc(γY )

conjugates the local dynamics of Xt and Y t. Hence, γ and γY have the same unstable
eigenvalue λ(γY ) = e|γ|. By the same observation we have that the stable eigenvalue of
γY is µ(γY ) = e−|γ̄| and, similarly, for γZ we have λ(γZ) = e|γ̄|, µ(γZ) = e−|γ|.

Hence we have µ(γY ) = λ(γZ)−1 and λ(γY ) = µ(γZ)−1. So, if Φ is the conjugacy,
Φ ◦ Y t = Zt ◦ Φ, Φ(γY ) = γZ , then we see that Φ swaps the stable and the inverses of
unstable eigenvalues at every periodic orbit. Now, by the standard de la Llave argument,
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Figure 3. The construction of quasi-Fuchsian flows by “taking the
bracket” of the flows Xt and X̄t to produce conjugate flows Y t and Zt.

using the Livshits theorem and the equilibrium state description of SRB measures (see
Section 5.4) we conclude that Φ∗(m

+
Y ) = m−Z and Φ∗(m

−
Y ) = m+

Z .
Finally, since we took a non-isometric perturbation of the initial hyperbolic metric,

there exist an Xt-periodic orbit γ0 such that the corresponding X̄t periodic orbit γ̄0 has
a different length, |γ̄0| 6= |γ0|. It immediately follows that corresponding periodic orbis
for Y t and Zt are both dissipative — one volume expanding and one volume contracting.
Hence both Y t and Zt are dissipative flows.

9.4. Swapping SRB measures using Cawley’s realization. Another way to con-
struct an example of conjugate Anosov flows with a conjugacy which swaps the SRB
measures is to use Cawley’s realization Theorem 8.1 [Caw93]. Start with any dissipa-
tive Anosov diffeomorphism f : T2 → T2. Then by Theorem 8.1 we can construct a
dissipative Anosov diffeomorphism g : T2 → T2 such that

• h ◦ g = f ◦ h;
• − log Jug is cohomologous to log Jsf ◦ h over g;

• log Jsg is cohomologous to − log Juf ◦ h over g.

The latter two properties provide the swapping property of the SRB measures as they
are equilibrium states for the corresponding potentials: h∗m

+
g = m−f , h∗m

−
g = m+

f .
Suspending both f and g with a constant roof 1, we obtain conjugated Anosov flows Xt

and Y t with the same swapping property of SRB measures.
The issue with this example is that diffeomorphism g is merely C1+H. Accordingly

the suspension flows Y t has the same low regularity which doesn’t fall into the setting
of this paper as we always assume Cr regularity for some r ≥ 3. It is not clear to us
whether such suspension examples can be made more regular.
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Appendix A. Smooth rigidity of orbit equivalences

The following theorems are essentially due to Rafael de la Llave [dlL92] and, inde-
pendently, to Mark Pollicott [Pol90]. Even though neither reference considered orbit
equivalences which are not conjugacies, very similar arguments which exploit SRB mea-
sure yield the following results.

Theorem A.1. Let Xt, Y t be two Cr, r > 1, transitive Anosov flows on 3-manifold,
that are C0 orbit equivalent via an orbit equivalence Φ which preserves the time direction.
For any periodic point p = XT (p) let T ′ be the period of Φ(p) under Y t and assume
that DXT (p) and DY T ′(Φ(p)) have the same eigenvalues. Then, there exists an orbit
equivalence which is Cr∗, with r∗ as in (1.1).

Theorem A.2. Let Xt, Y t be two Cr, r > 1, transitive Anosov flows on 3-manifold,
that are C0 orbit equivalent via an orbit equivalence Φ which preserves the time direction.
Assume that Φ and Φ−1 absolutely continuous. Then, there exists an orbit equivalence
which is Cr∗.

Sketch of the proof of Theorem A.1. We first smooth out the orbit equivalence along the
flow so that Φ is Cr smooth along the orbits.

