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Abstract. Let Xt
1 and Xt

2 be volume preserving Anosov flows on a 3-

dimensional manifold M . We prove that if Xt
1 and Xt

2 are C0 conjugate then
the conjugacy is, in fact, smooth, unless M is a mapping torus of an Anosov

automorphism of T2 and both flows are constant roof suspension flows. We

deduce several applications. Among them is a new result on rigidity of Anosov
diffeomorphisms on T2 and a new “weighted” marked length spectrum rigidity

result for surfaces of negative curvature.

1. Introduction

Dynamics and geometry are different fields with distinct agendas. These fields
frequently enrich each other, in particular, via the interplay between hyperbolic
dynamics and negative curvature as pioneered by Hopf and Anosov. Much less
frequently a problem in one field could uncover serious lack of understanding and
technical weakness in the other field. This is precisely the story of this paper.

1.1. Definitions. Let M be a closed smooth Riemannian manifold. Recall that
a diffeomorphism f : M → M is called Anosov if the tangent bundle admits a
Df -invariant splitting TM = Es ⊕ Eu, where Es is uniformly contracting and Eu

is uniformly expanding under f . It is well known that all 2-dimensional Anosov
diffeomorphisms are conjugate to Anosov automorphisms of T2 [Fr68].

Similarly, a smooth flow Xt : M → M is called Anosov if the tangent bundle
admits a DXt-invariant splitting TM = Es ⊕ X ⊕ Eu, where X is the generator
of Xt, Es is uniformly contracting and Eu is uniformly expanding under DXt,
t > 0. Basic examples of 3-dimensional Anosov flows are geodesic flows on surfaces
of negative curvature and suspension flows of Anosov diffeomorphisms of the 2-
torus. Many more 3-dimensional examples can be constructed by various surgery
techniques (see [Bar17] for an overview).

Conjugacy and orbit equivalence are natural equivalence relations for dynamical
systems. In particular, Anosov proved that C1 close Anosov diffeomorphisms are
conjugate and C1 close Anosov flows are orbit equivalent [An67]. (Recall that flows
Xt

1 and Xt
2 are orbit equivalent if there exists a homeomorphism H : M →M which

sends orbits of Xt
1 to the orbits of Xt

2 preserving the time direction.) Anosov also
observed that, in general, the continuous conjugacy or the orbit equivalence is not
C1 or even Lipschitz.

The authors were partially supported by NSF grants DMS-1955564 and DMS-1900778,
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1.2. Structural stability and obstructions to smooth conjugacy. In the case
of diffeomorphisms the basic obstructions to C1 regularity of the conjugacy are
given by eigenvalues at periodic points. The natural question is whether matching
of these obstructions could guarantee C1 or higher regularity of the conjugacy. One
can ask for as much as coincidence of Jordan normal forms or as little as coincidence
of full Jacobians at corresponding periodic points.

In the case of flows, first there are obstructions to orbit equivalence being a
conjugacy of flows H (that is, H ◦Xt

1 = H ◦Xt
2 for all t). These obstructions are

given by the periods of corresponding periodic orbits. If the flows are transitive and
these obstructions vanish then the orbit equivalence can be improved to a conjugacy
by adjusting this orbit equivalence along the orbits of the flows [KH95, Theorem
19.2.9]. Once one has a true C0 conjugacy H obstructions to C1 regularity are,
similarly to the diffeomorphisms case, given by the eigenvalues of the linearized
Poincaré return maps at the corresponding periodic points.

1.3. Smooth rigidity in low dimension: prior results. The main question
of the smooth rigidity program in rank one is whether matching of obstructions
implies regularity of the conjugacy. In low dimensions, that is dimension 2 for dif-
feomorphisms and dimension 3 for flows, this question was extensively studied by
de la Llave, Marco, Moriyón and by Pollicott. Specifically, if two Anosov diffeo-
morphisms on T2 are conjugate and both the stable and unstable eigenvalues at
corresponding periodic points are equal (vanishing of obstructions) then the con-
jugacy is smooth [dlL87, MM87, dlL92, Pol88]. Similarly, if two Anosov flows are
conjugate (equivalently, the periods of corresponding periodic points are equal) and
the stable and unstable eigenvalues at corresponding periodic points are equal then
the conjugacy is smooth [dlLM88, dlL92, Pol88].

In fact, if diffeomorphisms (flows) have finite regularity Cr (that is, brc times
continuously differentiable and its Cbrc-differential is Hölder continuous with expo-
nent r−brc) then the conjugacy is Cr∗ , where r∗ = r if r /∈ N and r∗ = (r−1)+Lip
if r ∈ N. Such sharp regularity was achieved through the use of an analytic lemma,
which was established on demand by Journé [J88] for these purposes.

1.4. Smooth rigidity in low dimension: new results. Our main result is the
following improved smooth rigidity for flows.

Theorem 1.1. Let Xt
i : M →M , i = 1, 2, be Cr, r > 2, volume preserving Anosov

flows which are conjugate via a conjugacy H. Then at least one of the following
conclusions holds:

1. the conjugacy H is a Cr∗ diffeomorphism;
2. flows Xi are constant roof suspensions of Anosov diffeomorphisms fi : T2 →

T2, i = 1, 2.

In other words, we improve the smooth rigidity result for flows by showing that
one can, in fact, discard the assumption of matching of the second collection of
obstructions (eigenvalues) and conclude existence and smoothness of the conjugacy
only using the first set of obstructions (periods) in all cases, but the constant roof
suspension case. In the latter case, vanishing of eigenvalue obstructions is, clearly, a
necessary assumption. If both flows are assumed to be contact then such rigidity was
established by Feldman and Ornstein [FO87]. The contact property ensures that
the strong stable and unstable foliations are C1 which then can be used to obtain
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C1 regularity property of the conjugacy via the inverse function theorem. However,
aside from contact flows and constant roof suspensions, the strong foliations of a
volume preserving Anosov flow are merely Hölder.

We proceed with some applications.

Corollary 1.2. Let fi : T2 → T2, i = 1, 2, be Cr, r > 2, area preserving Anosov
diffeomorphisms which are conjugate via a conjugacy h, h ◦ f1 = f2 ◦ h and let
ϕi : T2 → R be Cr smooth functions, i = 1, 2. Assume that for every periodic point
p = fk1 (p) the following sums agree

k−1∑
i=0

ϕ1(f i1(p)) =

k−1∑
i=0

ϕ2(f i2(h(p))

Then at least one of the following holds:

1. conjugacy h is a Cr∗ diffeomorphism;
2. the functions ϕi are cohomologous to a constant, ϕi = ui ◦ fi − ui + C,

ui ∈ Cr∗(T2).

Proof. Indeed, to see that Theorem 1.1 implies the above corollary, pick a constant
c such that ϕi+c > 0, i = 1, 2. Then let Xt

i be the suspension flow over fi with the
roof function ϕi+c. Using the assumption on the periodic orbits we have that ϕ1+c
is cohomologous to ϕ2 ◦ h+ c by the Livshits Theorem [L72]. This is equivalent to
Xt

1 being conjugate to Xt
2 and, hence, Theorem 1.1 applies and yields the posited

dichotomy. �

Comparing this result to the classical rigidity results for Anosov diffeomorphisms
on T2 reviewed in Section 1.2, we see that matching of abstract data given by
functions ϕ1 and ϕ2 works as well as matching of natural data given by stable and
unstable Jacobians of Anosov diffeomorphisms.

We also note that the above corollary can be interpreted as follows. Consider
partially hyperbolic skew-products Fi(x, y) = (fi(x), y + ϕi(x)) on T3. Then, if
the skew-products are conjugate and F1 is not conjugate to a product diffeomor-
phism (or equivalently, ϕ1 is not cohomologous to a constant) then the conjugacy
is smooth.

1.5. Khalil-Lafont conjecture and weighted marked length spectrum rigid-
ity. We proceed to a question posed by Osama Khalil and Jean Lafont. Let S be a
surface of genus ≥ 2. Given a Riemannian metric of negative curvature g on S, in
each non-trivial free homotopy class of maps γ : S1 → S there exists a unique unit
speed geodesic γ(g) whose length we will denote by `(γ, g).

If g1 and g2 are two metrics of negative curvature such that for all free homotopy
classes γ we have `(γ, g1) = `(γ, g2) then g1 and g2 are isometric. This result
is known as marked length spectrum rigidity for surfaces and is due to Otal and
Croke [Ot90, Cr90] (independently). Khalil and Lafont suggested a generalized
“weighted” version of marked length spectrum rigidity. Namely, instead of assuming
matching of lengths one assumes that certain weight functions ϕ1 : T 1S → R and
ϕ2 : T 1S → R match along corresponding geodesics:

(1.1)

∫
γ(g1)

ϕ1(γ̇(g1)(t))dt =

∫
γ(g2)

ϕ2(γ̇(g2)(t))dt

What can be said about the metrics?
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In order to answer this question we first will need to establish a “weighted”
version of Theorem 1.1. Recall the following definition. A function ϕ : M → R is
called an abelian coboundary over an Anosov flow Xt : M → M generated by the
vector field X if

ϕ(x) = ω(X(x))

for some closed 1-form ω : M → T ∗M .

