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Abstract

We introduce a new class of billiard-like system, “bouncing outer billiards” which
are 3-dimensional cousins of outer billiards of Neumann and Moser. We prove that
bouncing outer billiard on a smooth convex body has at least four 1-parameter
families of fixed points. We also fully describe dynamics of bouncing outer billiard
on a line segment. Finally we carry out numerical experiments suggesting very
complicated (non-ergodic) behavior for several shapes including the square and
an ellipse.

1 Introduction

Outer billiards are dynamical systems introduced by Neumann in 1959 [3] and then
popularized by Moser in his lecture on stability of the solar system [1, 2]. The field of
outer billiards became very active about 20 years ago. In this paper we suggest similar
more complicated billiard systems called bouncing outer billiards, which we proceed
to define.

Let S ⊂ R2 be a compact convex set with smooth boundary. The visibility domain
VS consists of all pairs (p, v) where p ∈ R2 \ int(S), and v ∈ T 1

pR2 is a unit vector

based at p such that the ray
−→
R spanned by v has a non-empty intersection with S.

We now define the dynamical system FS : VS → VS in the following way. Given

an initial condition (p, v) ∈ VS the corresponding ray
−→
R reflects off the convex body

at a point w as
−→
R ′ in the usual way — the angle of incidence equals to the angle of

reflection. Next we apply the outer billiard law and consider the point p′ ∈
−→
R′ such

that ∥p− w∥ = ∥p′ − w∥ as indicated on Figure 1.

Finally, we will use the visibility angle reflection rule as follows. Let
−→
H and

−→
K be

the rays at p′ which are tangent to S. Let u be the unit vector based at p′ pointing

to w (in the direction opposite to
−→
R ′). Clearly u is inside the angle defined by

−→
H and

−→
K . Let v′ be the reflection of u across the angle bisector of ∠(

−→
H,

−→
K) as shown on

Figure 1. This completes the definition of bouncing billiard dynamics.

FS(p, v) = (p′, v′).
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Fig. 1 Bouncing Outer Billiards Dynamics

We will drop the subscript S and simply write F when no confusion is possible.

Remark 1.1 It is easy to see that if
−→
R is tangent to S then we have the classical outer billiard

dynamics. Hence the outer billiard is simply the restriction F |∂VS
of the bouncing outer

billiard to the boundary of the visibility space.

Remark 1.2 If S is not smooth, e.g. a polygon, then the angle reflection law is undefined for
some initial conditions. However such initial conditions form a set of zero Lebesgue measure
since the boundary of a convex body is differentiable almost everywhere. Hence bouncing
billiard dynamics still makes sense for almost every initial condition, but the above relation
to outer billiard is obscured.

Remark 1.3 S. Tabachnikov considered unfolding the outer billiard map into a family of
symplectomorphisms given by the first two steps in the definition of the bouncing outer
billiard [4]. However, to the best of our knowledge, the visibility angle reflection rule was not
considered before.

In the next section we establish existence of families of fixed points for bouncing
outer billiards. Then we fully describe integrable twist map dynamics of bouncing outer
billiards on a line segment. Finally, we present results of our numerical explorations
in the last section.

We would like to pose two questions.

Question 1.2 Does every orbit of the bouncing outer billiard on a smooth convex body remain
bounded?
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We were not able to detect any unbounded orbits numerically.
It is easy to check that bouncing outer billiards are conservative, that is, they

preserve the Lebesgue measure on VS (see Appendix A).

Question 1.3 Does there exist positive volume ergodic components?

We have found some orbits which appear to fill up 2-dimensional sets. However in
the 3-dimensional spave VS such orbits seem to be confined to 2-dimensional surfaces.

Acknowledgements. This paper is a result of an REU project of summer 2024
at The Ohio State University. The authors are very grateful to Sergei Tabachnikov
who provided several illuminating remarks on earlier drafts. The authors would like
to acknowledge the support provided the NSF grant DMS-2247747.

2 Fixed points

A natural question for any dynamical system is whether or not there exist fixed points,
and if so, how to find them.

Theorem 2.1 For any convex S with C3 boundary the associated billiard map has
uncountably many fixed points, which come in at least four local 1-parameter families.

Clearly, a point (p, v) is fixed if and only if v is the bisector of the angle formed
by the tangent rays from p to S. Therefore, given a point p /∈ S, consider the angle
given by the two tangent lines from p to S and let vp ∈ TpR2 be the vector spanning
the angle bisector. The idea of the proof is to find a curve connecting two points, say,
p and q such that the ray of vp “bounces to the left” and the ray of vq “bounces to
the right.” Then, by the intermediate value theorem, there exists a fixed point (r, vr)
on such curve.