Then Φ̇, the derivative of Φ along the orbits is a well defined positive Hölder continuous
function which is Cr−1 when restricted to an orbit of Xt. Let ρ−1 = Φ̇ ◦ Φ−1. Then we
have

DΦ(X) = ρ−1Y ◦ Φ,

and if we consider the reparametrization Ȳ t given by Ȳ = ρ−1Y then Φ conjugates Xt

and Ȳ t: Φ ◦Xt = Ȳ t ◦ Φ.
Denote by mX = m+

X and mY = m+
Y the (positive) SRB measures for Xt and Y t,

respectively.

Lemma A.3. The pushforward measure Φ∗mX is in the same measure class as mY .
Specifically,

Φ∗mX =
ρmY∫
ρdmY

.

Proof. Recall that mX and mY are equilibrium states for the geometric potentials ψuX
and ψuY , respectively (see Section 5.1). Accordingly, since Xt is conjugate to Ȳ t via Φ,
we have that Φ∗mX is the equilibrium state over Ȳ t for the potential ψuX ◦ Φ−1.

We also have that Ȳ t is a reparametrization of Y t with Ȳ = ρ−1Y and, hence,
by [GRH24, Proposition 4.3] we have that the measure

mȲ =
ρmY∫
ρdmY

is the equilibrium state for the potential ρ−1ψuY with respect to Ȳ t. We now claim that
the potentials ρ−1ψuY and ψuX ◦Φ−1 are cohomologous. Indeed, let γ̄ be a periodic orbit
of Ȳ t of period T . Then∫

γ̄
ψuX ◦ Φ−1 =

∫
Φ−1(γ̄)

ψuX = − log JacuΦ−1(γ̄)(X
T ).



SMOOTH RIGIDITY FOR 3-DIMENSIONAL DISSIPATIVE ANOSOV FLOWS 67

Now let γ be the corresponding orbit of Y t of some period T ′ =
∫ T

0 ρ−1(γ̄(t))dt. Then∫
γ̄
ρ−1ψuY =

∫
γ
ψuY = − log Jacuγ(Y T ′).

By the eigenvalue data assumption the above integrals are equal. Since we have it for
any periodic γ̄ we can use the Livshits theorem to conclude that ρ−1ψuY and ψuX ◦ Φ−1

are cohomologous, and, hence, have the same equilibrium states Φ∗mX = mȲ . �

Remark A.4. We have used [GRH24, Proposition 4.3], which is stated for smooth
reparametrizations, however the proof also works for Hölder reparametrizations. Alter-
natively, a symbolically inclined reader, can arrive at the above lemma by considering the
suspension models for both flows and noticing that both models have the same base sub-
shifts but different Hölder roofs. Then the eigenvalue data assumption yields matching
of the SRB measures on the subshifts and the lemma follows by passing to equilibrium
states of the suspension, see [PP90, Proposition 6.1].

The same argument also proves that Φ preserves the measure class of the negative
SRB measures. These properties allow to argue that Φ is a Cr∗ diffeomorphism “à la de
la Llave” [dlL92] after adjusting Φ along the orbits. Namely, the needed property is the
following one: let S be a local Cr section for Xt then Φ(S) is also a Cr section for Y t.
However, a priori, Φ(S) is only topological section for Y t. Locally in a chart, one can
easily adjust Φ along the flow to make sure that Φ(S) is Cr. Then it is easy make this
property global by using a partition of unity.

Once such adjustment is made one follows the de la Llave argument to show that
preservation of positive and negative SRB measure classes yield Cr smoothness of one-
dimensional restrictions of Φ to strong stable and strong unstable manifolds. Another
adjustment to this argument needs to be made to account for the fact that strong sta-
ble (unstable) manifolds of Xt do not map to strong stable (unstable) manifolds of Y t.
However, they map under orbit equivalence to Cr curves, thanks to the previous ad-
justment, which are contained corresponding weak submanifolds, which is good enough.
The proof concludes with an application of the Journé’s regularity lemma [Jou88] as
in [dlL92]. �

The proof of Theorem A.2 begins in the same way. Then one still needs to prove
Lemma A.3, but without using the assumption on periodic data. This can be done with
an argument of de la Llave [dlL92, Lemma 4.6]. Namely, for any continuous function ϕ
any point x, we have

1

T

∫ T

0
ϕ(Ȳ t(Φ(x))) dt =

1

T

∫ T

0
ϕ ◦ Φ(Xt(x)) dt.

