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Abstract. We apply the matching functions technique in the setting of con-
tact Anosov flows which satisfy a bunching assumption. This allows us to gen-
eralize the 3-dimensional rigidity result of Feldman-Ornstein [FO73]. Namely,
we show that if two such Anosov flows are C0 conjugate, then they are Cr

conjugate for some r P r1, 2q or even C8 conjugate under some additional
assumptions. This, for example, applies to 1{4-pinched geodesic flows on com-
pact Riemannian manifolds of negative sectional curvature. We can also use
our result to recover Hamendstädt’s marked length spectrum rigidity result for
real hyperbolic manifolds.

1. Introduction

Let M be a closed smooth Riemannian manifold. Recall that a smooth flow
ϕt : M ÑM is called Anosov if the tangent bundle admits a Dϕt-invariant splitting
TM “ Es ‘X ‘ Eu, where X is the generator of ϕt, Es is uniformly contracting
and Eu is uniformly expanding under Dϕt.

In this paper will always assume that M has an odd dimension 2d` 1 and that
M is equipped with a contact form α. Recall that a 1-form α is called contact
if α ^ pdαqd is a non-vanishing top-dimensional form. We will consider Anosov
flows ϕt which are also contact. This means that ϕt preserves a contact form α:
αpDϕtvq “ αpvq for all v P TM and all t P R or, equivalently, Xα “ 0.

Basic examples of contact Anosov flows are geodesic flows in negative sectional
curvature and more sophisticated examples can be constructed, in particular, in
dimension 3 [FH13].

Recall that flows ϕt1 and ϕt2 are called conjugate if there exists a homeomorphism
h such that h ˝ ϕt1 “ ϕt2 ˝ h for all t P R.

In the setting of 3-dimensional contact Anosov flows, Feldman and Ornstein
proved that any topological (merely C0) conjugacy is, in fact, C8 smooth [FO73].
To formulate our generalization recall that the distributions Es ‘X and Eu ‘X

are known to integrate to foliations W 0s and W 0u, respectively, which are called
weak stable and weak unstable foliations.

Theorem 1.1. Let ϕt1 : M1 Ñ M1 and ϕt2 : M2 Ñ M2 be contact Anosov flows,
which are conjugate via a homeomorphism h : M1 Ñ M2. Assume that the weak
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stable and unstable distributions of ϕt1 and ϕt2 are Cr for some r ě 1. Then h is
Cr˚ .

Here r˚ “ r if r is not integer and r˚ “ r ´ 1 ` Lip if r is an integer (if r “ 1
we can set r˚ “ 1 as well). The latter means that h is Cr´1 diffeomorphism with
Lipschitz pr ´ 1q-jet. Note that M1 and M2 are homeomorphic via h, but a priori
may carry different smooth structures. We then conclude that they are, in fact,
diffeomorphic once we know that h is C1.

We also recall the definition of a distribution E Ă TM being Cr. This mean that
E is Cr when viewed as a map from M into the grassmann bundle GrdimE

pMq.
Alternatively, E s locally spanned by dimE independent Cr vector fields on M .

The main setup where this result applies is when the Anosov flows satisfy a
bunching condition, which guarantees Cr regularity of weak distributions. Denote
by mpAq “ }A´1 }´1 the conorm of a linear operator A. If for some t ą 0 and all
x PMi

}Dϕti|Es
i
pxq } ¨ }Dϕ

t
i|Eu

i
pxq }

r ă mpDϕti|Eu
i
pxqq

then E0s
i , the weak stable distribution of ϕti is C1`ε [H94a]. Similarly, if

}Dϕti|Es
i
pxq } ă mpDϕti|Eu

i
pxqq ¨mpDϕ

t
i|Es

i
pxqq

r

then the weak unstable distribution E0u
i is also Cr. In general, these conditions

are optimal for Cr smoothness of weak distributions [H94a].
These bunching conditions can be verified for some specific examples. In particu-

lar, a geodesic flow on 1{4-pinched negatively curved Riemannian manifold satisfies
the above conditions with r “ 1 and, hence, has C1 weak stable and unstable dis-
tributions. The a2-pinching condition means that the sectional curvature function
K is bounded above and below as follows:

´c ă K ď ´a2c

where c is a positive constant. Hence, Theorem 1.1 applies to geodesic flows on
Riemannian manifolds which are C2 close to a hyperbolic manifold. Also point-
wise 1{2-pinching implies that weak distributions are C1 [H94b].