Theorem 1.3. Let Xt
i : M → M , i = 1, 2, be Cr, r > 2, contact Anosov flows

which are orbit equivalent via an orbit equivalence H which is Cr along the orbits.
Assume that ϕi : M → R, i = 1, 2, are Cr, r > 2, functions such that∫

β

ϕ1(β(t))dt =

∫
H∗β

ϕ2(H∗β(t))dt

for every periodic orbit β of Xt
1 and corresponding periodic orbit H∗β for Xt

2. Then
either ϕi is an abelian coboundary over Xt

i , i = 1, 2, or H is Cr∗ , that is, Xt
1 is

Cr∗-smoothly orbit equivalent to Xt
2.

Remark 1.4. It is well known that any C0 orbit equivalence can always be adjusted
along the orbits to be as smooth as the flows along the orbits.

Remark 1.5. If we additionally assume that ϕ1 and ϕ2 are positive functions then
Theorem 1.3 follows rather easily from Theorem 1.1. Indeed, in this case one
can consider reparametrizations Y ti given by scaled generators Yi = 1

ϕi
Xi. The

matching condition of Theorem 1.3 then translates into matching of periods of Y t1
and Y t2 . Hence we have that Y t1 is conjugate to Y t2 and Theorem 1.3 can be applied.
Also note that in this case the contact assumption is only needed to rule out the
constant roof suspension case.

It is easy to deduce a more general version for flows which merely admit contact
reparametrizations, which we state next as a corollary. The authors also plan to
generalize to Theorem 1.3 to the setting of volume preserving flows in the future
work.

Corollary 1.6. Let Y ti : M → M , i = 1, 2, be Cr, r > 2, Anosov flows which are
orbit equivalent via an orbit equivalence H. Also assume that both Y ti admit contact
reparametrizations. Assume that ϕi : M → R, i = 1, 2, are Cr, r > 2, functions
such that ∫

β

ϕ1(β(t))dt =

∫
H∗β

ϕ2(H∗β(t))dt

for every periodic orbit β of Y t1 and corresponding periodic orbit H∗β for Xt
2. Then

either ϕi is an abelian coboundary over Y ti , i = 1, 2, or Y t1 is Cr∗-smoothly orbit
equivalent to Y t2 .

Theorem 1.3 yields a solution of the Khalil-Lafont conjecture.

Corollary 1.7. Let S be a closed surface and let g1 and g2 be metrics of negative
curvature on S. Let ϕ1 : T 1S → R and ϕ2 : T 1S → R be Cr, r > 2, functions
satisfying the matching condition (1.8). Also assume that ϕ1 is not an abelian
coboundary over the geodesic flow of g1. Then g1 is homothetic to g2, that is, there
exists a positive constant c such that g2 is isometric to c2g1.
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Using recent progress on marked length spectrum rigidity [GLP23] the assump-
tion on g1 and g2 can be relaxed to merely having Anosov geodesic flows.

In the case when the functions ϕi depends only on the base-point of the tangent
vector then the Corollary 1.7 takes the following particularly nice form, since in this
case the only abelian coboundary is the zero function. We also obtain matching of
the weights in this case.

Corollary 1.8. Let S be a closed surface and let g1 and g2 be metrics of negative
curvature on S. Let ψ1 : S → R and ψ2 : S → R be non-zero functions satisfying
the matching condition∫

γ(g1)

ψ1(γ(g1)(t))dt =

∫
γ(g2)

ψ2(γ(g2)(t))dt

for all γ. Then there exists a constant c > 0 and an isometry f : (S, c2g1)→ (S, g2).
We also have matching of the weights ψ2 ◦ f = cψ1.

Of course, it is very interesting and challenging to generalize these corollaries to
higher dimensional setting (at least to in the cases when marked length spectrum
rigidity is known). We also would like to ask if corollaries admit a generalization to
the setting on non-positively curved metrics or metrics with no conjugate points.
More specifically, does a weighted version Croke-Fathi-Feldman [CFF92] marked
length spectrum rigidity holds? (The matching condition is imposed on the infimum
of integrals over all geodesic minimizers in a given free homotopy class.) Note that
in this setting the dynamical tools become much less powerful.

1.6. Remarks.

1. We would like to point out that the proof of our main result crucially relies
on the earlier rigidity theorems, in particular, on de la Llave-Marco-Moriyón
and Pollicott theorem and on Feldman-Ornstein theorem. Ultimately, our
proof splits into several cases. In one case we conclude that both flows are
contact and we finish by citing Feldman-Ornstein theorem [FO87]. In the
other case we are able to recover stable and unstable eigenvalues at all peri-
odic points from the periods of certain approximating periodic orbits. This
then enables us to apply de la Llave-Marco-Moriyón and Pollicott theorem.
Hence our proof builds upon earlier works on rigidity and in no way discards
it.

2. The proof of the main result also relies on work of Foulon and Hassel-
blatt [FH03] on longitudinal Anosov cocycle and on very recent work of
Dilsavor and Marshall Reber [DMR22] on positive proportion Livshits the-
orem.

3. The conclusion of Theorem 1.3 (and Corollary 1.7) is sharp in the following
sense. If ϕ1 is an abelian coboundary then, generally speaking, one does
not have a smooth orbit equivalence of the flows. Indeed, start with orbit
equivalent flows Xt

1 and Xt
2 via H, which are not C1 orbit equivalent (this

is always the case when at least one pair of multipliers at corresponding
periodic orbits are different). Take any closed 1-form ω1 and let ϕ1 = ω1(X1).
Let ω2 be any closed 1-form which represents the cohomology class H∗[ω1].
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Let ϕ2 = ω2(X2). Then for any peridic orbit β of X1 we have∫
β

ϕ1(X1β(t))dt = 〈[ω1], [β]〉 = 〈[H∗ω1], [H∗β]〉

= 〈[ω2], [H∗β]〉 =

∫
H∗β

ϕ2(X2(H∗β(t))dt,

where we have used the fact that homology-cohomology pairing is inde-
pendent of the choice of representatives and also its functoriality property.
Hence, we have a matching pair (ϕ1, ϕ2) of abelian coboundaries without
having a smooth orbit equivalence.

4. Recently the current authors have written a series of papers on rigidity in
rank one dynamics for expanding maps, Anosov diffeomorphisms and Anosov
flows under various additional assumptions [GRH20a, GRH21a, GRH21b,
GRH22]. All these papers utilize what we call “matching functions tech-
nique.” The matching functions technique seems to be quite hopeless in the
setting of 3-dimensional Anosov flows. So, while the statements of results
in this series of papers are very similar to our main result here (rigidity),
technologically this paper is very different from our previous papers on the
subject of rigidity in rank one hyperbolic dynamics.

Acknowledgements. We would like to thank Jean Lafont and Osama Khalil
for sharing their question on weighted marked length spectrum rigidity with us. It
had largely motivated our interest in improving rigidity results for 3-dimensional
Anosov flows. We are very grateful to Livio Flaminio for his interest in this work and
enlightening discussions. We thank Martin Leguil for discussions and, especially,
for pointing us to the formulas which connect periods of closed orbits and Lyapunov
exponents. We also thank James Marshall Reber for checking various parts of the
proof and his feedback on our drafts. Last, but not the least, we would like to
thank Caleb Dilsavor and James Marshall Reber for their recent proof of Positive
proportion Livshits Theorem which we needed for this paper.

2. Preliminaries

2.1. De la Llave-Marco-Moriyón and Pollicott theorem for 3-dimensional
Anosov flows. We briefly recall the scheme of the proof of the rigidity theorem
stated in Section 1.2. We make an additional assumption that the conjugate flows
are both volume preserving which makes the argument more succinct. We fol-
low [dlL92].

The first step is to use thermodynamic formalism and the Livshits theorem to
show that the conjugacy H sends the invariant volume of Xt

1 to the invariant volume
of Xt

2. Then one concludes that the conjugacy sends 1-dimensional conditional
measures of the volume on local stable and unstable leaves of Xt

1 to corresponding
conditional measures on local stable and unstable leaves of Xt

2. One can argue
that these measures are smooth which immediately yields smoothness of H along
the stable and unstable leaves. The last step in the proof is to apply Journé’s
regularity lemma [J88] which establishes smoothness of H from the smoothness
along the foliations.

2.2. Moser normal form. We recall the classical Moser normal form for a conser-
vative hyperbolic fixed point in dimension 2 [Mos56]. Assume that F is a smooth
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area preserving, orientation preserving local map defined on a neighborhood of the
origin and such that the origin is a hyperbolic saddle point. Then there exists a
smooth area preserving change of coordinates Ψ such that F takes the following
form

Ψ−1 ◦ F ◦Ψ(x, y) = (µx(1 + axy +O((xy)2)), µ−1y(1− axy +O((xy)2)),

where µ ∈ (0, 1). For the above formula to hold F has to be at least C5 or better.
Since we will be working in Cr regularity with r > 2 only, we will need to have a

weak version of the Moser normal form which holds in such low regularity. Hence, let
F be as before, but now only assumed to be Cr regular. Let θ = min{1, r− 2} > 0.
Then there exists a Cr change of coordinates Ψ such that

(2.1) Ψ−1 ◦ F ◦Ψ(x, y) = (µx+ xyϕ1(x, y), µ−1y + xyϕ2(x, y)),

where ϕ1 and ϕ2 are Cθ, that is, they are Hölder with exponent θ and they vanish
at the origin, ϕ1(0, 0) = ϕ2(0, 0) = 0.