Since SRB measures are attractors, we have for Lebesgue almost every x,

lim
T→∞

1

T

∫ T

0
ϕ ◦ Φ(Xt(x)) dt =

∫
ϕ ◦ Φ dmX .

Similarly, for Lebesgue almost every y

1

T

∫ T

0
ϕ(Ȳ t(y)) dt =

∫
ϕdmȲ .
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Since Φ and Φ−1 are absolutely continuous we have that for Lebesgue almost every x
and corresponding y = Φ(x) the above three formulae hold true and hence∫

ϕ ◦ Φ dmX =

∫
ϕdmȲ ,

which implies that Φ∗mX = mȲ . The same argument also proves that Φ preserves the
measure class of the negative SRB measures. The last step of the proof of Theorem A.2
is the same as that of Theorem A.1.

Appendix B. Adapted charts

Recall that by Proposition 3.1 we have non-stationary linearizing charts
{Φs

x}x∈M , {Φu
x}x∈M along stable and unstable manifolds. From the classical construc-

tion of such charts [KL91], it is clear that they are as regular as the flow, namely Cr. It
is standard to extend these non-stationary linearizations to actual 3-dimensional charts
{x : (−1, 1)3 →M}x∈M such that the first three properties of Proposition 3.2 hold true:
for any x ∈M ,

1. x(ξ, 0, 0) = Φs
x(ξ), ξ ∈ (−1, 1);

2. x(0, 0, η) = Φu
x(η), η ∈ (−1, 1);

3. x(ξ, t, η) = Xt(x(ξ, 0, η)), (ξ, t, η) ∈ (−1, 1)3.

Relative to the charts {x}x∈M , the dynamics F̃ τx = −1
Xτ (x) ◦X

τ ◦ x takes the form

F̃ τx (ξ, t, η) = (F̃ τx,1(ξ, η), t+ ψ̃τx(ξ, η), F̃ τx,3(ξ, η)),

with all coordinate maps F̃ τx,1, ψ̃τx, F̃ τx,3 being Cr.
We first will proof the discrete, τ -time version of Proposition 3.2 and then show that

the resulting charts are, in fact, independent of τ and deduce the continuous time normal
form posited in Proposition 3.2.

Proposition B.1. Fix a time τ > 0. There exists a continuous family of uniformly
Cr−1 charts {ıx : (−1, 1)3 →M}x∈M such that for any x ∈M , we have:

1. ıx(ξ, 0, 0) = Φs
x(ξ), for any ξ ∈ (−1, 1);

2. ıx(0, 0, η) = Φu
x(η), for any η ∈ (−1, 1);

3. ıx(ξ, t, η) = Xt(ıx(ξ, 0, η)), for any (ξ, t, η) ∈ (−1, 1)3;

4. let F τx := (ıXτ (x))
−1 ◦Xτ ◦ ıx = (F τx,1, F

τ
x,2, F

τ
x,3); then, F τx,2(ξ, t, η) = t+ψτ (ξ, η),

and there exist polynomials P ∗x (τ)(z) =
∑[k]

`=1 α
∗,`
x (τ)z`, ∗ = s, u, of degree at most

[k], such that for any ξ, η ∈ (−1, 1), we have[
∂1F

τ
x,1 ∂2F

τ
x,1

∂1F
τ
x,2 ∂2F

τ
x,2

]
(0, 0, η) =

[
λsx(τ) 0

P sx(τ)(η) 1

]
,[

∂2F
τ
x,2 ∂3F

τ
x,2

∂2F
τ
x,3 ∂3F

τ
x,3

]
(ξ, 0, 0) =

[
1 P ux (τ)(ξ)
0 λux(τ)

]
,

where we recall that λsx(τ) := ‖DXτ (x)|Es‖, λux(τ) := ‖DXτ (x)|Eu‖.
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Addendum B.2. The charts are independent of τ and the polynomials satisfy the fol-
lowing twisted cocycle equations over the flow

P sx(τ1 + τ2)(η) = P sx(τ1)(η) + λsx(τ1)P sXτ1 (x)(τ2)(λux(τ1)η);

P ux (τ1 + τ2)(ξ) = P ux (τ1)(ξ) + λux(τ1)P uXτ1 (x)(τ2)(λsx(τ1)ξ);

for τ1, τ2 > 0.