Now we present some corollaries of our main result. Note that by taking the
product of the above bunching inequalities we can see that they are never simul-
taneously satisfied if r ě 2. Hence, in practical terms, Theorem 1.1 only yields
a limited regularity of the conjugacy: somewhere between C1 and C2. However,
we can remedy this under some additional assumptions. We need to introduce an-
other condition which we call conformal r-pinching. An Anosov flow ϕt satisfies
conformal r-pinching with r P p1, 2s if for a sufficiently large t and all x PM

}Dϕt|Eupxq } ă mpDϕt|Eupxqq
r and mpDϕt|Espxqq

r ă }Dϕt|Espxq }

Corollary 1.2. Let ϕt1 : M1 Ñ M2 and ϕt2 : M1 Ñ M2 be contact Anosov flows,
which are conjugate via a homeomorphism h : M1 Ñ M2. Assume that the weak
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stable and unstable distributions of ϕt1 and ϕt2 are Cr for some r ą 1. Also assume
that ϕt1 and ϕt2 are conformally r-pinched. Then h is a C8 diffeomorphism.

Remark 1.3. In the above corollary one can replace the pinching assumption with
an assumption about existence of a conformal periodic point. This is a periodic
point p “ ϕT1 ppq such that the linearized return map DϕT1 : TpM1 Ñ TpM1 is
conformal on Eu1 ppq and Es1ppq. This modified statement can be proved with a
different bootstrap argument recently used by the authors in [GRH21a]. While
more ad hoc, the assumption about existence of conformal periodic point does
cover some flows to which the above corollary does not apply.

Corollary 1.4. Let ϕti : T 1Ni Ñ T 1Ni be geodesic flows on negatively curved
manifolds pNi, giq, i “ 1, 2 which are C0 conjugate. Assume that both metrics g1

and g2 are 1{2-pinched. Then the conjugacy is C8 smooth.

This, in particular, applies to geodesic flows of Riemannian metrics in a suf-
ficiently small C2-neighborhood of a hyperbolic metric: if two such metric have
the same marked length spectrum (or, equivalently, are C0 conjugate) then the
conjugacy of geodesic flows is a C8 diffeomorphism.

Corollary 1.5. Let ϕt be a geodesic flow on a negatively curved 1{2-pinched man-
ifold. Then there exists a C1-neighborhood U of ϕt such that if ϕt1, ϕt2 P U are
contact and conjugate, then the conjugacy is C8 smooth.

We can also partially recover a geometric rigidity result of Hamendstädt [H99].

Corollary 1.6. If M and N are closed negatively curved manifolds with the same
marked length spectrum and C1 Anosov splittings, then M and N have the same
volume.

Our result is weaker than the result of Hamendstädt [H99] because Hamendstädt
only assumed that the Anosov splitting of TT 1M is C1 and didn’t have any assump-
tion on the Ansov splitting of TT 1N . Still it is enough to recover marked length
spectrum rigidity of hyperbolic manifolds using the Besson-Courtois-Gallot entropy
rigidity theorem [BCG95]. Hence, following Hamendstädt’s application of entropy
rigidity we arrive at a version of marked length spectrum rigidity for hyperbolic
manifolds.

Corollary 1.7. Let pM, g1q be a closed real hyperbolic manifold of dimension ě 3
and let g2 be a 1{4-pinched Riemannian metric on M . Assume that pM, g1q and
pM, g2q have the same marked length spectrum. Then g2 is isometric to g1.

1.1. Organization. In the next section we recall some facts about contact Anosov
flows and about the matching function technique. Then we introduce the main
technical tool which we call the Subbundle Theorem. In Section 3 we prove Theo-
rem 1.1 and in Section 4 we derive all the corollaries.

We would like to thank the anonymous referee for a thorough and beautiful
report.
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2. Preliminaries

2.1. Basic facts about contact Anosov flows. Recall that we denote by W s,
Wu,W 0s andW 0u the stable, unstable, weak stable and weak unstable foliations of
an Anosov flow. When needed, we will also use a subscript i to indicate dependence
on the flow ϕti, i “ 1, 2.