We note right away that if ∂S has a circle subarc with constant curvature then
then there is whole 2-parameter family of fixed points in proximity of such arc. Hence
we can assume, due to C3 regularity of the boundary that there exist arcs with strictly
increasing and with strictly decreasing curvature.

The following is our main lemma.

Lemma 2.2 Let f : [s0, s2] → ∂S be a counter-clockwise arc-length parametrzation of a sub-
arc of ∂S along which the curvature is strictly increasing. Assume that this arc is sufficiently
short so that the tangent lines at f(s0) and f(s2) intersect at a point p as indicated on
Figure 2.

Then the angle bisector ray spanned by vp will “bounce off in the direction of f(s0),” that
is, after reflecting off S the ray will intersect the tangent segment a.

Proof Let k(s) be the curvature at f(s), and let K(s) =
∫ s
s0

k(t)dt. Since we are using arc-

length parameterization, K(s) is the angle between the tangent lines at f(s0) and f(s). There
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Fig. 2 Fixed Point Lemma Setup

is a unique s1 such that K(s1) = K(s2)/2. Then the tangent line at f(s1) is perpendicular
to vp. Hence to prove the claim of the lemma it suffices to show that the distance from f(s1)
to the tangent line b is less than the distance from f(s1) to the tangent line a. This can be
expressed by the following inequality:∫ s2

s1

sin(K(s2)−K(s))ds <

∫ s1

s0

sin(K(s))ds (∗)

To prove this inequality, we can start with the following statements by change of variables:∫ s2

s1

sin(K(s2)−K(s))k(s)ds =

∫ K(s1)

0
sin(u)du∫ s1

s0

sin(K(s))k(s)ds =

∫ K(s1)

0
sin(v)dv

This gives ∫ s2

s1

k(s) sin(K(s2)−K(s))ds =

∫ s1

s0

k(s) sin(K(s))ds

Since curvature k : [s0, s2] → R+ is increasing the posited inequality follows proving the
lemma. □

Proof of Theorem 2.1. Consider a local minimum (or maximum) of the curvature of ∂S. (By
the 4-vertex theorem at least four local extrema exist.) On one side there is a short arc with
increasing curvature and on the other side there is short arc with decreasing curvature. Apply-
ing the above lemma to the first arc we obtain an initial condition (p, vp) which “bounces
to the left” and similarly, applying (the analogue of) the lemma to the arc with increasing
curvature we obtain an initial condition (q, vq) which “bounces to the right.” It remains to
connect p and q by an arc disjoint with S an apply the intermediate value theorem. □
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It is clear from the above proof that each vertex of ∂S yields a 1-parameter family
of fixed points. These families could merge away from S. We would like to pose the
following question.

Question 2.3 Let S be a convex domain with C3 boundary. Does every closed curve around
it contain at least one fixed point of the bouncing outer billiard map on S?

S. Tabachnikov considered a question of very similar flavor and eventually found
a counterexample [5].

3 Bouncing on a Line Segment

3.1 Parameterizing the Dynamics

This section focuses on the behavior of the bouncing outer billiards system on a line
segment. Since all segments are congruent up to scaling, we only consider the segment
on the x-axis from -1 to 1. For convenience, we will consider only initial points p with
positive y-values, as points with negative y-values are symmetric.

Recall that we denote the visibility domain by V . Consider initial condition
(p, v) ∈ V , where p = (x, y), and let θ = arg(v) + π

2 . The initial conditions define a
ray from the point p with slope tan(θ − π

2 ). Using this equation, we can derive:

w = (x+ y tan(θ), 0)

p′ = (x′, y′) = (x+ 2y tan(θ), y)

Note that the y-coordinate of the initial point will remain constant on the orbit.
From this point forward, we will refer to the y-value of the initial point as height and
denote it by h.