Proof of Proposition B.1. The proof will proceed via three chart adjustments.

Lemma B.3. There exists a family {hx}x∈M of uniformly Cr−1 diffeomorphisms,

hx : (ξ, t, η) 7→ (ρτx(η)ξ, t, στx(ξ)η),

such that the adjusted charts ̂x := x ◦ hx put dynamics in the form

F̂ τx = h−1
Xτ (x) ◦ F̃

τ
x ◦ hx : (ξ, t, η) 7→ (F̂ τx,1(ξ, η), t+ ψ̂τx(ξ, η), F̂ τx,3(ξ, η)),

with
∂ξF̂

τ
x,1(0, η) = λsx(τ), ∂ηF̂

τ
x,3(ξ, 0) = λux(τ). (B.1)

Here, ρτx, στx : (−1, 1)→ R+ are Cr−1 positive functions that satisfy ρτx(0) = στx(0) = 1.

Proof. We seek the adjustment hx in the form

hx : (ξ, t, η) 7→ (ρτx(η)ξ, t, στx(ξ)η),

where ρτx, στx : (−1, 1) → R+, ρτx(0) = στx(0) = 1, are two positive functions. The
adjusted charts x ◦ hx put dynamics in the form F̂ τx = h−1

Xτ (x) ◦ F̃
τ
x ◦ hx : (ξ, t, η) 7→

(F̂ τx,1(ξ, η), t+ ψ̂τx(ξ, η), F̂ τx,3(ξ, η)), with new coordinate maps given by
F̂ τx,1 : (ξ, η) 7→ (ρτXτ (x)(F̃

τ
x,3(ρτx(η)ξ, στx(ξ)η)))−1F̃ τx,1(ρτx(η)ξ, στx(ξ)η),

ψ̂τx : (ξ, η) 7→ ψ̃τx(ρτx(η)ξ, στx(ξ)η),

F̂ τx,3 : (ξ, η) 7→ (στXτ (x)(F̃
τ
x,1(ρτx(η)ξ, στx(ξ)η)))−1F̃ τx,3(ρτx(η)ξ, στx(ξ)η).

(B.2)

Our goal now is to use the first adjustment to arrange (B.1).

Differentiating the expression of F̂ τx,1 obtained in (B.2), while using F̃ τx,1(0, ·) ≡ 0,
στx(0) = 1 and F̃ τx,3(0, η) = λux(τ)η, we rewrite the first equation of (B.1) as

(ρτXτ (x)(λ
u
x(τ)η))−1ρτx(η)∂ξF̃

τ
x,1(0, η) = λsx(τ).

Observe that the above equation only involves the function ρτx. First we change the base
point from x to X−τ (x) and then take log:

log ρτx(η)− log ρτX−τ (x)(λ
u
x(−τ)η) = log ∂ξF̃

τ
X−τ (x),1(0, λux(−τ)η)− log λsX−τ (x)(τ),

which we can solve for ρτx using the telescopic sum

log ρτx(η) =
+∞∑
`=1

(
log ∂ξF̃

τ
X−`τ (x),1(0, λux(−`τ)η)− log λsX−`τ (x)(τ)

)
. (B.3)
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We see that the series converge and that the function ρτx obtained in this way indeed
satisfies ρτx(0) = 1. Further, differentiating 0 ≤ j ≤ r − 1 times with respect to η also
yields converging series

+∞∑
`=1

(λux(−`τ))j ∂jη

(
log ∂ξF̃

τ
X−`τ (x),1

)
(0, λux(−`τ)η).

Hence, by Weierstrass M-test, the infinite series gives the posited Cr−1 solution ρτx
yielding the first property in (B.1). Also note that the exponential rate of convergence
is uniform in x, hence ρτx is Cr−1 uniformly in x ∈M . Note that the only restriction we
have put so far on the second function στx is that στx(0) = 1.