It is immediate from the definition of Anosov contact flow ϕt that αpXq is
constant; hence, we can normalize the contact form so that αpXq “ 1. Also we
have kerα “ Es‘Eu. Indeed if v P Es then αpvq “ αpDϕtpvqq Ñ 0 as tÑ8, and
similarly for v P Eu. It is a simple exercise to check that if ϕt is a contact Anosov
flow then dimEs “ dimEu “ d.

Lemma 2.1. Let ϕt : M ÑM be a contact Anosov flow with C1 stable and unstable
foliations. Assume that the stable foliation W s admits a C1 subordinate foliation
F , Fpxq ĂW spxq, x PM , which integrates jointly with Wu. Then F is a foliation
by points, that is, Fpxq “ txu for all x PM .

Proof. We prove the contrapositive implication. The argument is local. Assume
that dim F “ m ą 0. In a small neighborhood we can pick 2d vector fields
Y s1 , Y

s
2 , . . . Y

s
d , Y

u
1 , . . . Y

u
d which are C1 regular such that

Es “ spantY s1 , Y
s

2 , . . . Y
s
d u, E

u “ spantY u1 , Y
u

2 , . . . Y
u
d u

and

TF “ spantY s1 , Y
s

2 , . . . Y
s
mu,

We will repeatedly use two basic facts about the Lie bracket. First, the bracket
is, in fact, a first order differential operator and, hence, is defined for C1 vector
fields. The second one is this: if two vector fields are tangent to a foliation then their
bracket is also tangent to this foliation (easy direction of the Frobenius theorem).

Because Es is integrable we have rY si , Y sj s P Es Ă kerα. Hence

dαpY si , Y
s
j q “ Y si αpY

s
j q ´ Y

s
j αpY

s
i q ´ αprY

s
i , Y

s
j sq “ 01

Similarly dαpY ui , Y uj q “ 0. And by the same token, because F integrates jointly
withWu we have rY si , Y uj s P TF‘Eu Ă kerα when i ď m and, hence dαpY si , Y uj q “
0 when i ď m.

We can now calculate α^ pdαqdpX,Y s1 , Y s2 , . . . Y sd , Y u1 , . . . Y ud q using the permu-
tation formula for the wedge product. Recall that if ω is a k-form and η is an l-form
then

pω^ ηqpZ1, Z2, . . . Zk`lq “
ÿ

σPSk`l

signpσqωpZσp1q, . . . , ZσpkqqηpZσpk`1q, . . . , Zσpk`lqq

1Alternatively one can use invariance of dα and Es, and the fact that vectors in Es contract
to arrive at the same conclusion without explicitly using the integrability property.
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First, applying this formula for ω “ α and η “ pdαqd and using the fact that
Y
s{u
i P kerα we have

α^ pdαqdpX,Y s1 , . . . , Y
s
d , Y

u
1 , . . . , Y

u
d q “ αpXqpdαqdpY s1 , . . . , Y

s
d , Y

u
1 , . . . , Y

u
d q

“ pdαqdpY s1 , . . . , Y
s
d , Y

u
1 , . . . , Y

u
d q

Then to calculate this value we can inductively apply the wedge product formula
until we express pdαqdpY s1 , . . . , Y sd , Y u1 , . . . , Y ud q as the sum over all permutations of
d-fold products of values of dα. Note that by the above observations many of these
values vanish. Indeed, the only non-vanishing values have the form dαpY si , Y

u
j q for

i ą m. Since for each permutation the corresponding product can have at most
d ´ m such non-vanishing factors, it has at least m zero factors and, hence, we
obtain that α ^ pdαqdpX,Y s1 , . . . , Y sd , Y u1 , . . . , Y ud q “ 0, contradicting the contact
property of α. �

2.2. Matching functions and the Subbundle Theorem. We first recall the
matching function technique which we have first introduced in [GRH20a] and fur-
ther developed in [GRH21a, GRH21b]. Then we explain the statement of the
Subbundle Theorem which was proved in [GRH21a, GRH21b].

Let ϕti : Mi Ñ Mi, i “ 1, 2 Anosov flows with Cr weak stable and unstable
foliations, r ě 1. Assume that they are conjugate, h ˝ ϕt1 “ ϕt2 ˝ h. We proceed
to explain a certain construction of sub-bundles Ei of the unstable bundles Eui
via locally matching functions on the local unstable leaves. (Of course, the same
construction can be applied on local stable leaves yielding sub-bundles of the stable
bundle.)