Existence of such a normal form is an exercise and can be established in four
steps which we proceed to outline. First, by a linear change of coordinates F can
be brought to the form

(x, y) 7→ (µx+Q1(x, y), µ−1y +Q2(x, y))

where Q1 and Q2 vanish to the first order at the origin. Then using a change of
coordinates of the form (x, y) 7→ (x + P1(x, y), y + P2(x, y)) with P1 and P2 being
a homogenous degree 2 polynomials we can ensure that Q1 and Q2 vanish to the
second order at the origin (that is, all second order partial derivatives vanish at
(0, 0)). The third step is to “straighten” the stable and unstable manifolds of the
saddle. We can push the stable manifold to the x-axis along the vertical direction
and then push the unstable manifold to the y-axis along the horizontal direction.
Notice that this change of coordinates is Cr since stable and unstable manifolds
are Cr. In this way we bring F to the form

(x, y) 7→ (µx+ Q̂1(x, y), µ−1y + Q̂2(x, y))

Since x axis is now invariant, we have that Q̂2 = yQ̄2 and, since, y axis is invariant,
Q̂1 = xQ̄1. Also notice that, since the stable and unstable manifolds were tangent
to the axes to the second order, after the last coordinate change the functions Q̂1

and Q̂2 still vanish to the second order at (0, 0).
Now the restriction of F to the x-axis has the form x 7→ µx+ xQ̄1(x, 0). Using

Poincaré linearization we can Cr conjugate it to the linear map x 7→ µx. It is easy
to Cr extend this conjugacy to the neighborhood without destroying any of the
established properties. The restriction to the y-axis can be linearized in the same
way. After this last change of coordinates the map takes the form

(x, y) 7→ (µx+ xQ̃1(x, y), µ−1y + yQ̃2(x, y))

where Q̃1 and Q̃2 are Cr−1 and Q̃1(x, 0) = Q̃2(0, y) = 0 since we have linearized

along the axis. Hence, we have Q̃1 = yϕ1 and Q̃2 = xϕ2, which yields the posited
normal form (2.1). Note that it is clear that ϕ1 and ϕ2 are Cθ and they vanish at
the origin since the non-linear component vanishes to the second order at (0, 0).
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2.3. Adapted transverse coordinates. Now we recall the definition of adapted
transverse coordinates for a 3-dimensional volume preserving Anosov flowXt : M →
M . These coordinates constitute a non-stationary version of Moser normal form
and were introduced by Hurder and Katok [HK91].

Assume that Xt : M → M is a Cr, r > 2, 3-dimensional Anosov flow which
preserves a volume form ω. A map

Ψ: M × (−ε, ε)2 →M ; (p, x, y) 7→ Ψp(x, y)

is called a Cr adapted transverse coordinate system for Xt if the following properties
hold.

1. Ψp(0, 0) = p and the map Ψp : (−ε, ε)2 →M is a Cr embedding whose image
Tp is transverse to the flow generator X;

2. The family of maps Ψ: M → Emb((−ε, ε)2,M) is Hölder continuous map
into the space of embeddings equipped with Cr topology;1

3. The “horizontal” vector field (Ψp)∗(
∂
∂x ) and “vertical” vector field (Ψp)∗(

∂
∂y )

on Tp are transverse to weak stable and weak unstable distributions, respec-

tively. Further, (Ψp)∗(
∂
∂x ) is C1 tangent to the vector field E0u ∩ TTp at

(Ψp)∗(
∂
∂x )(0, 0) = E0u(p)∩ TpTp; and (Ψp)∗(

∂
∂y ) is C1 tangent to the vector

field E0s ∩ TTp at (Ψp)∗(
∂
∂y )(0, 0) = E0s(p) ∩ TpTp;

4. The curve Ψp((ε, ε), {0}) is contained in the weak stable submanifold of p
and the curve Ψp(({0}, (ε, ε)) is contained in the weak unstable submanifold
of p;

Hurder and Katok proved that Cr−1 adapted transverse coordinates exist for Cr

flows and also proved that they provide a normal form for the flow [HK91, Section 4].
The reason why they lose a derivative is that they insist on an additional volume
preservation property which we don’t need in this paper. Namely, they require that

Ψ∗p(ωTp) = dx ∧ dy,

where ωTp = ιXω the induced volume on Tp. To guarantee this property an addi-
tional coordinate change must made which is responsible for the loss of a derivative.
Since we don’t need such a property, our adapted charts are Cr and provide the
following normal form for the Poincaré return maps Fp : Tp → TXt0 (p), t0 > 0,

(2.2) Ψ−1
Xt0 (p)◦Fp◦Ψp(x, y) = (µ(t0)x+o(x2+y2), µ(t0)−1y+o(x2+y2)), µ ∈ (0, 1)

Remark 2.1. Note that an adapted coordinate systems for Xt is also an adapted
coordinate system for any reparametrization of Xt.

2.4. Longitudinal Anosov cocycle and Foulon-Hasselblatt theorem. Given
a point p ∈M and a time t ∈ R consider the first return time ξ from Tp to TXt(p),
which is a smooth function defined by two conditions

ξ(p) = t, Xξ(q)(q) ∈ TXt(p), q ∈ Tp

These conditions uniquely define ξ in a neighborhood of p in Tp. Recall that Tp
is equipped with adapted coordinates (x, y), hence, we can view ξ as a function of

1In fact, one can also require that Ψ is C1 in the first coordiate p as Hurder-Katok do, but
this will not be important.
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variables x and y. Define longitudinal Anosov cocycle K : M ×R→ R as the mixed
partial derivative

(2.3) K(p, t) =
∂2ξ

∂x∂y
(0, 0)

Using linearity of the partial derivative and that detDFp(p) = 1 by (2.2), it is easy
to check that K is an additive cocycle over Xt. Since Ψp is Cr with r > 2, it is
immediate from property 2 of the adapted coordinates that K is Hölder continuous.
Foulon and Hasselblatt [FH03] (see also [FFH10]) proved that if K is a coboundary
then then Es ⊕ Eu is at least C1, which then implies by work of Plante [P72,
Theorem 4.7] that either Xt is a contact flow or Es⊕Eu is an integrable distribution
which, in turn, implies that Xt is a constant roof suspension.

We have to remark that our definition of longitudinal Anosov cocycle is not
exactly the same as the one given by Foulon-Hasselblatt. This is because they
define the cocycle relative to a different collection of adapted transverse coordinates.
Namely, they use transversals which contain local stable and unstable manifolds
through p. This has an advantage that the point (0, 0) is a critical point of the first
return time function and then the cocycle can be defined as the value of Hessian
on stable and unstable unit vectors. The disadvantage is that it is harder to see
that the cocycle is Hölder. However, we will check that it makes little difference.
Namely, the next lemma shows that the value of the mixed partial derivative at a
periodic point does not depend on a particular choice of transversal. By the Livshits
theorem [L72] the cohomology class of a Hölder cocycle is determined by its values
on periodic points. Hence, by the following lemma, cocycle K is cohomologous to
the one defined in [FH03] and, hence, Foulon-Hasselblatt result indeed applies to
the cocycle K defined above.

Lemma 2.2. Let p = XT (p) be a periodic point and let Tp be the transversal with
adapted coordinates (x, y). Let T ′p be another transversal through p. Since Tp and T ′p
are related by a short holonomy along the flow the adapted coordinates also induce
coordinates on T ′p . Denote by ξ the return time to Tp and by ξ′ the return time to
T ′p . Then

∂2ξ

∂x∂y
(0, 0) =

∂2ξ′

∂x∂y
(0, 0)

Proof. For any point q ∈ Tp we have Xu(q)(q) ∈ T ′p , where u is a smooth function
with u(p) = 0. Then

ξ′ = ξ − u+ u ◦ Fp,
where Fp is the first return map to Tp. Recall that, when written in (x, y)-
coordinates Fp has a normal form with all second order terms vanishing (2.1).
Hence taking the mixed partial derivative we have

∂2ξ′

∂x∂y
(0, 0) =

∂2ξ

∂x∂y
(0, 0)− ∂2u

∂x∂y
(0, 0) +

∂

∂x

(
∂u

∂y
◦ FpDFp

(
∂

∂y

))
(0, 0)

=
∂2ξ

∂x∂y
(0, 0)− ∂2u

∂x∂y
(0, 0) +

∂2u

∂x∂y
(0, 0)µµ−1 +

∂u

∂y
(0, 0)D2Fp

(
∂

∂x
,
∂

∂y

)
(0, 0)

=
∂2ξ

∂x∂y
(0, 0)

�



10 ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

2.5. Positive proportion and Alternate Livshits Theorems. We will need
to use the following “positive proportion version” of the celebrated Livshits Theo-
rem [L72] which was recently established by Dilsavor and Marshall Reber [DMR22].

Let Xt : M → M be a transitive Anosov flow and let ∆ be a fixed positive
number. Let PT be the set of periodic orbits whose periods lie in the interval
(T, T + ∆]. Let a : M × R → R be a Hölder continuous cocyle and PT,a ⊂ PT
be the subset of periodic orbits on which a vanishes. The basic version of positive
proportion Livshits theorem says that if lim supT→∞#PT,a/#PT > 0 then a is a
coboundary. We will need a slightly more general version, where positive proportion
is measured relative to an equilibrium state.