In the same manner, we can solve the second equation in (B.1) by choosing suitably
the function στx. Differentiating the expression of F̂ τx,3 obtained in (B.2), and using
F̃ τx,3(·, 0) ≡ 0, ρτx(0) = 1, and F̃ τx,1(ξ, 0) = λsx(τ)ξ, we get

(στXτ (x)(λ
s
x(τ)ξ))−1στx(ξ)∂ηF̃

τ
x,3(ξ, 0) = λux(τ).

This again can be solved for στx using the telescopic sum

log στx(ξ) =
+∞∑
`=0

(
log λuX`τ (x)(τ)− log ∂ηF̃

τ
X`τ (x),3(λsx(`τ)ξ, 0)

)
.

As above, we see that the function στx defined in this way satisfies στx(0) = 1 and gives
the posited Cr−1 solution στx yielding the second property in (B.1). Again we observe
that στx are Cr−1 unifomly in x. �

Unlike the previous step, we will make consecutive adjustments: first in order to
replace ∂ξψ̂τx(0, η) by a polynomial in η of degree at most [k], and then the final analogous
adjustment to replace ∂ηψ̂τx(ξ, 0) with a polynomial of degree at most [k]. We recall that
k is the pinching exponent as in Definition 2.2, i.e., for n� 1,

λsx(n)kλux(n) < 1, λux(n)kλsx(n) > 1, ∀x ∈M. (B.4)

Lemma B.4. There exists a family {ux}x∈M of uniformly Cr−1 diffeomorphisms of the
form

ux : (ξ, t, η) 7→ (ξ, t+ ϕτx(η)ξ + κτx(ξ)η, η),

such that the adjusted charts ıx := ̂x ◦ ux put dynamics in the form

F τx = u−1
Xτ (x) ◦ F̂

τ
x ◦ ux : (ξ, t, η) 7→ (F τx,1(ξ, η), t+ ψτx(ξ, η), F τx,3(ξ, η)),

such that for any ξ ∈ (−1, 1) and η ∈ (−1, 1),

∂ξFx,1(0, η) = λsx(1), ∂ηFx,3(ξ, 0) = λux(1),
∂ξψ

τ
x(0, η) = P sx(τ)(η), ∂ηψ

τ
x(ξ, 0) = P ux (τ)(ξ).

Proof. Let us first adjust the charts so that ∂ξψ̂τx(0, η) is replaced by a polynomial of
degree at most [k]. We seek the adjustment in the form

gx : (ξ, t, η) 7→ (ξ, t+ ϕτx(η)ξ, η),

with ϕτx(0) = 0. The adjusted chart ̄x := ̂x ◦ gx puts dynamics in the form

F̄ τx = g−1
Xτ (x) ◦ F̂

τ
x ◦ gx : (ξ, t, η) 7→ (F̄ τx,1(ξ, η), t+ ψ̄τx(ξ, η), F̄ τx,3(ξ, η)),
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where F̄ τx,1 = F̂ τx,1, F̄ τx,3 = F̂ τx,3, and

ψ̄τx : (ξ, η) 7→ ψ̂τx(ξ, η) + ϕτx(η)ξ − ϕτXτ (x)(F̂
τ
x,3(ξ, η))F̂ τx,1(ξ, η). (B.5)

Differentiating with respect to ξ at (0, η) while using F̂ τx,1(0, ·) ≡ 0, F̂ τx,3(0, η) = λux(τ)η,
and (B.1), we obtain

∂ξψ̄
τ
x(0, η) = ∂ξψ̂

τ
x(0, η) + ϕτx(η)− ϕτXτ (x)(λ

u
x(τ)η)λsx(τ).

Formally, ∂ξψ̂τx(0, ·) is a Cr−2 function. We claim it is in fact Cr−1.

Claim B.5. The function ∂ξψ̂τx(0, ·) is Cr−1 uniformly in x ∈M .