Recall that the conjugacy h maps leaves of Wu
1 to leaves of Wu

2 . For each
x P M1 consider pairs of Cr, r ě 1, functions pρ1, ρ2q where ρ1 is defined on an
open neighborhood of x in Wu

1 pxq, ρ2 is defined on an open neighborhood of hpxq
in Wu

2 phpxqq and such that

ρ1 “ ρ2 ˝ h.

This relation is what we call a matching relation. We collect all such pairs of
functions into a space V rx

V rx “ tpρ
1, ρ2q : ρ1 “ ρ2 ˝ hu.

The domains of definition of ρ1 and ρ2 can be arbitrarily small open sets. Also
denote by V rx,1 the collection of all possible ρ1, that is, projection of V rx on the first
coordinate, and by V rx,2 the projection on the second coordinate.

Now we can define linear subspaces Eipxq Ă Eui pxq by intersecting the kernels
of all Dρi at x, i “ 1, 2. Namely,

Eipxq “
č

ρiPV r
x,i

kerDρipxq.
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We note that subbundles Ei also depend on r, which can be taken to be any number
ě 1. However in this paper we will only use for specific r given by regularity of
invariant distributions.

It turns out that all subspaces Eipxq, x PMi, i “ 1, 2, have the same dimension
and give an integrable sub-bundle with certain pleasant properties. Namely, we
have the following Subbundle Theorem which was established in [GRH21b], (and
before that for Anosov diffeomorphisms [GRH21a, Theorem 4.1]).

Theorem 2.2 (Subbundle Theorem). Let ϕti : Mi Ñ Mi, i “ 1, 2, be conjugate
Anosov flows, h ˝ ϕt1 “ ϕt2 ˝ h. Assume that both flows have Cr stable foliations.
Then there exist Cr regular, Dϕti-invariant distributions Ei Ă Eui , such that

1. the distributions Ei integrate to ϕti-invariant foliations Fi ĂWu
i ;

2. the distributions Esi ‘ Ei integrate to an ϕti-invariant Cr foliation which is
sub-foliated by both W s

i and Fi;
3. the conjugacy h maps F1 to F2;
4. the restrictions of h to the unstable leaves are uniformly Cr transversely to

F1;
5. if pρ1, ρ2q P V rx is a matching pair then ρi is constant on connected local

leaves of Fi.

Remark 2.3. In [GRH21b] we have defined the matching functions on local weak
unstable manifolds instead of local unstable manifolds. We observe that any match-
ing pair on local weak unstable manifolds can be restricted to local unstable man-
ifolds and any matching pair on local unstable manifolds can be pulled back to a
matching pair on weak unstable manifolds using local projection along the flow.
Also, as explained right after the statement of [GRH21b, Theorem 2.1], the sub-
bundles defined through the matching functions on weak unstable manifolds are
contained in unstable bundles. Hence, both of these definitions yield the same
subbundles Ei.

2.3. Non-stationary linearization for expanding foliations. Let ϕt : M ÑM

be a smooth flow which leaves invariant a continuous foliation Wu with uniformly
smooth leaves. Assume that Wu is an expanding foliation, that is, for a sufficiently
large t }Dϕtpvq } ą } v } , for all non-zero v P Eu, where Eu “ TWu is the distri-
bution tangent to Wu. The following proposition on non-stationary linearization is
a special case of the normal form theory developed by Guysinsky and Katok [GK98]
and further refined by Kalinin and Sadovskaya [KS09, K21]. We will denote by Du

the restriction of the differential to Eu.

Proposition 2.4. Let r P p1, 2s and let ϕt, Wu and Eu be as above. Assume that
there exist a sufficiently large t such that

}Duϕtpxq } ă mpDuϕtpxqqr, x PM.

Then for all x PM there exists Hx : Eupxq ÑWupxq such that
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1. Hx is a smooth diffeomorphism for all x PM ;
2. Hxp0q “ x;
3. D0Hx “ id;
4. Hϕtx ˝Dxϕ

t “ ϕt ˝Hx for all t;
5. DHx has pr ´ 1q-Hölder dependence along Wu;
6. if y PWupxq then H´1

y ˝Hx : Eupxq Ñ Eupyq is affine.

Such family tHx, x P Mu is called non-stationary linearization (also called nor-
mal form or affine structure) along Wu.

It is well-known that non-stationary linearization is unique in appropriate class
of linearization. We had difficulty finding a reference for the uniqueness statement
which we need. Hence, we provide a precise uniqueness addendum with a proof.
We formulate a somewhat more general point-wise uniqueness statement than what
we need for the sake of optimality and ease of future reference.