Next, we obtain that the angle from p′ to the left and right endpoints of the segment

are given by arctan
(

1−x′

h

)
and arctan

(
−1−x′

h

)
, respectively. Also, the angle from p′

to w is given by −θ. Applying the visibility angle reflection rule yields:

θ′ = arctan

(
1− x′

h

)
+ θ + arctan

(
−1− x′

h

)
Summing up, the dynamics, F (x, h, θ) = (x′, h, θ′) is given by:

x′ = x+ 2h tan(θ)

θ′ = θ + arctan

(
1− x′

h

)
+ arctan

(
−1− x′

h

)
(1)

3.2 A Second Invariant

In Section 3.1, we observed that the height h is an invariant. In this section, we will
demonstrate the existence of a second invariant.
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We define a new coordinate system, relative to which the it’s easier to see a second
invariant. First consider the change of coordinates g(x, h, θ) = (w, h, d) given by{

w = x+ h tan(θ)

d = h tan(θ)
(2)

with the h-coordinate remaining unchanged. The coordinate w represents the x-value
of the bounce point and the coordinate d represents the signed difference between the
w and the x-value of the initial point. The inverse coordinate transformation is given
by: {

x = w − d

θ = arctan
(
d
h

) (3)

Now, we seek to understand dynamics in these new coordinates. Let f(w, h, d) =
g ◦F ◦ g−1(w, h, d). We let f(w, h, d) be denoted by (w′, h, d′), which we wish to write
in terms of w, h, and d. First, sing (1) and (2) yields:

x′ = w + d (4)

Now, we will use (1) to rewrite the equation for d′. Following this, we simplify and
use (2) and (4) to rewrite all instances of x′ and h tan(θ) in terms of w and d.

d′ = h tan(θ′)

= h tan

(
θ + arctan

(
1− x′

h

)
+ arctan

(
−1− x′

h

))
= h

(
tan(θ) + −2x′h

1+h2−(x′)2

1 + 2x′h
1+h2−(x′)2

)

=
h tan(θ) + h3 tan(θ)− h(x′)2 tan(θ)− 2x′h2

1 + h2 − (x′)2 + 2x′h tan(θ)

=
d3 + 2h2w + 2d2w + dw2 + h2d− d

w2 − d2 − h2 − 1

(5)

Finally, we can calculate w′ by using the relationship w′ = d′ + x′, which gives:

w′ = w + d+
d3 + 2h2w + 2d2w + dw2 + h2d− d

w2 − d2 − h2 − 1

=
w3 + d2w + h2w + 2dw2 − w − 2d

w2 − d2 − h2 − 1

(6)

We will now show the existence of a second invariant denoted a2, as a will later be
shown to be the semi-axis of an ellipse.
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Proposition 3.1 Quantity a2 := h2w2+d2

h2+d2 ∈ (−1, 1) is preserved under dynamics. That is,

h2w2 + d2

h2 + d2
=

h2(w′)2 + (d′)2

h2 + (d′)2
.

The proof involves substituting w′ and d′ into the equation for a2 to get (a′)2 =
h2(w′)2+(d′)2

h2+(d′)2 . After using (5) and (6) to simplify, we obtain:

(a′)2 =
(h2w2 + d2)(p(w, h, d))

(h2 + d2)(p(w, h, d))

=
h2w2 + d2

h2 + d2
= a2,

where

p(w, h, d) = d4 + h4 + 2d2h2 + 4d3w + 6d2w2 + 4dh2w

+ 4dw3 + w4 + 2h2w2 − 4dw − 2w2 + 1 + 2h2 − 2d2.

□
Related to this is an equivalent invariant

b2 =
h2w2 + d2

1− w2
=

h2a2

1− a2
.

3.3 Invariant Ellipses

In our altered coordinate system, the invariants a and b are actually the semi-axes of
an invariant ellipse in the (w, h, d) coordinate system.

Proposition 3.2 Let w, h, d ∈ R. Recalling the definitions a2 = h2w2+d2

h2+d2 and b2 = h2w2+d2

1−w2 ,

we have w2

a2 + d2

b2
= 1 (when a2, b2 ̸= 0).

Proof
w2

a2
+

d2

b2
=

w2

h2w2 + d2

h2 + d2

+
d2

h2w2 + d2

1− w2

=
h2w2 + d2w2 + d2 − d2w2

h2w2 + d2

= 1

□

By Proposition 3.1, we have that a2 = (a′)2, and by the relationship between a
and b we have that b2 = (b′)2. Along with Proposition 3.2, we get
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Fig. 3 Several Invariant Ellipses with Height One

(w′)2

a2
+

(d′)2

b2
= 1,

thus showing that any orbit belongs to an ellipse in the (w, d)-coordinate system.
Note that if a or b are equal to zero, then the other must be as well by the equation

relating them. If they are both zero, we have that w = d = 0 for all points in the
orbit. Using (3), this implies that x = θ = 0 for all points in the orbit, which means
such initial conditions correspond to fixed points.