Proof of the claim: To check this recall that ψ̂τx(ξ, η) = ψ̃τx(ρτx(η)ξ, στx(ξ)η), where ψ̃τx is
Cr. Calculating with the chain rule gives

∂ξψ̂
τ
x(ξ, η) = ρτx(η)∂ξψ̃

τ
x(ρτx(η)ξ, στx(ξ)η) + στx

′(ξ)η · ∂ηψ̃τx(ρτx(η)ξ, στx(ξ)η),

recalling that στx(0) = 1, and evaluating at (0, η) yields

∂ξψ̂
τ
x(0, η) = ρτx(η)∂ξψ̃

τ
x(0, η) + στx

′(0)η · ∂ηψ̃τx(0, η),

which is clearly Cr−1 uniformly in x. �

Since r ≥ k+ 1, the above claim ensures that ∂ξψ̂τx(0, ·) is at least Ck and we can use
the Taylor expansion

∂ξψ̂
τ
x(0, η) = P̂ sx(τ)(η) + ωτx(η), (B.6)

where ωτx is Cr−1, ωτx(η) = O(ηk) uniformly in x, and P̂ sx(τ)(η) is a polynomial of degree
at most [k]. Our goal now is to find ϕτx such that

∂ξψ̄
τ
x(0, η) = P̂ sx(τ)(η).

Hence we need to solve

ϕτXτ (x)(λ
u
x(τ)η)λsx(τ) = ϕτx(η) + ωτx(η).

Changing the base point we have

ϕτx(η) = λsx(−τ)ϕτX−τ (x)(λ
u
x(−τ)η) + λsx(−1)ωτX−τ (x)(λ

u
x(−τ)η).

We solve for ϕτx by summing into the past

ϕτx(η) =
+∞∑
`=1

λsx(−`τ)ωτX−`τ (x)(λ
u
x(−`τ)η).

Indeed, since ωτx(η) = O(ηk) uniformly in x, the k-pinching (B.4) guarantees that the
series converges yielding the posited adjustment. Note that ϕτx(0) = 0 and also differen-
tiating formally, using Weierstrass M-test, and since ωτx is Cr−1 uniformly in x, we have
that ϕτx is Cr−1 uniformly in x.

Finally, we will adjust the charts once more in the similar way to replace ∂ηψ̄τx(ξ, 0)
by a polynomial of degree at most [k]. We seek for this final adjustment in the following
form

(ξ, t, η) 7→ (ξ, t+ κτx(ξ)η, η),

which puts the dynamics in the form

F τx : (ξ, t, η) 7→ (F τx,1(ξ, η), t+ ψτx(ξ, η), F τx,3(ξ, η)).
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Claim B.6. The function ∂ηψ̄τx(·, 0) obtained above is still Cr−1 uniformly x.

Proof of the claim: By (B.2)-(B.5), and since F̄ τx,1 = F̂ τx,1, F̄ τx,3 = F̂ τx,3, we have

∂ηψ̄
τ
x(ξ, η) = ρτx

′(η)ξ ∂ξψ̃
τ
x(ρτx(η)ξ, στx(ξ)η) + στx(ξ)∂ηψ̃

τ
x(ρτx(η)ξ, στx(ξ)η)

+ ϕτx
′(η)ξ − ϕτXτ (x)

′(F̂ τx,3(ξ, η))∂ηF̂
τ
x,3(ξ, η)F̂ τx,1(ξ, η)− ϕτXτ (x)(F̂

τ
x,3(ξ, η))∂ηF̂

τ
x,1(ξ, η).

Since ρτx(0) = 1, F̂ τx,3(ξ, 0) = 0, ϕτXτ (x)(0) = 0, F̂ τx,1(ξ, 0) = λsx(τ)ξ, and ∂ηF̂ τx,3(ξ, 0) =

λux(τ) (by (B.1)), evaluating the former expression of ∂ηψ̄τx at (ξ, 0) yields

∂ηψ̄
τ
x(ξ, 0) = ρτx

′(0)ξ ∂ξψ̃
τ
x(ξ, 0) + στx(η)∂ηψ̃

τ
x(ξ, 0)

+ ϕτx
′(0)ξ − ϕτXτ (x)

′(0)λux(τ)λsx(τ)ξ,

which is clearly Cr−1 uniformly in x. �

Since r ≥ k+ 1, the above claim ensures that ∂ηψ̄τx(·, 0) is at least Ck and we can use
the Taylor expansion

∂ηψ̄
τ
x(ξ, 0) = P ux (τ)(ξ) + ω̄τx(ξ),

where ω̄τx is Cr−1, ω̄τx(ξ) = O(ξk) uniformly in x, and P ux (τ)(ξ) is a polynomial of degree
at most [k]. We then look for κτx such that ∂ηψτx(ξ, 0) = P ux (τ)(ξ). As above, the solution
κτx is defined by a series, which actually converges by the k-pinching (B.4). Moreover,
κτx(0) = 0, and since ω̄τx is Cr−1 uniformly in x, the function κτx is also Cr−1 uniformly
in x.