Given a point x, let κx to be the infimum of all ν so that

lim inf
tÑ´8

}Du
xϕt }

1`ν

mpDu
xϕtq

“ 0

Note that the conformal pinching assumption of Proposition 2.4 implies that κx ď
r ´ 1.

Addendum 2.5. Given x P M assume that H̄ϕtx : Eupϕtxq Ñ Wupϕtxq, t ď 0,
is a family of C1 diffeomorphisms satisfying items 2,3,4 (where 4 will only be used
for t ď 0) and assume that there exists κ ą κx such that

sup
tď0,|z|ď1

}DzH̄ϕtx ´ Id }

|z|κ
ă 8,

then H̄x “ Hx.

Remark 2.6. In the case κx is a minimum instead of an infimum, i.e., the infimum
is achieved, we can also take κ “ κx in the above addendum.

Proof. Let H 1t “ H´1
ϕtx ˝ H̄ϕtx : Eupϕtxq Ñ Eupϕtxq and observe that H 1t is C1,

H 1tp0q “ 0, D0H
1
t “ Id. Using the main assumption of the addendum, uniform

regularity of H´1
x and applying the triangle inequality we can easily verify

sup
tď0,|z|ď1

}DzH
1
t ´ Id }

|z|κ
ă 8.

Also we have the following relation

H 10 “ pD
u
xϕ

tq´1 ˝H 1t ˝D
u
xϕ

t,

which is easy to differentiate since two maps are linear and we obtain

DzH
1
0 “ pD

u
xϕ

tq´1 ˝DDu
xϕ

tpzqH
1
t ˝D

u
xϕ

t.

Hence
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}DzH
1
0 ´ Id } “ } pDu

xϕ
tq´1 ˝DDxϕtpzqH

1
t ˝D

u
xϕ

t ´ Id }

ď } pDu
xϕ

tq´1 } }DDxϕtpzqH
1
t ´ Id } }D

u
xϕ

t }

For t ă 0, Du
xϕ

t is a contraction, consider t so that |Du
xϕ

tpzq| ď 1, then we get that

}DzH
1
0 ´ Id } ď } pDu

xϕ
tq´1 } }DDu

xϕ
tpzqH

1
t ´ Id } }D

u
xϕ

t }

ď C } pDu
xϕ

tq´1 } }Dxϕ
tpzq } κ }Dxϕ

t }

ď } pDu
xϕ

tq´1 } }Du
xϕ

t } 1`κ } |z|κ

and the latter goes to 0 when taking a lim inftÑ´8, according to the definition of
κ. So DzH

1
0 “ Id for every z, |z| ď 1, and hence since H 10p0q “ 0 we get that

H 10 “ Id, which means Hx “ H̄x. �

3. Proof of Theorem 1.1

Recall that the weak distributions are Cr by the assumption. Since the strong
distributions are given by intersecting with the kernel of the contact form, they are
also Cr regular. Hence we apply the Subbundle Theorem 2.2 to ϕt1 and ϕt2 and
obtain Cr distributions Ei Ă Eui and corresponding integral foliations Fi Ă Wu

i .
By item 2 of the Subbundle Theorem we have thatW s

i and Fi are jointly integrable.
Hence, by Lemma 2.1 we have dim Fi “ 0, that is, Fi are foliations by points. Then
item 4 gives uniform Cr smoothness of h along the unstable foliation.

Entirely symmetric argument yields Cr smoothness of h along the stable folia-
tion. Applying the Journé Lemma first for the unstable and flow foliations we have
that h is Cr˚ along the weak unstable foliation, then applying Journé Lemma [J88]
to weak unstable and stable foliations we obtain that h is Cr˚ . Reversing the
roles of the flows we obtain in the same way that h´1 is Cr˚ . Hence, h is a Cr˚

diffeomorphism.

4. Proof of the corollaries

Proof of Corollary 1.2. The conformal r-pinching assumption of the Corollary en-
ables us to apply Proposition 2.4 to both ϕt1 and ϕt2. In this way we have normal
forms Hi

x, i “ 1, 2, for ϕti along the unstable foliation Wu
i .