So let B : M × R → R be another Hölder continuous cocycle and let µB be the
associated equilibrium state [Bow75]. Given a periodic orbit γ we will write B(γ)
for the value B(p, |γ|), where p ∈ γ and |γ| is the period of p. Also denote by δγ
the invariant measure supported on γ of total mass |γ|. Then the measures

µT,B =
1∑

γ∈PT |γ|e
B(γ)

∑
γ∈PT

eB(γ)δγ

approximate µB [Bow72, Fr77, P88]. Formally, the set PT and, accordingly, the
measures µT,B also depend on ∆, but ∆ will be fixed throughout the discussion,
say one can take ∆ = 1, and hence, it is safe to omit this dependence in notation
to keep notation less cumbersome.

Theorem 2.3 (Positive proportion Livshits Theorem [DMR22]). Let Xt, B and
a be as described above. Assume that PT,a has positive proportion relative to µB,
that is,

lim sup
T→∞

µT,B(PT,a) > 0

Then cocycle a is a coboundary, that is,

a(x, t) = u(Xt(x))− u(x)

for some Hölder continuous function u.

Remark 2.4. This theorem is formulated in a slightly different, but equivalent way
in [DMR22, Theorem 1.2]. Namely, the approximating measures are defined using
a different normalization

µ̂T,B =
1∑

γ∈PT e
B(γ)

∑
γ∈PT

eB(γ)

|γ|
δγ

and, accordingly, the positive proportion assumption in [DMR22] is stated as
lim supT→∞ µ̂T,B(PT,a) > 0. We note that due to the obvious two-sided inequality

T

T + ∆
µ̂T,B(PT,a) ≤ µT,B(PT,a) ≤ T + ∆

T
µ̂T,B(PT,a)

these positive proportion assumptions are equivalent.

In the course of the proof we will need to apply the above theorem two times.
For the first application another version which we call Alternate Livshits Theorem
suffices. This theorem allows for a different, quite elementary and soft proof based
on Bowen’s approximation formula for equilibrium states [Bow72] which we give in
the appendix.
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Theorem 2.5 (Alternate Livshits Theorem). Let Xt : M → M be a transitive
Anosov flow and assume that a1, a2, . . . aN : M × R → R are Hölder cocycles such
that that for all periodic orbits γ there exist an i ∈ [1, N ] such that ai vanishes
on γ: ai(x, |γ|) = 0, x ∈ γ, X |γ|(x) = x. Then at least one of the cocycles is a
coboundary, that is, there exists at least one j ∈ [1, N ] such that

aj(x, t) = u(Xt(x))− u(x)

for some Hölder continuous function u.

Clearly, Alternate Livshits Theorem is also a corollary of Positive proportion
Livshits Theorem.

3. Proof of Theorem 1.1

Here we will explain how Theorem 1.1 follows from a Theorem 3.1, which we
proceed to state.

Recall that Xt
1 and Xt

2 are conjugate Anosov flows: H ◦Xt
1 = Xt

2 ◦H. Given a
periodic point p = XT

1 (p) of period T let χ1(p) be the positive Lyapunov exponent
of p and let χ2((H(p)) be the positive Lyapunov exponent of H(p); that is

χ1(p) =
1

T
log JuXT

1 (p), χ2(H(p)) =
1

T
log JuXT

2 (H(p)),

The following is a local result which is crucial for the proof of Theorem 1.1.

Theorem 3.1. Let Xt
1, Xt

2 and H be as Theorem 1.1. Then for every periodic
point p = XT

1 (p) of period T the following tetrachotomy holds

• either K1(p, T ) = K2(H(p), T ) = 0, where Ki is the longitudinal Anosov
cocycle of Xt

i , i = 1, 2;
• or K1(p, T ) = 0, K2(H(p), T ) 6= 0 and χ1(p) < χ2(H(p));
• or K2(H(p), T ) = 0, K1(p, T ) 6= 0 and χ1(p) > χ2(H(p));
• or K1(p, T ) 6= 0, K2(H(p), T ) 6= 0 and χ1(p) = χ2(H(p))

Now consider the cocycle A(x, t) = log JuXt
1(x) − log JuXt

2(H(x)) over Xt
1.

Then, according to the above theorem, we have that over every periodic orbit at
least one of the cocycles K1, K2 ◦ H or A vanishes. Then the Alternate Livshits
theorem applies to give that at least one of these cocycles is a coboundary.

If A is a coboundary, then all Lyapunov exponents at periodic points match
under conjugacy and then de la Llave-Marco-Moriyón-Pollicott theorem applies
and yields Cr∗ regularity of the conjugacy.

Hence we only need to consider the case when K1 is a coboundary over Xt
1. (If

K2 ◦H is coboundary over Xt
1 then K2 is coboundary over Xt

2 which is an entirely
symmetric situation.) By the Foulon-Hasselblatt theorem [FH03], we conclude that
Xt

1 is either a contact flow or a constant roof suspension. If Xt
1 is a constant roof

suspension flow then, in fact, the second flow also has to be a constant roof suspen-
sion. Indeed, in this case M is the mapping torus of a hyperbolic automorphism
and the second flow also has a global torus section, since the flows are conjugate.
Then, since the periods match, the roof function of the second flow has exactly the
same sums over periodic orbits as the constant roof of the first flow. Hence, by
Livshits theorem, this roof function is cohomologous to the same constant which
means that the second flow is also a constant roof suspension. This gives us one of
the alternative conclusions of Theorem 1.1.
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Thus it remains to consider the case when Xt
1 is a contact flow. The following

proposition completes the proof of Theorem 1.1 modulo Theorem 3.1. We note that
this proposition improves a theorem of Feldman and Ornstein who proved that a
pair of 3-dimensional contact Anosov flows are C0 conjugate if and only if they are
C1 conjugate [FO87].

Proposition 3.2. Let Xt
i : M → M , i = 1, 2, be Cr, r > 2, Anosov flows which

are conjugate via a conjugacy H. Assume additionally that Xt
1 is a contact flow

and that Xt
2 is volume preserving. Then Xt

2 is also contact and the conjugacy is
Cr∗ regular.

Proof. Our objective is to show that the longitudinal Anosov cocycle K2 of Xt
2 is

a coboundary. Then, by the Foulon-Hasselblatt theorem we have that Xt
2 is either

contact or a constant roof suspension. Since Xt
1 is contact the case when Xt

2 is a
constant roof suspension is easily ruled out as explained in the paragraphs preceding
the proposition. Hence, we have that both Xt

1 and Xt
2 are contact and we can use

Feldman-Ornstein theorem [FO87] to conclude that H is a C1 diffeomorphism.
Then one can use de la Llave bootstrap [dlL92] to gain optimal smoothness Cr∗ .
(Also see [GRH22] for a refined Feldman-Ornstein argument which gives optimal
smoothness right away for conjugacy of contact flows.)

Denote by ω the invariant volume for Xt
2 and let B(x, t) = − log JuXt

2. Recall
that ω is the equilibrium state for B [Bow75].

As before, let PT be the set of periodic orbits of Xt
2 whose periods lie in the

interval (T, T + ∆] and let

PT,K2
= {γ ∈ PT : K2(p, |γ|) = 0, p ∈ γ}

If lim supT→∞ µT,B(PT,K2) > 0 then K2 is a coboundary by the Positive proportion
Livshits Theorem 2.3. Hence we need to rule out the following possibility

(3.1) lim
T→∞

µT,B(PT,K2) = 0

Since K1 vanishes on every periodic orbit γ of Xt
1, by Theorem 3.1, we have that

if K2 does vanish on H(γ) then χ1(p) < χ2(H(p)), which justifies the following
notation

PT,χ1<χ2
= PT \PT,K2

We can decompose the approximating measures µB,T accordingly

µT,B =
1∑

γ∈PT |γ|e
B(γ)

 ∑
γ∈PT,K2

eB(γ)δγ +
∑

γ∈PT,χ1<χ2

eB(γ)δγ


= µT,B(PT,K2)

1

µT,B(PT,K2)

∑
γ∈PT,K2

eB(γ)δγ

+ µT,B(PT,χ1<χ2
)

1

µT,B(PT,χ1<χ2)

∑
γ∈PT,χ1<χ2

eB(γ)δγ

= µT,B(PT,K2)µT,B,K2 + µT,B(PT,χ1<χ2)µT,B,χ1<χ2 ,

where µT,B,K2 and µT,B,χ1<χ2 are defined by the last line. In this way, we have
a decomposition of µT,B as a convex combination of probability measures µT,B,K2
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and µT,B,χ1<χ2
. By (3.1) the coefficients of this decomposition converge to 0 and

1, respectively. Hence, taking the limit as T →∞ yields

(3.2) lim
T→∞

µT,B,χ1<χ2
= lim
T→∞

µT,B = µB = ω

Now we are ready to make the estimates. We have∫
M

log JuX1
1 ◦H−1dµT,B,χ1<χ2

=
1

µT,B(PT,χ1<χ2
)

∑
γ∈PT,χ1<χ2

eB(γ)

∫
H−1(γ)

log JuX1
1dδH−1(γ)

=
1

µT,B(PT,χ1<χ2
)

∑
γ∈PT,χ1<χ2

eB(γ)χ1(H−1(γ))

<
1

µT,B(PT,χ1<χ2)

∑
γ∈PT,χ1<χ2

eB(γ)χ2(γ)

=
1

µT,B(PT,χ1<χ2
)

∑
γ∈PT,χ1<χ2

eB(γ)

∫
γ

log JuX1
2dδγ

=

∫
M

log JuX1
2dµT,B,χ1<χ2

Taking the limit of both sides of this inequality and using weak ∗ convergence (3.2)
we obtain ∫

M

log JuX1
1 ◦H−1dω ≤

∫
M

log JuX1
2dω

On the other hand, using the Jacobian formula for the positive Lyapunov expo-
nent, Pesin formula and Margulis-Ruelle inequality we have∫

M

log JuX1
2dω = χ2(ω) = h(ω,X1

2 ) = h(H∗ω,X1
1 )

≤ χ1(H∗ω) =

∫
M

log JuX1
1dH

∗ω =

∫
M

log JuX1
1 ◦H−1dω

We have arrived at opposing inequalities, hence, both must be equalities. In partic-
ular, equality is achieved in the Margulis-Ruelle inequality h(H∗ω,X1

1 ) ≤ χ1(H∗ω)
which can happen if and only if H∗ω is an absolutely continuous invariant measure.
Recall from the discussion in Section 2.1 that if H sends an absolutely continuous
invariant measure to an absolutely continuous invariant measure then H is smooth.
Hence we have that Xt

2 is also contact and has vanishing longitudinal Anosov cocyle
which rules out (3.1). �

4. Proof of Theorem 3.1

In this section we prove Theorem 3.1, which then completes the proof of Theo-
rem 1.1.