Similarly to what was obtained in (B.5), we have

ψτx : (ξ, η) 7→ ψ̄τx(ξ, η) + κτx(ξ)η − κτXτ (x)(F̄
τ
x,1(ξ, η))F̄ τx,3(ξ, η).

Let us check that the final adjustment did not destroy the polynomial form of ∂ξψ̄τ (0, η)
obtained in the previous step. We calculate

∂xψ
τ
x(0, η) = κτx

′(0)η+∂ξψ̄
τ
x(0, η)−κτXτ (x)

′(0)∂ξF̄
τ
x,1(0, η)F̄ τx,3(0, η)−κτXτ (x)(0)∂ξF̄

τ
x,3(0, η).

Note that the last term vanishes since κτXτ (x)(0) = 0, and we obtain

∂xψ
τ
x(0, η) = P̂ sx(τ)(η) +

(
κτx
′(0)− κτXτ (x)

′(0)λsx(τ)λux(τ)
)
η,

which is the sought polynomial P sx(τ)(η) of degree at most [k]. This concludes the proof
of Lemma B.4. �

The proof of Proposition B.1 is complete. �

Proof of Addendum B.2. We first prove the following lemma.

Lemma B.7. For any τ > 0 and any rational number p/q we have

ρτx = ρτ
′
x , and στx = στ

′
x , x ∈M,

where τ ′ = p
q τ .

Proof. Clearly the rational case is implied by the integer case. For the sake simplicity, let
us consider the case when τ ′ = 2τ , the general case being essentially the same calculation.
One can check that ρ2τ

x = ρτx by using the series formula, or, instead we can show that
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these functions satisfy the same equation. Indeed, from the proof of Proposition B.1 we
have that ρτx satisfies

log ρτx(η)− log ρτX−τ (x)(λ
u
x(−τ)η) = log ∂ξF̃

τ
X−τ (x),1(0, λux(−τ)η)− log λsX−τ (x)(τ).

Changing the base-point to X−τ (x) the same equation reads

log ρτX−τ (x)(η̃)− log ρτX−2τ (x)(λ
u
X−τ (x)(−τ)η̃) =

log ∂ξF̃
τ
X−2τ (x),1(0, λuX−τ (x)(−τ)η̃)− log λsX−2τ (x)(τ).

Using η̃ = λux(−τ)η and adding the above two equation while using the cocycle property
of non-stationary linearizations gives

log ρτx(η)− log ρτX−2τ (x)(λ
u
x(−2τ)η) = log ∂ξF̃

τ
X−τ (x),1(0, λux(−τ)η)+

log ∂ξF̃
τ
X−2τ (x),1(0, λux(−2τ)η)− log λsX−2τ (x)(2τ).

Now we recall that F̃ 2τ
X−2τ (x) = F̃ τX−τ (x) ◦ F̃

τ
X−2τ (x). Specifically for the first coordinate

we have
F̃ 2τ
X−2τ (x),1(ξ, η) = F̃ τX−τ (x),1(F̃ τX−2τ (x),1(ξ, η), F̃ τX−2τ (x),3(ξ, η)).

Differentiating with respect to ξ and evaluating at λux(−2τ)η while recalling that
F̃ τx,1(0, ·) ≡ 0 gives

log ∂ξF̃
2τ
X−2τ (x),1(0, λux(−2τ)η) =

log ∂ξF̃
τ
X−τ (x),1(0, λux(−τ)η) + log ∂ξF̃

τ
X−2τ (x),1(0, λux(−2τ)η).

