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Lecture I

What is rigidity? Weak form of equivalence or coincidence of some simple invari-
ants implies a strong form of equivalence. Today we will discuss several examples
of rigidity of rank one, i.e., for maps, diffeomorphisms and flows.1

1. Shub-Sullivan. Let f, g : S1 → S1 be Cr, r ≥ 2, expanding maps. Assume that
there exists a absolutely continuous conjugacy: h ◦ f ◦ h−1 = g. Then f and g are
Cr conjugate.

Proof. To make the proof very simple also assume that h is a homeomorphism and
recall the following.

Theorem (Krzyżewski-Sacksteder). If f : S1 → S1 is a Cr expanding map. Then
there exists a Cr−1 smooth f -invariant measure µf = ρf (x)dx.

By ergodicity of expanding maps we have h∗µg = µf . We can assume that
h(0) = 0. Then

If (x) =

∫ x

0

ρf (x)dx =

∫ h(x)

0

ρg(x)dx = Ig(h(x))

Functions If and Ig are Cr. Hence, by the implicit function theorem, h is also
Cr. �

2. Expanding maps rigidity. Let Ed : x 7→ dx. Let f : S1 → S1 be a degree d
expanding map, h ◦ f = Ed ◦ h. Let λf the be Lyapunov exponent of f with respect
to µf . Assume λf = log d then f is smoothly conjugate to Ed.

Proof.

λf = hµf (f) = hh∗µf (L)

But hLeb(Ed) = log d. Hence by uniqueness of the measure of maximal entropy
h∗µf = Leb. Hence, by Shub-Sullivan, h is smooth. �

3. Katok entropy rigidity. Let (S, g) be a negatively curved surface and let
Xt : T 1S → T 1S be its geodesic flow. Denote by λ the Liouville measure. Then

hλ(Xt) = htop(X
t)

if and only of g is a hyperbolic metric (constant curvature).

4. Avez rigidity. If f : T2 → T2 is a Cr, r ≥ 2, Anosov diffeomorphism which has
C2 stable and unstable foliations then f is Cr conjugate to a linear automorphism.

Date: May 24, 2019.
1Disclaimer: The rich subject of rigidity of higher rank actions will be ignored.
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5. de la Llave-Marco-Moriyon rigidity. Let f, g : T2 → T2 be conjugate Cr-
smooth Anosov diffeomorphisms, h ◦ f = g ◦ h. Assume

∀p = fkp ∃C : Dfk(p) = CDgk(h(p))C−1 (?)

Then h is Cr−ε smooth.

Proof.

1. Equilibrium states. Given an Anosov diffeo f and a Hölder potential ϕ
there exists a unique f -invariant measure µf,ϕ, called equilibrium state which
maximizes metric pressure hµ(f) +

∫
ϕdµ. Note that by uniqueness if ψ is

cohomologous to ϕ, ϕ = ψ + u ◦ f − u, then µf,ϕ = µf,ψ. The equilibrium
state for − log Jacu(f) is the SRB measure which has absolutely continuous
conditional measure on unstable leaves of f . Denote this equilibrium state
by mf .

2. Functoriality. If f = h−1 ◦ g ◦h then h∗µg,ϕ = µf,ϕ◦h. Follows directly from
functoriality of metric entropy.

3. Smoothness along foliations.

Theorem (Livshits). If f is a transitive Anosov diffeomorphism and ϕ and
ψ are Hölder potentials such that

∀p = fkp :
∑

x∈O(p)

ϕ(x) =
∑

x∈O(p)

ψ(x)

then ϕ is cohomologous to ψ.

Then (?) verifies the assumption of Livshits and implies that ϕ = − log Jacuf
is cohomologous to ψ ◦ h = − log Jacug ◦ h. And hence, by functoriality,

mf = µf,ϕ = µf,ψ◦h = h∗µg,ψ = h∗mg

4. Calculus. If ξ is a measurable partition subordinate to Wu
f then for mf

almost every x we have that h|ξ(x) : ξ(x)→ h(ξ(x)) is absolutely continuous

and, hence, smooth. It follows that h ∈ Cru(T2), that is, h is smooth along
unstable leaves. Applying the same argument to f−1 and g−1 which are
conjugate via the same h, h ◦ f−1 = g−1 ◦ h, we also obtain h ∈ Crs (T2).
Then it remains to prove that

Cr−ε(T2) ⊂ Crs (T2) ∩ Cru(T2)

which is an easy exercise when r =∞.

�

6. Otal-Croke marked length spectrum rigidity. Let (S, g1) and (S, g2) be
negatively curved surfaces. Denote by [γ] the free homotopy class loops S1 → S.
For any non-trivial [γ] consider the unique geodesic representatives γ1 ∈ [γ] and
γ2 ∈ [γ] for g1 and g2, correspondingly and assume that

`g1(γ1) = `g2(γ2) (�)

Then there exists an isometry σ : (S, g1)→ (S, g2).
Recently local marked length spectrum rigidity was established by Guillarmou-

Lafeuvre for higher dimensional negatively curved manifolds M . Namely, if g2 is
sufficiently close to g1 in CN topology, N = 3

2 dimM+8, then (�) implies isometry.
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To make the proof very simple assume that g2 = ρ2g1 (which is, after moding
out by Diff(S), a finite codimension assumption in the case of surfaces). This proof
is due to Katok and precedes Otal-Croke.