It will become clear from the proof that while this is a theorem about two flows,
it is, in fact, secretly, a theorem about a single flow Xt. Namely, if the longitudinal
Anosov cocycle is non-zero at a periodic orbit γ then we recover the Lyapunov
exponent of γ from a sequence of periods of periodic orbits which approximate a
homoclinic orbit of γ. Then, since for conjugate flows periods of corresponding
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periodic orbits are equal, this allows us to conclude matching of Lyapunov expo-
nents.2

Let Xt be a 3-dimensional volume preserving Anosov flow and let γ be a periodic
orbit with a base-point p ∈ γ and period T0. Let T be a Cr smooth transver-
sal through p which contains stable and unstable manifolds of p. We denote by
F : F−1(T )→ T the local return map to T and by τ +T0 : F−1(T )→ R the return
time to T , that is, τ is defined by Xτ(x)+T0(x) = F (x). Because stable and un-
stable manifolds are invariant we have that τ vanishes on W s

loc(p)∪Wu
loc(p), where

W s
loc(p) and Wu

loc(p) are connected components of p of W s(p) ∩ T and Wu(p) ∩ T ,
respectively. We equip T with Moser coordinates so that F has the form (2.1)

F (x, y) = (µx+ xyϕ1(x, y), µ−1y + xyϕ2(x, y))

Recall that in these coordinates we still have that both F and τ are Cr smooth.
As before, we let θ = min{1, r − 2}. Since we assumed that r > 2 we have θ > 0.
Recall that ϕi(x, y) ≤ C(|x|θ + |y|θ).

Now consider any orbit O homoclinic (that is, bi-asymptotic) to the orbit of
p. Let pin be the first point (with respect to time order on O) in the intersection

O∩W s
loc(p) and let pout be the last point in O∩Wu

loc(p). Then we have XT ′(pout) =
pin and the orbit segment {Xt(pout) : t < 0 < T ′} is disjoint with T .

The forward orbit {F i(pin); i ≥ 0} converges to p alongW s
loc(p) and the backward

orbit {F−i(pout); i ≥ 0} converges to p along Wu
loc(p). Hence the segment of O from

F−i1(pout) to F i2(pin) forms a pseudo-orbit for Xt which can be shadowed by a
periodic orbit γn according to Anosov closing lemma. By appropriately choosing
i1 and i2 with |i1 − i2| ≤ 1 we can arrange that γn intersects T at n + 1 points
q1, q2, . . . qn+1 (ordered with respect to time direction on γn) with q1 being close to
pin and qn+1 being close to pout. We denote by (xi, yi) the coordinates of qi and
by xin and yout the x-coordinate of pin and the y-coordinate of pout, respectively.
From the shadowing property it is clear that q1 is very close to pin and qn+1 is very
close to pout. The next lemma makes it quantitative.

Lemma 4.1. The coordinates of q1 and qn+1 satisfy the following estimates with
constants uniform in n

c1µ
n ≤ |y1| ≤ c2µn, c1µn ≤ |x1 − xin| ≤ c2µn,

and

c1µ
n ≤ |xn+1| ≤ c2µn, c1µn ≤ |yn+1 − yout| ≤ c2µn

Proof. Probably the simplest way to verify these inequalities is to use C1-linearization.
It is well-known that T admits C1 coordinate system (x̃, ỹ) which makes dynamics
fully linear [Hart60, Bel73]

F (x̃, ỹ) = (µx̃, µ−1ỹ)

This coordinate change has the form

(x̃, ỹ) = (x+ xψ1(x, y), y + yψ2(x, y))

where ψ1 and ψ2 are continuous (and hence bounded) functions on T .

2We would like to thank Martin Leguil who pointed out to us that such connections between

periods and Lyapunov exponents exist. In particular, similar formulas were extensively used in
the billiards setting [HKS18, BDKL20, DKL]. This approach allowed us to replace our earlier

“fractal graph argument” with an easier and shorter approximation argument.
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p

p

γ

pin

pout

T

T

q1

qn+1

W s

loc
(p)

Wu

loc
(p)

Since the points qn+1 converge to pout as n → ∞ we have c̄1 ≤ |ỹn+1| ≤ c̄2 for
some positive c1 and c2 and all n. Then iterating n times backwards with linear
dynamics yields c̄1µ

n ≤ |ỹ1| ≤ c̄2µ
n. Observing that |ỹ1/y1| is uniformly bounded

above and below yields the first posited inequality. The second inequality follows
from similar considerations and the remaining inequalities also follow usingthe same
argument by iterating forward instead. �

From the lemma we have ‖q1−pin‖ ≤ Cµn and ‖qn+1−pout‖ ≤ Cµn. Denote by

Tn the period of γn and by T ′n the time from qn+1 to q1, that is, XT ′n(qn+1) = q1.
Then, since T is transverse to the flow we have

(4.1) |T ′n − T ′| ≤ C(‖qn+1 − pout‖+ ‖q1 − pin‖) ≤ Cµn

Lemma 4.2. We have the following asymptotic formula for T ′

T ′ = lim
n→∞

Tn − nT0

Hence the value T ′ is determined by the periods of periodic orbits.

Proof. Because τ vanishes on W s
loc(p)∪Wu

loc(p) we have that |τ(x, y)| ≤ c|xy|. Since
orbit γn intersects T n + 1 times we can write Tn as the following sum of n + 1
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terms.

Tn = T ′n +

n∑
i=1

(τ(xi, yi) + T0) ≤ T ′n + nT0 + C

n∑
i=1

c|xiyi|

Here (xi, yi) are the coordinates of qi. Since by (4.1) we have T ′n → T ′ as n→∞,
to establish the lemma it remains to prove that the above sum converges to 0. In
fact, we will prove that

∑n
i=1 |xiyi| = O(nµn) as n→∞ which will also be helpful

for the next lemma.
First note that we have |xi| ≤ C(µ+)i and |yi| ≤ C(µ+)n−i for some C > 0 and

some µ+ ∈ (µ, 1). Indeed, since F is C1 close to the linear map (x, y) 7→ (µx, µ−1y)
we have that xi+1 ≤ µ+xi and yi ≤ µ+yi+1 for all (xi, yi) which are sufficiently close
to the origin. Hence, by taking a smaller transversal T (or, equivalently, replacing
pin and pout with F k(pin) and F−k(pout), respectively, for some large k) we can
assume that we have such exponential bounds on xi and yi.

Recall that we have |x1y1| ≤ Cµn by Lemma 4.1 and we would like to bound
the products |xiyi| for all i = 1, . . . n. We can do so using induction

|xi+1yi+1| = |(µxi + xiyiϕ1(xi, yi))(µ
−1yi + xiyiϕ2(xi, yi))|

= |xiyi||1 + µxiϕ2(xi, yi) + µ−1yiϕ1(xi, yi) + xiyiϕ1(xi, yi)ϕ2(xi, yi)|
≤ |xiyi|(1 + C(µ+)i + C(µ+)n−i)

From convergence of geometric series, it is a standard calculus exercise to check
that the products

n∏
i=1

(1 + C(µ+)i + C(µ+)n−i)

are bounded uniformly in n. Therefore, by induction, we have

|xiyi| ≤ C2µ
n

for some C2 > 0 and for all i = 1, . . . n and n ≥ 1. Hence,
∑n
i=1 |xiyi| = O(nµn).

Also note, that by Lemma 4.1 |x1y1| ≥ cµn and we also have

|xi+1yi+1| ≥ |xiyi|(1− C(µ+)i − C(µ+)n−i),

which, again by induction, implies a uniform lower bound. Hence we, in fact, have

(4.2) C1µ
n ≤ |xiyi| ≤ C2µ

n

with some C1 and C2 which do not depend on n. �

Remark 4.3. Alternatively, this last argument could utilize C1 linearization again.
Namely, for fully linearized system |x̃iỹi| is independent of i and proportional to
µn and we have |xiyi| � |x̃iỹi|.

Lemma 4.4. The periodS Tn of the periodic orbitS γn admit the following asymp-
totic expansion

Tn = nT0 + T ′ + cnKnµ
n +O(µn),

where K is value of the longitudinal Anosov cocycle on γ and the sequence of con-
stants {cn;n ≥ 1} is uniformly bounded above and below.