Hence the equation we derived on ρτx simplifies to

log ρτx(η)− log ρτX−2τ (x)(λ
u
x(−2τ)η) =

log ∂ξF̃
2τ
X−2τ (x),1(0, λux(−2τ)η)− log λsX−2τ (x)(2τ).

It remains to observe that ρ2τ
x satisfies the same equation. Since this equation has a

unique solution given by (B.3) satisfying ρx(0) = 1 we conclude that indeed ρ2τ
x = ρτx.

By identical arguments στx = στ
′
x . �

Since the initial charts x vary contionously with respect to x ∈M in Cr topology we
have that the functions ρτx and στx given by (B.3) vary continuously in Cr−1 topology
with respect to τ . Now given any τ consider a sequence of rationals pn/qn → τ , n→∞.
Then for any x ∈M

ρτx = lim
n→∞

ρpn/qnx = ρ1
x

by the preceding lemma. Hence, indeed, ρτx does not depend on τ . Similarly, στx does
not depend on τ , and we can conclude that the charts ̂x = hx ◦ x, x ∈ M , do not
depend on the choice of τ > 0.

Lemma B.8. For any τ > 0 and any rational number p/q we have

ϕτx = ϕτ
′
x , and κτx = κτ

′
x , x ∈M,

where τ ′ = p
q τ .
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Proof. Similarly to the previous lemma, it is enough to check the case when q = 1 and
we only give a proof in the case when τ ′ = 2τ , the case τ ′ = pτ being fully analogous
but requiring summing m equations instead of just 2.

Recall that with respect to adjusted charts ̂x dynamics has the form F̂ τx : (ξ, t, η) 7→
(F̂ τx,1(ξ, η), t+ ψ̂τx(ξ, η), F̂ τx,3(ξ, η)). Since F̂ 2τ

x = F̂ τXτ (x) ◦ F̂
τ
x we have

ψ̂2τ
x (ξ, η) = ψ̂τx(ξ, η) + ψ̂τXτ (x)(F

τ
x,1(ξ, η), F̂ τx,3(ξ, η)).

Differentiating with respect to ξ and then evaluating at (0, η), and using that ψ̂τx(0, ·) ≡ 0
we have

∂ξψ̂
2τ
x (0, η) = ∂ξψ̂

τ
x(0, η) + ∂ξψ̂

τ
Xτ (x)(0, λ

u
x(τ)η)λsx(τ) (B.7)

Now we consider Taylor expansions for each of the three terms in this equation according
to (B.6). The Taylor remainders on both sides of the equation are the same, hence we
deduce an equation on the remainders

ω2τ
x (η) = ωτx(η) + λsx(τ)ωτXτ (x)(λ

u
x(τ)η).

Similarly to the proof of the previous lemma, we will show that ϕ2τ
x and ϕτx satisfy

the same equation and, hence, must be equal by uniqueness of the solution. Recall that
the equation for ϕτx is

ϕτXτ (x)(λ
u
x(τ)η)λsx(τ) = ϕτx(η) + ωτx(η).

We use this equation twice to derive an equation on ϕ2τ
x :

ϕτX2τ (x)(λ
u
Xτ (x)(τ)η̃)λsXτ (x)(τ) = ϕτXτ (x)(η̃) + ωτXτ (x)(η̃).

Substituting η̃ = λux(τ)η and multiplying by λs(τ) gives:

ϕτX2τ (x)(λ
u
x(2τ)η)λsx(2τ) = ϕτXτ (x)(λ

u
x(τ)η)λs(τ) + λs(τ)ωτXτ (x)(λ

u(τ)η) =

ϕτx(η) + ωτx(η) + λs(τ)ωτXτ (x)(λ
u(τ)η) = ϕτx(η) + ω2τ

x (η).

But this is precisely the defining equation of ϕ2τ
x . Hence ϕ2τ

x = ϕτx, x ∈M .
By identical arguments κτx = κτ

′
x . �

We can conclude that the adapted charts defined by ıx = ̂x ◦ ux, x ∈ M , do not
depend on the choice of τ > 0.

Finally the twisted cocycle equations on the polynomials P sx(τ) follow easily by Taylor
expanding all terms in (B.7) and matching the main polynomial terms, with a similar
argument for P ux (τ). �
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