3.4 Twist Dynamics

For this section, we will fix a height h and an invariant ellipse, thereby fixing invariants
a and b, which are defined to be the positive square roots of a2 and b2 respectively. We
can parameterize the ellipse with r(θ) = (w, d) = (a cos(θ), b sin(θ)). We now define
the function f : S1 → S1 as f = r−1 ◦ f ◦ r, which allows us to view the restriction of
f to our invariant ellipse as a circle diffeomorphism.

Theorem 3.3 There exists some φ ∈ S1 such that f(θ) = θ+φ, where φ = φ(a) is a strictly
increasing function, φ′(a) > 0 given by:

φ(a) =


arctan( 2ab

b2−a2 ) + π a < b

arctan( 2ab
b2−a2 ) a > b

3π
2 a = b

with

φ′(a) =
2b

b2 + a2
.
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The proof of this theorem is computational and will be included in the Appendix B.

3.5 Periodic Orbits for the Billiard on the Segment

Clearly the middle perpendicular, which is the y-axis gives a 1-parameter family of
fixed point (these correspond to degenerate ellipses with a = b = 0). Points of higher
period are due to rational rotation numbers and come in 2-parameter families as one
can vary the height as well.

Fig. 4 “M” and “W” period 4 orbits

We point out two aesthetically pleasing sub-families of period 4 orbits on Figure 4.
The M -orbits fill out a semi-circle and the W -orbits fill out a semi-ellipse. For the
“W” case on the right, the horizontal semi-axis is

√
2 and the foci of this ellipse are

the ±1 endpoints of the segment.
It is easy to calculate from the formula for the rotation number in Theorem 1.3

that for a given height h the interval of possible rotation numbers φ has the form
(π, ρ(h)), where ρ is an explicit decreasing function, ρ(h) → 0, h → ∞; ρ(h) → 2π,
h → 0. In particular, (π, ρ(h)) ⊂ (π, 2π) and, hence, there are no orbits of period 2.
Clearly, for all sufficiently small heights orbits of all periods ≥ 3 are present. As height
increases smaller period orbits begin to disappear. For example orbits of period 4 with
rotation number 3π

2 disappear at h = 1 and orbits of period 3 with rotation number
4π
3 disappear at h ≃ 1.8.

The explicit formula of Theorem 1.3 allows to explicitly calculate periodic orbits.
For example, if one wished to find periodic orbits of least period 7, one can calculate
parameter values which correspond to the rotation number 10π

7 .
Figure 5 depicts a family of period seven orbits of height one. Note the depicted

orbit is symmetric about the line x = 0, which unfolds into the family of asymmetric
period seven orbits as indicated on the figure.
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Fig. 5 Family of Orbits of Period 7

4 Numerical Simulations

4.1 Bouncing on Parabola Arcs

After fully understanding the dynamics on the segment, we can perturb the dynamics
and examine how integrability is being destroyed. Probably the simplest ways is to
consider the unfolding of the segment into a piece of a downward-facing parabola given
by f(x) = −ax2+a {−1 ≤ x ≤ 1}. We will make a slight modification to our visibility
domain to make sure that bouncing billiard still makes sense.

Recall that according to our definition we required that for (p, v) in the visibility
domain, the ray spanned by v has a nonempty intersection with the boundary of the
set. For the parabola, we will require that the ray has a nonempty intersection with
the parabola, but will impose the additional requirement that the segment pw lies
entirely above the parabola given by −ax2 + a, where w is the closest intersection
point to p of the ray and parabola. In other words, a point p is not be able to “see”
the underside of the parabola. The dynamics rule remains the same, simply utilizing
the newly defined visibility domain for the visibility angle reflection.

Remark 4.1 Despite the fact that our integrable model is a perfect twist map, KAM theory
doesn’t apply directly since we are in a 3-dimensional situation. Still as we see below KAM
features such as elliptic islands seem to be present in our unfolding.
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Figure 6 depicts some orbits on a parabola of height 3
10 . We observe that most of the

orbits which begin close to the parabola fill up invariant circles which align themselves
along the parabola such as the green orbit in the figure. Others, such as the red and
blue fill up periodic curves. Finally, some orbits, such as the purple one exhibit more
complicated behavior similar to Aubry-Mather sets with positive Lyapunov exponent.

Fig. 6 Orbits on Parabola of Height 3
10

Fig. 7 Orbits on Parabola of Height 1
2
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Fig. 8 Orbits on Parabola of Height 1

As we increase the height, the observed behaviors become more complicated.
Figure 7 and Figure 8 depict orbits on parabolas of heights 1

2 and 1, respectively.
On these more extreme parabolas, we still observe periodic curves which take more
complicated shapes, including non-symmetric such the blue orbit on Figure 8 . Addi-
tionally, with increased height we more easily detect chaotic behavior such as the dark
purple orbits of both figures and the red orbit of Figure 8.