Remark 4.5. Using more delicate estimates one can actually obtain a true asymp-
totic formula Tn = nT0 + T ′ + c0Knµ

n + O(µn) where c0 6= 0, however the above
lemma is easier to establish and it is sufficient for our purposes.
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Proof. We have Tn = T ′n + nT0 +
∑n
i=1 τ(xi, yi). Using (4.1) we can write

Tn = nT0 + T ′ +

n∑
i=1

τ(xi, yi) +O(µn)

Recall that τ vanishes to the first order at p and we can expand it as follows

τ(x, y) = Kxy + xyB(x) + xyC(y) +O((xy)1+θ)

where B(x) = O(xθ) and C(y) = O(yθ). Also recall also that K is the value of

longitudinal Anosov cocycle K = K(p, T0) = ∂2τ
∂x∂y (0, 0).

Now we will split the sum
∑n
i=1 τ(xi, yi) into four sums according to the above

expansion for τ . In order not to write absolute value bars we can assume that the
orbit {qi, i = 1, ..n+1} belongs to the first quadrant so that all xi and yi are positive
(if the orbit belongs to a different quadrant then we can change the orientation of
axes accordingly). First, using (4.2) we have

C1Knµ
n ≤

n∑
i=1

Kxiyi ≤ C2Knµ
n

Hence, we indeed have that
∑n
i=1Kxiyi = cnKnµ

n, where cn ∈ [C1, C2], C1 > 0.
Note that to prove the posited formula it remains to show that the remaining

three sums are O(µn). Clearly,
∑n
i=1O((xy)1+θ) = nO(µ1+θ) = o(µn). Next we

have ∣∣∣∣∣
n∑
i=1

xiyiB(xi)

∣∣∣∣∣ ≤ C2µ
n

n∑
i=1

Cxθi ≤ C3µ
n

n∑
i=1

(µ+)iθ

Since the latter sum are summable geometric series, we obtain
∑n
i=1 xiyiB(xi) =

O(µn). Analogously, we have
∑n
i=1 xiyiC(yi) = O(µn), which finishes the proof.

�

We can now go back to our setting of conjugate Anosov flows Xt
1 and Xt

2. We will
apply Lemma 4.4 to a periodic orbit γ1 of Xt

1 and γ2 = H(γ1). Note that if {γn}
is a sequence of periodic orbits approximating a homoclinic orbit of γ1 then the
sequence {H(γn)} approximates a homoclinic orbit of γ2. And Lemma 4.4 yields
the formula

Tn − nT0 − T ′ = cjnnKjµ
n
j +O(µnj ), j = 1, 2,

where Kj is the value of the longitudinal Anosov cocycle on γj , µj is the smaller
eigenvalue of the Poincaré map at γj and cjn are some constants uniformly bounded
from above and away from zero. Note that T0 and Tn do not have a j subscript
because these are lengths of periodic orbits which are the same for both flows since
they are conjugate. Also, by Lemma 4.2, the value of T ′ is determined by the
lengths of periodic orbits, hence, is the same for both flows.

First consider the case when both K1 and K2 do not vanish. In this case we can
recover the multipliers µj , j = 1, 2, from the periods. Indeed, taking logarithms we
have

log(Tn − nT0 − T ′) = n logµj + log(cjnKjn+O(1)), j = 1, 2

Note that since Kj 6= 0 we have cjnKjn + O(1) > 0 for all sufficiently large n and
it grows sublinearly. Hence, dividing by n and taking the limit gives

logµ1 = logµ2 = lim
n→∞

log(Tn − nT0 − T ′)
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Hence the unstable exponents χ1(γ1) = − logµ1 and χ2(γ2) = − logµ2 are equal,
yielding the last alternative conclusion of Theorem 3.1 in this case.

The case K1 = K2 = 0 gives the first alternative conclusion of the theorem.
Hence we are left consider the second case when K1 = 0 and K2 6= 0, the remaining
third case (K1 6= 0 and K2 = 0) being fully analogous. In this case we obtain

O(µn1 ) = Tn − nT0 − T ′ = c2nnK2µ
n
2 +O(µn2 )

Hence nµn2 = O(µn1 ), which implies that µ1 > µ2 and χ1(γ1) = − logµ1 <
− logµ2 = χ2(γ2).

5. Proof of Theorem 1.3

We begin with the definition the generalized longitudinal Anosov cocycle. Let
Xt : M →M be a volume preserving 3-dimensional Anosov flow and let ϕ : M → R
be a function. Let Tp, p ∈M , be the system of adapted transverals for Xt equiped
with (x, y)-coordinates as defined in Section 2.3. For any p ∈ M and t ∈ R let
ξ : Tp → R be the first return time from Tp to TXt(p). Consider the function
ξϕ : Tp → R given by

ξϕ(q) =

∫ ξ(q)

q

ϕ(Xt(q))dt

Define

Kϕ(p, t) =
∂2ξϕ
∂x∂y

(0, 0)

When we need to emphasize dependence on the flow we will additonally use a
superscript KX

ϕ . The following properties of the generalized longitudinal Anosov
cocyle are immediate from the definition.

1. If ϕ ≡ 1 then ξϕ = ξ and Kϕ = K is the usual longitudinal cocycle defined
earlier (2.3).

2. Given two functions ϕ,ψ : M → R and two constants b, c ∈ R we have
Kbϕ+cψ = bKϕ + cKψ.

3. If ϕ > 0 and Y t is a reparametrization of Xt with generator Y = 1
ϕX

then KY (p, tϕ) = KY
1 (p, tϕ) = KX

ϕ (p, t), where tϕ =
∫ t

0
ϕ(Xs(p))ds (cf.

Remark 2.1). In particular, if KX
ϕ is a coboundary over Xt then KY is a

coboundary over Y t. Indeed, if KX
ϕ (p, t) = u(p)−u(Xt(p)) then KY (p, tϕ) =

u(p)− u(Xt(p)) = u(p)− u(Y tϕ(p)).

We have the following generalization of Theorem 3.1.

Theorem 5.1. Let Xt
1, Xt

2, ϕ1, ϕ2 and H be as Theorem 1.3. Then for every
periodic point p = XT

1 (p) of period Tp the following pentachotomy holds

• either ∫ Tp

0

ϕ1(Xt
1(p))dt = 0;

• or Kϕ1
(p, Tp) = Kϕ2

(H(p), TH(p)) = 0, where Kϕi is the generalized longi-
tudinal Anosov cocycle of (Xt

i , ϕi), i = 1, 2;
• or Kϕ1

(p, Tp) = 0, Kϕ2
(H(p), TH(p)) 6= 0 and χ1(p) < χ2(H(p));

• or Kϕ2(H(p), TH(p)) = 0, Kϕ1(p, Tp) 6= 0 and χ1(p) > χ2(H(p));
• or Kϕ1

(p, Tp) 6= 0, Kϕ2
(H(p), TH(p)) 6= 0 and χ1(p) = χ2(H(p)).
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One way to establish Theorem 5.1 is to carefully repeat all the arguments of Sec-
tion 4 while replacing the time with appropriate integrals of ϕi. While majority of
the arguments remain the same, some steps would require substantial modification.
An alternative way is to reduce Theorem 5.1 to Theorem 3.1, which is what we will
do below.

Proof. We will denote by γ the periodic orbit through the point p. We will denote
by T0 = Tp the period of p to be consistent with notation used in Section 4. Also
for the rest of the proof we will write Xt and ϕ instead of Xt

1 and ϕt1 as the bulk
of the proof only considers the first flow.

We can assume that
∫ T0

0
ϕ(Xt(p))dt > 0. Indeed, if the integral vanishes then it

puts us in the first alternative of the theorem and if it is negative we can replace
the matching pair (ϕ1, ϕ2) with the matching pair (−ϕ1,−ϕ2) and then argue in
exactly same way since the integral of −ϕ1 is positive.

As in Section 4 we consider the heteroclinic orbit O and a sequence of periodic
orbits γn, n ≥ 1 which approximate O.

Lemma 5.2. Function ϕ is cohomologous to a function ϕ̄ which is positive on
γ ∪ O.

Proof. Since the integral of ϕ over γ is positive the function

ϕ̃(x) =
1

T

∫ T

0

ϕ(Xt(x))dt

is positive on γ if T is chosen to be sufficiently large. Since O is bi-asymptotic to
γ we have that ϕ̃ is positive on all but a finite piece of O of length L. To make it
positive there as well we can repeat the trick and set

ϕ̄(x) =
1

T

∫ T

0

ϕ̃(Xt(x))dt

If T ≫ L then ϕ̄ will be positive on all of O and, clearly, stays positive on γ. �

Let U be a neighborhood of γ ∪O such that ϕ̄|U > 0. Pick any positive smooth
function ϕ̂ : M → R such that ϕ̂|U = ϕ̄|U . Define

Tϕ0 =

∫
γ

ϕdt, Tϕn =

∫
γn

ϕdt, n ≥ 1,

and similarly T ϕ̄n and T ϕ̂n . Since ϕ is cohomologous to ϕ̄ we have Tϕn = T ϕ̄n and, since
γn ⊂ U for all sufficiently large n, we also have that T ϕ̄n = T ϕ̂n for all sufficiently
large n.

Now consider reparametrization Y t with generator Y = 1
ϕ̂X. Note that this

reparametrization is well defined because ϕ̂ > 0. Also note that the Y t-period of
γn is given by T ϕ̂n . We can apply Lemma 4.4 to Y t and the sequence of periodic
orbits γn considered as periodic orbits of Y t to obtain the following.