By Theorem 1.1 the conjugacy is Cr, r ą 1. Define

H̄1
x “

´

h|Wu
1 pxq

¯´1
˝H2

x ˝Dh|Eu
1 pxq

: Eu1 pxq ÑWu
1 pxq

It is routine to verify that H̄1
x satisfies properties 2-4 of Proposition 2.4. Also, since

h is Cr we have that DH̄1
x is uniformly Cr´1 at x and, hence, verifies the main

assumption of the Addendum 2.5. We invoke the Addendum 2.5 and conclude that
H̄1
x “ H1

x, x PM1. Hence

h|Wu
1 pxq

“ H2
x ˝Dh|Eu

1 pxq
˝ pH1

xq
´1,
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which is C8 regular as the normal forms are smooth for each x. Applying the same
argument to the stable foliation and then using the Journé Lemma in the same way
as in the proof of Theorem 1.1 we establish that h is a C8 diffeomorphism. �

Proof of Corollaries 1.4 and 1.5. We will verify that the geodesic flows are bunched
with r “

?
2 and conformally

?
2-pinched. Then applying Corollary 1.2 finishes

the proof of Corollary 1.4. Also notice that both bunching and conformal pinching
conditions are open in C1 topology, hence, Corollary 1.5 also follows.

So let ϕt be a 1
a2 -pinched geodesic flow with a “

?
2. We can rescale the

metric so that all sectional curvatures lie the interval p´a2,´1s. Then we can
use the description of stable (unstable) subbundle as the space of bounded in the
future (past) Jacobi fields (see, e.g., [E01, Chapter VI]) and, by comparison with
constant-coefficients Jacobi equations J2 ´ J “ 0 and J2 ´ a2J “ 0 we have

et ď }Dϕt|Eu } ă eat, t ą 0, and e´at ă }Dϕt|Es } ď e´t, t ą 0.

These give bounds on all needed norms and conorms. One can then easily see that
bunching with parameter r is implied by e´terat ď et and conformal r-pinching is
implied by eat ď ert, which are equivalent to ra ď 2 and a ď r. Taking r “ a “

?
2

finishes the proof. �

Proof of Corollaries 1.6 and 1.7. Derivations of these corollaries follow closely [H99].
It is well known that negatively curved homotopy equivalent manifolds have orbit
equivalent geodesic flows. Then, by the classical application of the Livshits Theo-
rem [KH95, Theorem 19.2.9], same marked length spectrum implies existence of a
C0 conjugacy h of the geodesic flows. Thus, because we have assumed that stable
and unstable foliations are C1 we can apply Theorem 1.1. Formally speaking, it
only yields Lipschitz regularity of h. However, in fact, it is easy to overcome the loss
of regularity in this case and show that h is a C1 diffeomorphism. Indeed, recall
that the loss from r to r˚ happens at the very end of the proof of Theorem 1.1
which is due to application of Journé Lemma. However this problem only occurs
for integer r ě 2. It is an easy calculus exercise to check that if h is C1 along a
pair of transverse foliations then h is a C1 diffeomorphism.

Now denote by αi the canonical contact form for ϕti. That is, αi is a Dϕti

invariant contact form such that αipXiq “ 1, Xi “
Bϕt

i

Bt

ˇ

ˇ

ˇ

t“0
, i “ 1, 2. Since h is C1

the pull-back form h˚α2 is well-defined and we have

h˚α2pX1q “ α2pDhpX1qq “ α2pX2q “ 1

Also

kerh˚α2 “ Dh´1pkerα2q “ Dh´1pEs2q ‘Dh
´1pEu2 q “ Es1 ‘ E

u
1 “ kerα1

But the value on X1 and the kernel determine a 1-form uniquely. Hence h˚α2 “ α1.
We have the same for volume forms ωi “ αi ^ pdαiq

d:

h˚ω2 “ h˚α2 ^ h
˚pdα2q

d “ α1 ^ pdα1q
d “ ω1
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which implies that total volumes are the same

volpMq “

ż

M

ω1 “

ż

M

h˚ω2 “

ż

N

ω1 “ volpNq

finishing the proof of Corollary 1.6.
For the last corollary, notice that since M is hyperbolic and N is 1{4-pinched

they have C1 Anosov splitting and, hence, the above proof applies to conclude that
they have the same volume. Since geodesic flows are conjugate they also have the
same topological entropy which is well-known to coincide with the volume entropy
on the universal covers M̃ and Ñ . Hence, by the main result of [BCG95] we can
conclude that M and N are isometric. �
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