4.2 Bouncing on the Square

It is also interesting to investigate bouncing billiards on polygons. For the sake of
simplicity, we will focus solely on the system on the square. On the square, we classify
observed orbits into five categories.

The first, such as the green orbit on Figure 9 consists points staying a fixed per-
pendicular distance away from one side of the square. For some such orbits, the orbit
never extend in the direction parallel to that side further than the endpoints of the
side. In this case, the system is identical to that on the line segment. In other cases,
such orbit can extend past the corners of the square while still remaining on one side;
in this case the orbit is not the same as an orbit on the segment.

The second kind are those orbits which fill up four closed curves, with one near
each corner of the square. This can be seen in the magenta orbit of Figure 9. Most of
these orbits observed appeared to be rotationally symmetrical, but the one pictured
is not.

The third kind involves what appears to be a invariant circle near each corner, but
actually consists of many smaller closed curves making up the apparent larger circle.
This is depicted in the blue orbit of the figure.

The fourth kind is another chaotic variety. It involves a period 4 non-smooth set,
possibly a Cantor set. This kind is depicted in the red orbit of the figure.

The final class of orbits occupy all sides of the square and seem to behave chaoti-
cally such as the dark purple orbit. Such orbits appear to fill in a positive area domains.
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Fig. 9 Orbits on a Square

However, numerics becomes very tricky for such orbits as we clearly detected positive
Lyapunov exponent for such orbits.

Fig. 10 Period Twelve Orbit on Square with Large Eigenvalue
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Another finding on the square is the existence of periodic points whose Jacobian
matrix has eigenvalues greater than one. Figure 10 shows one such example. It depicts
a period twelve orbit whose Jacobian matrix has eigenvalues approximately 0.086, 1,
and 11.592.

Remark 4.2 It is easy to see from the form of the differential of the bouncing outer billiard
on a convex polygon that every periodic point of such billiard has at least one eigenvalue
equal to 1.

4.3 Bouncing on an Ellipse

While we fully understand the segment and the circle, in between fall ellipses, which
also show very complex behavior. We consider bouncing outer billiard on the ellipse
with major and minor semi-axis equal to 1 and 0.4, respectively. As expected, we
can have orbits which are similar to the segment and circle, shown in Figure 11 and
Figure 12, respectively.

Fig. 11 Segment-like behavior
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Fig. 12 Circle-like behavior

We also have cases where the orbit closure is a periodic circle such as those on
Figure 13 and Figure 14.

Fig. 13 Four closed invariant curves
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Fig. 14 Many closed invariant curves

Finally, “in between” the circle-like behavior and four closed curve behavior, we
detect an orbit which appears to fill up positive area domain, as shown in Figure 15.

We notice that the types of orbits we observe for the parabola arc and the ellipse
are the same.

Fig. 15 A chaotic orbit
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Appendix A: The Conservative Property

Here we verify that bouncing outer billiard dynamics F preserves the Lebesgue mea-
sure. Let dA be the standard 2-dimensional Lebesgue measure restricted to R2 and
let dθ be the Lebesgue on the circle.

Proposition 4.3 Assume that the boundary of S is a C2 curve then the restriction of dA⊗dθ
to VS is an infinite measure which is invariant under F .

Remark 4.4 It is easy to verify invariance of the Lebesgue measure for polygons and seems
likely to be true for any convex S, but we haven’t verified it in such generality.

Proof We begin by noticing that the proposition holds true if S is a closed disc. Indeed, in
this case it is easy to see that the visibility domain can be decomposed into circles on each of
which F is a rigid rotation preserving the length (conditional measure). Hence F preserves
dA⊗ dθ.

Now given a general domain S with C2 boundary we will verify that FS is measure
preserving by checking that the Jacobian JF = det(DF ) equals to 1. Let (p, v) ∈ VS , we can
assume that (p, v) is in fact in the interior of VS since ∂VS has measure zero. Therefore the ray
starting at v intersect ∂S at the bounce point w transversely. This implies that infinitesimal
variations of (p, v) result in infintesimal variations of w of the same order of magnitude.