Lemma 5.3. The periods T ϕ̂n of the periodic orbits γn admit the following asymp-
totic expansion

T ϕ̂n = nT ϕ̂0 + T ′ + cnK
Y nµn +O(µn),

where T ′ is a certain number determined by {T ϕ̂n , n ≥ 0}, KY = KY (p, Tϕ0 ) is value
of the longitudinal Anosov cocycle on γ, µ ∈ (0, 1) is the eigenvalue of the return
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map at p, and the sequence of constants {cn;n ≥ 1} is uniformly bounded above
and below.

Remark 5.4. We recall that the fact that T ′ can be recovered from the periods is
the contents of Lemma 4.2.

Recalling the behaviour of generalized longitudinal Anosov cocycle under reparametriza-
tions and combining with above observations, the asymptotic formula of Lemma 5.3
can be rewritten in the following way for all sufficiently large n:

Tϕn = nTϕ0 + T ′ + cnK
X
ϕ (p, T0)nµn +O(µn)

This formula allows to recover the eigenvalue at p from the sequence {Tϕn , n ≥ 0}
if KX

ϕ (p, T0) 6= 0. Using this observation, the same formula for the second flow Xt
2

and the matching Tϕ1
n = Tϕ2

n , one obtains the alternate conclusions of Theorem 5.1
in exactly the same way as in the end of the proof of Theorem 3.1 (the arguments
at the end of Section 4 after the proof of Lemma 4.4). This finishes the proof of
Theorem 5.1. �

We will need one more simple Lemma.

Lemma 5.5. Let Y t : M → M be a reparametrization of a contact flow whose
longitudinal Anosov cocycle is trivial. Then Y t is also contact.

Proof. Foulon-Hasselblatt theorem says that triviality of the longitudinal Anosov
cocycle implies that Y t is either contact or a constant roof suspension of an Anosov
diffeomorphism of T2. To rule out the latter case recall that contact flows are
homologically full [GRH20b, Thorem 2.9]. The property of being homologically
full persists under reparametrizations and suspension flows are not homologically
full. Hence Y t cannot be a constant roof suspension flow. �

Now we proceed with the proof of Theorem 1.3.
By the Alternate Livshits Theorem, from Theorem 5.1 we have that either ϕ1

is a coboundary or at least one of the cocycles Kϕ1 and Kϕ2 is a coboundary. If
ϕ1 is coboundary then from the matching assumption ϕ2 integrates to zero over
periodic orbits of Xt

2 and, hence, by the Livshits Theorem, we also have that ϕ2 is
a coboundary, which finishes the proof in this case.

Hence we can now assume that Kϕ1 is a coboundary (the case when Kϕ2 is
a coboundary is entirely symmetric). Pick a constant c0 such that ϕ1 + c0 > 0.
Since Xt

1 is contact we have that c0K = c0K1 = Kc0 is a coboundary. Hence,
Kϕ1+c0 = Kϕ1

+Kc0 is also a coboundary.
Since ϕ1 + c0 > 0 we can consider the reparametrization Y t1 with generator

Y1 = 1
ϕ1+c0

X1. By property 3 above we have KY = KX
ϕ1+c0 . Hence the longitudinal

Anosov cocyle of Y t is trivial and, using Lemma 5.5, we conclude that Y t is also a
contact flow.

Now we apply [GRH20b, Theorem 7.1] which says that since Y t1 is a contact
reparametrization of a contact flow Xt

1 then ϕ1 + c1 = C + ω(X1), where ω is a
closed 1-form. Hence we have ϕ1 = c0 + ω(X1) for some constant c0.

If c0 = 0 then ϕ1 is an abelian a coboundary. Further for any homologically
trivial periodic orbit β we have

0 = 〈[ω], [β]〉 =

∫
β

ω(β̇(t))dt =

∫
β

ϕ1(β(t))dt =

∫
H∗β

ϕ2(H∗β(t))dt,



SMOOTH RIGIDITY FOR 3-DIMENSIONAL VOLUME PRESERVING ANOSOV FLOWS 21

where H∗β is the periodic orbit of Xt
2 which corresponds to β under the orbit

equivalence H. Since H is homotopic to identity, we have that integrals of ϕ2

over every homologically trivial orbit of Xt
2 vanish. Then we can apply [GRH20b,

Theorems 2.9 and 3.5] to conclude that ϕ2 is an abelian coboundary over Xt
2 which

completes the proof in this case.
It remains to consider the case when c0 > 0 (if c0 < 0 we can pass to the

matching pair (−ϕ1,−ϕ2) which makes c0 positive). Let η be a closed 1-from
which represents the cohomology class H∗[ω].

Lemma 5.6. The pair of functions (ϕ̄1, ϕ̄2)
def
= (c0, ϕ2−η(X2)) is a matching pair.

Proof. Indeed if β is a periodic orbit of Xt
1 and H∗β is the corresponding periodic

orbit of Xt
2 then∫

β

c0dt =

∫
β

(ϕ1(β(t)− ω(β̇(t)))dt =

∫
β

ϕ1(β(t))dt− 〈[ω], [β]〉

=

∫
H∗β

ϕ2(H∗β(t))dt− 〈[H∗ω], [H∗β]〉 =

∫
H∗β

ϕ2(H∗β(t))dt− 〈[η], [H∗β]〉

=

∫
H∗β

ϕ2(H∗β(t))− η(X2(H∗β(t)))dt =

∫
H∗β

ϕ̄2(H∗β(t))dt

�

Lemma 5.7. Function ϕ̄2 is cohomologous to a positive function.

Proof. Denote by µβ the invariant probability measure supported on a periodic
orbit β of Xt

1 and, similarly, by µH∗β the invariant probability measure supported
on H∗β. Then, using the preceding lemma, we have∫

ϕ̄2dµH∗β =
1

per(H∗β)

∫
H∗β

ϕ̄2(H∗β(t))dt

=
1

per(H∗β)

∫
β

ϕ̄1(β(t))dt =
per(β)

per(H∗β)

∫
ϕ1dµβ =

c0per(β)

per(H∗β)

The ratio of periods is uniformly bounded from below since derivative along the
flow lines of the orbit equivalence H is uniformly bounded from below. Hence we
have a constant c > 0 such that ∫

ϕ̄2dµ ≥ c

for any invariant probability measure µ supported on a periodic orbit. Since for
Anosov flows such measures are dense in the space of ergodic measures we also have
this bound for all ergodic probability measures of Xt

2.
With this inequality at hand we claim that ϕ̄T2 given by

ϕ̄T2 (x) =
1

T

∫ T

0

ϕ̄2(Xt
2(x))dt

is the posited function provided that T is chosen to be sufficiently large. The fact
that ϕ̄T2 is cohomologous to ϕ̄2 follows from the Livshits Theorem and vanishing of
the integrals of ϕ̄T2 −ϕ̄2 over periodic orbits as can be easily verified by a calculation.

The fact that ϕ̄T2 is positive for all sufficiently large T is also standard and we
only sketch the proof leaving the details to an interested reader. The standard
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approach is to argue reductio ad absurdum and to assume that ϕ̄Tk2 (xk) ≤ 0 for
a sequence of points {xk} and a sequence of times Tk → ∞. Then, using the
Cantor diagonal argument one obtains an invariant probability measure µ such
that

∫
ϕ̄2dµ ≤ 0 contradicting the established bound. This proof is analogous to

the proof of uniform converegence of ergodic averages for uniquely ergodic sys-
tems [KH95, Proposition 4.1.13]. �

Using preceding lemma we replace ϕ̄2 with a positive function cohomologous
to it, and we still denote it by ϕ̄2. To summarize, we have now a matching pair
(ϕ̄1, ϕ̄2), where ϕ̄1 = c0 > 0 and ϕ̄2 > 0. This allows us to consider reparametrized
flows Y ti with generators given by Yi = 1

ϕ̄i
Xi, i = 1, 2. The periods of periodic

orbits of Y ti are calculated by integrating ϕ̄i over the periodic orbits of Xt
i . Hence,

the matching assumption∫
β

ϕ̄1(β(t))dt =

∫
H∗β

ϕ̄1(H∗β(t))dt

says that the periods of matching orbits of Y t1 and Y t2 are equal. Hence, by [KH95,
Theorem 19.2.9], we can improve the orbit equivalenceH to a conjugacy H̄, H̄◦Y t1 =
Y t2 ◦ H̄. Then Theorem 1.1 applies to Y t1 and Y t2 . Since suspension flows do not
admit contact reparametrizations by the proof of Lemma 5.5, Theorem 1.1 yields
smoothness of H̄, which is the posited smooth orbit equivalence of Xt

1 and Xt
2.

6. Proof of Corollaries 1.6, 1.7 and 1.8

Proof of Corollary 1.6. Let Xi = aiYi be the vector fields which generate contact
reparametrizations Xt

i , i = 1, 2. By the change of variable formula the main match-
ing assumption gives ∫

β

ϕ1(β(t))

a1(β(t))
dt =

∫
H∗β

ϕ2(H∗β(t))

a2(β(t))
dt

for every periodic orbit β of Xt
1 and corresponding periodic orbit H∗β for Xt

2.
Then we can apply Theorem 1.3 to Xt

1 and Xt
2 which yields the dichotomy. If Xt

1

is Cr∗ -smoothly orbit equivalent to Xt
2 then the same orbit equivalence is a Cr∗

orbit equivalence between Y t1 and Y t2 . Otherwise we have that ϕi/ai are abelian
coboundaries over Xt

i , i = 1, 2. This means that there exists closed 1-forms ωi such
that ϕi/ai = ωi(Xi). Hence ϕi = aiω(Xi) = ω(Yi) and we have that ϕi are abelian
coboundaries over Y ti , i = 1, 2. �

Now we prove Corollaries 1.7 and 1.8.