Consider the (unique) closed disc D such that ∂D is tangent to ∂S at w to the second
order. Clearly, we have FS(p, v) = FD(p, v). In fact, second order tangency ensures that
DFS(p, v) = DFD(p, v). Indeed, to see that first note that infinitesimal variation of (p, v)
results in infenitesimal variations of w (on ∂S and ∂D) agree up to second order. The angles
of reflection of w are controlled by the derivatives of ∂S and ∂D at w and, hence, agree up
to the first order (again due to second order tangency at w) and the claim follows. Hence we
have

JFS(p, v) = detDFS(p, v) = detDFD(p, v) = 1,

where the last equality is by measure-preserving property of FD pointed at out the beginning
of the proof.

It is easy to show that the total Lebesgue measure of VS is infinite when integrating in the
correct order. For any angle θ, there is an infinitely long strip of constant width w of points
that will hit the S, where w is the length of S projected to the axis perpendicular to θ. □

Alternatively one can verify the above proposition by a direct calculation of
DF (p, v) without any reference to the disc case. Specifically we can center the (x, y)-
coordinate system at the bounce point w so that the x-axis is tangent to ∂S and denote
by θ the circular coordinate. We write (p, v) = (a, b, θ0). Clearly dA⊗dθ = dx⊗dy⊗dθ
and we need to verify that the Jacobian is 1 in (x, y, θ)-coordinates. Prior to the last vis-
ibility angle reflection step we have (a, b, θ0) 7→ (−a, b,−θ0) and a routine calculation
gives the following expression for its derivative:1 + 2kb −2ka− 2a

b
2c2

b + 2kc2

2ka 1− 2ka2

b
2kac2

b

−2k 2ka
b −1− 2kc2

b
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where k is the curvature at w and c =
√
a2 + b2. The determinant of this matrix is

−1, which becomes 1, after composing with the reflection θ 7→ const− θ according to
the visibility angle reflection rule.

Appendix B: Proof of Theorem 3.3

First, we will find an explicit formula for r−1(w, d) for w and d lying on the ellipse.
We have w = a cos(θ) and d = b sin(θ), meaning tan(θ) = ad

bw . This yields:

θ = r−1(w, d) = arctan

(
ad

bw

)
+ πn(w) (7)

In this formula, we use

n(x) :=

{
1 x < 0

0 x ≥ 0

to compensate for the fact that arctan only outputs between −π
2 to π

2 . This explicit
formula has the slight flaw that it fails for w = 0, however it can be shown separately
that this case matches the behavior of all other cases. Applying r−1 to the right of both
sides of the equation f = r−1 ◦ f ◦ r yields f ◦ r−1(w, d) = r−1 ◦ f(w, d) = r−1(w′, d′).
Applying (7) yields:

f(arctan

(
ad

bw

)
+ πn(w)) = arctan

(
ad′

bw′

)
+ πn(w′)

Thus f(θ) = θ + φ(w, d), where

φ(w, d) = arctan

(
ad′

bw′

)
+ πn(w′)− arctan

(
ad

bw

)
− πn(w).

We will first show that φ(w, d) is constant mod π. The terms πn(w′) and −πn(w) are
equivalent to zero mod π, so we will revisit these later.

Thus, we currently seek to show that arctan( ad
′

bw′ ) − arctan( adbw ) is constant
mod π. We will use the arc-tangent subtraction formula arctan(x) − arctan(y) =
arctan( x−y

1+xy ) +mπ, where m is either 0 or 1 depending on x and y. The term mπ is
equivalent to zero mod π in all cases, so we will revisit this term later as well.

For the purposes of the following calculation, we will set x = ad′

bw′ and y = ad
bw . Our

goal is to show that x−y
1+xy is constant for any w and d on the fixed ellipse. First, since

x and y each have a factor of a
b , which is constant for points on the ellipse, we can

pull this out of the fraction:

x− y

1 + xy
=
(a
b

)( d′

w′ − d
w

1 + a2dd′

b2ww′

)
Next, multiply the numerator an denominator by b2ww′ to get:(a

b

)( b2d′w − b2dw′

b2ww′ + a2dd′

)
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We can pull out another b2 to bring the total constant factored out to ab:

(ab)

(
d′w − dw′

b2ww′ + a2dd′

)
After replacing w′ and d′ with their equivalent expressions in terms of w, h, and

d, then multiplying the numerator and denominator by (w2 − d2 − h2 − 1), we get:

(ab)(2h2w2 + 2d2)

b2(w4 + d2w2 + h2w2 + 2dw3 − w2 − 2dw) + a2(d4 + 2dh2w + 2d3w + d2w2 + d2h2 − d2)

After substituting in the expressions for a2 and b2, multiplying the numerator and
denominator by (1− w2)(h2 + d2), and simplifying, we get:

2ab(1− w2)(h2 + d2)

d2h2w2 + h4w2 + h2w4 + d4 + d2h2 + d2w2 − h2w2 − d2

Factoring the denominator yields:

2ab(1− w2)(h2 + d2)

(h2w2 + d2)(h2 + d2)− (h2w2 + d2)(1− w2)

Finally, dividing the numerator and denominator by (1− w2)(h2 + d2) gives:

2ab
h2w2+d2

1−w2 − h2w2+d2

(h2+d2)

=
2ab

b2 − a2

Thus we end up with the equation:

φ = arctan

(
2ab

b2 − a2

)
mod π

Next, we will go back and carefully consider each of the extra terms we set aside
earlier to show that φ is actually constant mod 2π. Each of these components individ-
ually may depend on w, d, a, and b, but we will show that together they only depend
on a and b, which remain constant within an orbit.

We will begin with the term denoted as mπ earlier. Recall that this arose out of
the extra term from the arc-tangent sum formula. Again using the definitions x = ad′

bw′

and y = ad
bw , we get that m = 0 if −xy < 1 and m = 1 if −xy > 1. This is equivalent to

saying m = 0 if 1 + xy > 0 and m = 1 if 1 + xy < 0. After substituting in expressions
to get 1 + xy in terms of w, h, and d as well as simplifying and factoring, we get:

1 + xy =
(d2 + h2w2)(d2 + h2 + w2 − 1)

(d2 + h2)(d2w2 + h2w2 + 2dw3 + w4 − 2dw − w2)

Since we are only concerned about the sign of 1 + xy, and d2+h2w2

d2+h2 ≥ 0, we can
factor this out and ignore it. This leaves us with:

d2 + h2 + w2 − 1

d2w2 + h2w2 + 2dw3 + w4 − 2dw − w2
=

d2 + h2 + w2 − 1

w2(d2 + h2 + w2 − 1) + 2dw3 − 2dw
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This has the same sign as its reciprocal, which after simplification becomes:

w2 +
2dw3 − 2dw

d2 + h2 + w2 − 1
Next, it will benefit us to rewrite d in terms of w, a, and b. Starting from the

ellipse equation w2

a2 + d2

b2 = 1, we can derive the equation d2 = b2 − w2b2

a2 . Rewriting
our previous expression yields:

w2 +

(2w3 − w)

(
±
√

b2 − w2b2

a2

)
b2 − w2b2

a2 + h2 + w2 − 1

Next, we will remove h from the expression. Recall the relationship between a2

and b2 given by b2 = h2a2

1−a2 . From this, we can derive h2 = b2−a2b2

a2 . From here, we can
perform a series of simplifications:

w2 +

(2w3 − w)

(
±
√

b2 − w2b2

a2

)
b2 − w2b2

a2 + h2 + w2 − 1
= w2 +

2w(w2 − 1)

(
±
√

b2 − w2b2

a2

)
b2

a2 − w2b2

a2 + w2a2

a2 − a2

a2

= w2 +

2wa2(w2 − 1)

(
±
√

b2(a2−w2)
a2

)
(w2 − 1)(a2 − b2)

= w2 +
2wab(±

√
a2 − w2)

a2 − b2

=
a2w2 − b2w2 + 2wab(±

√
a2 − w2)

a2 − b2

Next, we want to find the zeros of this expression with respect to w. Clearly, w = 0
is a zero. To find other zeros, we will set the numerator of our expression equal to
zero and assume w ̸= 0. a2w2 − b2w2 + 2wab(±

√
a2 − w2) = 0 =⇒ a2w − b2w +

2ab(±
√
a2 − w2) = 0. After rearranging and squaring both sides, we get:

a2 − w2 =
b4w2 − 2a2b2w2 + a4w2

4a2b2

Solving for w yields:

w = ± 2a2b

a2 + b2

From this point forward, we will assume d is positive. The calculations play out
similarly if d is negative, and the results will be given with the positive case. This
means our fraction is zero when a2w − b2w + 2ab

√
a2 − w2 = 0, removing the plus or

minus present earlier. We have the possible zeros of ± 2a2b
a2+b2 , but determining which

is a true zero will depend on the values of a and b. This is because
√
a2 − w2 becomes
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a(a2−b2)
a2+b2 if a > b or a(b2−a2)

a2+b2 if a < b. This means that if a > b we have −2a2b
a2+b2 is a zero,

whereas if b > a we have 2a2b
a2+b2 is a zero.