Proof. Denote by Xt
i the geodesic flows of gi and by Xi their generating vector

fields, i = 1, 2. These flows are contact Anosov flows. It is also well known that Xt
1

is orbit equivalent to Xt
2 via an orbit equivalence H which is homotopic to idT 1S .

Since we have assumed that ϕ1 is not an abelian coboundary over Xt
1 we have that

H is smooth.
Now existence of homothety follows from Otal’s proof of marked length spectrum

rigidity [Ot90]. The key step in Otal’s proof is to show that conjugacy of geodesic
flows sends the Liouville measure invariant under the first flow to the Liouville
measure invariant under the second flow. In fact, what is important is matching
of Liouville currents on the spaces of geodesic on the universal covers (S̃, g̃1) and

(S̃, g̃2). While we don’t have a conjugacy and the orbit equivalence is ambiguous in
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the flow direction it does induce a canonical mapH∗ on the space of currents. Hence,
ifm2 is the Liouville current for (S̃, g̃2) thenH∗m2 is an invariant current for (S̃, g̃1).
Further, since H is smooth H∗m2 is absolutely continuous and, hence, by ergodicity,
is proportional to the Liouville current m1 for (S̃, g̃1). We have H∗m2 = cm1.
Hence, after replacing g1 with c2g1 we have that H matches the Liouville currents.
From this Otal’s proof [Ot90, Section 2] gives the posited isometry.

Alternatively this last step can be done by directly citing the Croke-Otal theorem
and using our recent work on rigidity of contact flows. Because H is smooth we can
apply [GRH20b, Theorem 7.1] which says that Xt

1 is conjugate to a reparametriza-
tion of Xt

2 given by the vector field 1
c+ω(X)X2. Further, recall that geodesic flows are

contact and have zero Sharp’s minimizers [GRH20b, Section 6]. Since H∗(0) = 0
we, in fact, have that ω = 0 [GRH20b, Theorem 7.1]. Hence Xt

1 is conjugate to a
constant rescaling of Xt

2. Therefore the Otal and Croke theorem applies to these
flows and yields an isometry.

To check the additional claim of Corollary 1.8 we will use the fact that the
isometry f : (S, c2g1)→ (S, g2) can be chosen to be homotopic to idS (this is a part
of the conclusion of the Otal and Croke theorem). It implies that f(γ(g1)) = γ(g2)
and f ′ = 1

c when restricted to the geodesic.

0 =

∫
γ(g1)

ϕ1(γ̇(g1)(t))dt−
∫
γ(g2)

ϕ2(γ̇(g2)(t))dt

=

∫
γ(g1)

ϕ1(γ̇(g1)(t))dt−
∫
γ(g1)

1

c
ϕ2(Df(γ̇(g1)(t)))dt

=
1

c

∫
γ(g1)

(cϕ1 − ϕ2 ◦Df)(γ̇(g1)(t))dt

By Livshits theorem we conclude that cϕ1 − ϕ2 ◦Df is a coboundary

cϕ1 − ϕ2 ◦Df = X1u

for some u : T 1S → R. We also have that cϕ1−ϕ2 ◦Df = (cψ1−ψ2 ◦ f) ◦π, which
means that this function is, in fact, a function on S. Then we can apply a result
of Croke-Sharafutdinov [CS98, Corollary 1.4] to conclude that cϕ1 − ϕ2 ◦ Df =
cψ1 − ψ2 ◦ f = 0. Alternatively, using Fourier decomposition of L2(T 1S, vol) one
can derive the same conclusion from an earlier result of Guillemin-Kazhdan [GK80,
Theorem 3.6]. �

Appendix A. Proof of Theorem 2.5

We begin by introducing some notation. Given a Hölder continuous cocycle
B : M × R → R and a periodic orbit γ we will write B(γ) for the value B(p, |γ|),
where p ∈ γ and |γ| is the smallest period of p, X |γ|(p) = p. Also denote by δγ the
invariant measure supported on γ of total mass |γ|. Let

µT (B) =
1∑

γ∈PT |γ|e
B(γ)

∑
γ∈PT

eB(γ)δγ ,

where PT is the set periodic orbits of length ≤ T . Bowen formula says that the
probability measures µT (B) converge in weak∗ topology to the equilibrium state
µB of the cocycle B as T →∞ [Bow75, PP90].
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Given a vector ᾱ = (α1, α2, . . . αN ) ∈ RN let

µ(ᾱ) = µ

(
N∑
i=1

αiai

)
and let

µT (ᾱ) = µT

(
N∑
i=1

αiai

)
Denote by Ai be a set of periodic orbits γ such that ai(γ) = 0. If several cocycles
vanish on γ then we assign γ to only one of the sets so that the sets Ai are all
mutually disjoint. Then according to the main assumption PT = ∪Ni=1PT ∩ Ai.
Then we can also define approximating probability measures supported on Ai as
follows

µAiT (B) =
1∑

γ∈PT∩Ai |γ|e
B(γ)

∑
γ∈PT∩Ai

eB(γ)δγ

and

µAiT (ᾱ) = µAiT

(
N∑
i=1

αiai

)
Because ai vanishes on Ai we have that µAiT (ᾱ) is constant in the i-th variable αi.

Obviously, we have the following formula

µT (ᾱ) =

N∑
i=1

siTµ
Ai
T (ᾱ)

with

siT =

∑
γ∈PT∩Ai |γ|e

∑
i αiai(γ)∑

γ∈PT |γ|e
∑
i αiai(γ)

Clearly
∑
i s
i
T = 1. By compactness of [0, 1] and the space of probability measures

in the weak∗ topology we can choose a sequence Tk →∞, k →∞ such that for all
i we have siTk → si and µAiTk (ᾱ) → µAi(ᾱ) as k → ∞. By passing to the limit in
the above formula we obtain a decomposition of the equilibrium state as a convex
combination

µ(ᾱ) =

N∑
i=1

siµAi(ᾱ)

Since equilibrium state is ergodic and all µAi(ᾱ) are invariant probability measures,
if all them are distinct we immediately conclude that all coefficients si, but one
vanish. Therefore we have µ(ᾱ) = µAi(ᾱ) for some i.

If some of the measures µAi(α) coincide, say µAi(ᾱ) = µAj (ᾱ), then (even though
coefficients si and sj may be non-trivial), we still have by ergodicity that µ(ᾱ) =
µAi(ᾱ) = µAj (ᾱ).

Now we consider all N -tuples ᾱ from the set {1, 2, . . . N + 1}N . Since this is a
finite set we can find a sequence Tk such that all coefficients and all sequences of
measures µAiTk (ᾱ), ᾱ ∈ {1, 2, . . . N + 1}N converge to µAi(α) as k →∞.

By the preceding discussion for every α = {1, 2, . . . N + 1}N we have µ(α) =
µAi(α) for some i ∈ [1, N ]. In the case when µ(α) = µAi for several i-s we pick just
one of them so that the a function I : ᾱ → µAi(α) is defined. The domain of this
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function is {1, 2, . . . N + 1}N and the range is the space of all measures µAiT . This
space can be combinatorially parametrized as

N⋃
i=1

Ci
def
=

N⋃
i=1

{(i, ᾱ) : α ∈ {1, 2, . . . N + 1}N , αi = 1}

(In fact, from the defintion of I, this is the rigorous definition of the range of I
because even when µAi(ᾱ) = µAk(β̄) we still consider them as different points in

the range if i 6= k or ᾱ 6= β̄, or both.) Recall that µAiT (ᾱ) is constant in i-th
coordinate and we also have, by taking the limit, that µAi(ᾱ) does not depend on
the i-th coordinate. Hence we can set αi = 1 in the above definition of the set Ci.

Lemma A.1. There exist ᾱ and β̄ ∈ {1, 2, . . . N + 1}N and i ∈ [1, N ] such that

1. I(ᾱ) = I(β̄) ∈ Ci;
2. αi 6= βi;
3. αj = βj for all j 6= i.

Using this elementary lemma we can finish the proof. For ᾱ and β̄ given by the
lemma we have µ(ᾱ) = µ(β̄) = µAi(ᾱ). The difference of cocycles is

(α1a1 + α2a2 + . . .+ αNaN )− (β1a1 + β2a2 + . . .+ βNaN ) = (αi − βi)ai,
Since equilibrium states for these cocycles are equal we can use a theorem of
Bowen [Bow75, Theorem 1.28] to conclude that the difference (αi − βi)ai is co-
homologous to zero. Since αi 6= βi we obtain that ai is a coboundary as posited by
the Alternate Livshits Theorem.

It remains to prove the lemma.

Proof. From definition of I we have

I(α1, α2, . . . αN ) = (i, α1, . . . αi−1, 1, αi+1, . . . αN )

Hence the lemma simply says that I has at least two preimages of some element.
Hence we can use counting. The domain of I has (N + 1)N element. Each Ci
has (N + 1)N−1 elements. So the cardinality of the range is N(N + 1)N−1. Since
(N + 1)N > N(N + 1)N−1 the lemma follows from the pigeonhole principle. �
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