To find the sign of the expression, we can solve the derivatives at the zeros:

d

dw

(
a2w2 − b2w2 + 2wab

√
a2 − w2

a2 − b2

)
=

2a2w − 2b2w + 2ab
√
a2 − w2 − 2abw2

a2−w2

a2 − b2
(8)

We will first analyze the derivative values for a > b. The denominator is positive

in this case, and we have that the derivative is positive at w = 0. For w = −2a2b
a2+b2 , we

have that the numerator of (8) becomes:

2a2b(b2 − a2)

a2 + b2
+

−2abw2

a2 − w
The second term of this expression is always negative. Since we assumed a > b,

the first term is also negative, meaning the derivative is negative for this w-value.
In the case where a < b, the denominator is always negative, and we have that the

derivative is negative at w = 0. For w = 2a2b
a2+b2 , the numerator becomes:

2a2b(a2 − b2)

a2 + b2
+

−2abw2

a2 − w
This is again negative, but the derivative is positive since the denominator of (8)

is negative. In summary, we have the following results:

In d > 0 Case:

If a < b and w ∈ ( 2a2b
a2+b2 , 1] ∪ [−1, 0), then 1 + xy > 0.

If a < b and w ∈ (0, 2a2b
a2+b2 ), then 1 + xy < 0.

If a > b and w ∈ [−1, −2a2b
a2+b2 ) ∪ (0, 1], then 1 + xy > 0.

If a > b and w ∈ (−2a2b
a2+b2 , 0), then 1 + xy < 0.

The case when d < 0 works similarly, with results as follows:

In d < 0 Case:

If a < b and w ∈ [−1, −2a2b
a2+b2 ) ∪ (0, 1], then 1 + xy > 0.

If a < b and w ∈ (−2a2b
a2+b2 , 0), then 1 + xy < 0.

If a > b and w ∈ ( 2a2b
a2+b2 , 1] ∪ [−1, 0), then 1 + xy > 0.

If a > b and w ∈ (0, 2a2b
a2+b2 ), then 1 + xy < 0.

Next, we will tackle the πn(w′) term. Recall that n(w′) is defined to be 1 when w′

is negative and 0 otherwise. Thus, our next goal is to determine the sign of w′ under
all possible conditions. We will again take d > 0 and present the results for the d < 0
case later.
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w′ =
w3 + d2w + h2w + 2dw2 − w − 2d

w2 − d2 − h2 − 1

=
w3 − b2w3

a2 + b2w
a2 + 2w2

√
b2 − b2w2

a2 − w − 2
√

b2 − b2w2

a2

w2 + b2w2

a2 − b2

a2 − 1

=
(w2 − 1)(a2w − b2w + 2ab

√
a2 − w2)

(w2 − 1)(a2 + b2)

=
a2w − b2w + 2ab

√
a2 − w2

a2 + b2

(9)

We have already examined the zeros of this expression when working through

the mπ term. It has a zero at w = 2a2b
a2+b2 when a < b and one at −2a2b

a2+b2 when a > b.
Notably, this expression does not have a zero at w = 0 like the previous. In this case

we have that the derivative is negative at w = 2a2b
a2+b2 when a < b and positive at

−2a2b
a2+b2 when a > b.

In d > 0 Case:

If a < b and w ∈ [−1, 2a2b
a2+b2 ), then w′ > 0.

If a < b and w ∈ ( 2a2b
a2+b2 , 1], then w′ < 0.

If a > b and w ∈ (−2a2b
a2+b2 , 1], then w′ > 0.

If a > b and w ∈ [−1, −2a2b
a2+b2 ), then w′ < 0.

Similarly, if d < 0, we get:

In d < 0 Case:

If a < b and w ∈ [−1, −2a2b
a2+b2 ), then w′ > 0.

If a < b and w ∈ (−2a2b
a2+b2 , 1], then w′ < 0.

If a > b and w ∈ ( 2a2b
a2+b2 , 1], then w′ > 0.

If a > b and w ∈ [−1, 2a2b
a2+b2 ), then w′ < 0.

Finally, we have the −πn(w) term, which requires no extra analysis since our results
are currently allowed to be dependent on w.

The final step in this proof is to check how many π terms are being added for each
initial condition for w and d, as well as a and b values. This will be omitted since it
solely involves going through each relevant interval for w and d for both the a > b and
a < b case. The results are as follows:

φ =


arctan( 2ab

b2−a2 ) + π a < b

arctan( 2ab
b2−a2 ) a > b

−π
2 a = b

Taking the derivative of φ with respect to a yields:
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φ′(a) =
2b

b2 + a2

This is clearly positive for all values a > 0 since b is nonzero and positive for such
a. □
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