Proof. Denote by λi the Riemannian volume and by Ai the total area of gi, i = 1, 2.
Using Birkhoff ergodic theorem and Anosov closing lemma we can approximate λ1
by a measure supported on a single periodic geodesic γ: λ1 ≈ A1

`g1 (γ)
δγ , where δγ is

the uniform measure on γ. Then

A2 =

∫
S

ρ2dλ1 =

∫
S
ρ2dλ1

∫
S
dλ1∫

S
dλ1

≥
(∫
S
ρdλ1

)2
A1

≈
(

A1

`g1(γ)

)2

(∫
γ
ρdδγ

)2
A1

= A1
`g2(γ)2

`g1(γ)2
≥ A1

`g2(γ̄)2

`g1(γ)2
= A1,

where γ̄ is the g2-geodesic homotopic to γ. Hence we obtain that A2 ≥ A1 and,
using the symmetric argument we also have A1 ≥ A2. It follows that the equality
must be achieved in the Cauchy-Shwartz inequality above. Hence ρ is constant,
and, hence, ρ = 1. �

7. Rigidity of Anosov flows in dimension 3. Anosov flows Xt
1, X

t
2 : M → M

are called conjugate via h : M →M if

∀t h ◦Xt
1 = Xt

2 ◦ h
If Xt

1 and Xt
2 are C1 close transitive Anosov flows then Anosov structural stability

yields an orbit equivalence h : M → M which send orbits of X1 to orbits of X2

preserving the time direction. However, typically a true conjugacy does not exists.
Indeed, similarly to (�), the periods of periodic orbits provide an obstruction to
existence of the conjugacy. Applying the flow version of Livshits theorem to DX1h−
1 yields the following characterization.

Let Xt
1 and Xt

2 be orbit equivalent transitive Anosov flows. Assume that

∀p ∈ Per(X1) : perX1
(p) = perX2

(h(p))

Then Xt
1 is conjugate to Xt

2. Further, following in the footsteps of the proof for
2-dimensional Anosov diffeos one can obtain the following.

Theorem (de la Llave-Moriyon, Pollicott). Assume that Xt
1 and Xt

2 are conjugate
transitive Anosov flows. Also assume, analogously to (?), that the differentials of
Poincaré return maps for all periodic points are conjugate. Then Xt

1 and Xt
2 are

smoothly conjugate.

Note that in the setting of geodesic flows any conjugacy is automatically smooth
(one has that the conjugacy is volume preserving as an intermediate step in Otal’s
MLS rigidity proof and, hence, is smooth by following the de la Llave-Moriyon
argument). That is, the assumption on differentials of return maps at periodic
orbits is redundant. More generally, Feldman-Ornstein showed that the same holds
for transitive contact Anosov flows. Hamenstädt generalized this result to higher
dimensions assuming additionally C1 stable and unstable foliations. We offer the
following generalization.

Theorem (A.G. – F. Rodriguez Hertz). Let Xt
1 and Xt

2 be conjugate 3-dimensional
transitive Anosov flows. Then either the conjugacy is smooth or Xt

1 is a constant
roof suspension of an Anosov diffeomorphism of T2.
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Lecture II

Today we will discuss rigidity of toral automorphisms similarly to rigidity of
expanding maps and Anosov diffeos discussed last time. Any matrix L ∈ SL(d,Z)
induces a torus automorphism L : Td → Td. If L is hyperbolic and f : Td → Td is
an Anosov diffeo which is homotopic to L then, by work of Franks and Manning, f
is conjugate to L, h ◦ f = L ◦ h. We are interested in higher regularity of h. Recall
that the obstructions are carried by periodic orbits

∀p = fkp ∃C : Dfk(p) = CLkC−1 (?)

Recall that if d = 2 then vanishing of obstructions implies that h is as regular as f
by work of de la Llave-Marco-Moriyon.

8. Periodic data rigidity in dimension 3. There are two cases to consider for 3-
dimensional automorphisms with 2-dimensional unstable subbundle: the comformal
case of a pair complex conjugate eigenvalues and the case when unstable subbundle
admits a dominated splitting.

Theorem (Kalinin-Sadovskaya). Assume that L : T3 → T3 has a pair of complex
eigenvalue with 0 < λ1 < 1 < |λ2| = |λ3| and that Cr Anosov diffeomorphism f is
conjugate to L, h ◦ f = L ◦ h. If (?) then h is Cr−ε.

Theorem (A.G. – Guysinsky). Assume that L : T3 → T3 has real spectrum 0 <
λ1 < 1 < λ2 < λ3. Consider Cr smooth Anosov diffeomorphism f , which is
conjugate to L; h ◦ f = L ◦ h. If (?) then h is Cr−ε.2

The bootsrap of regularity of h is carried out in several steps: to Lipschitz,
to C1 and then to Cr−ε. In the conformal case Kalinin and Sadovskaya built an
invariant conformal structure on the unstable subbundle of f . Then presence of
the conformal structure allows to employ apply one-dimensional techniques to the
2-dimensional problem and obtain regularity along the unstable foliation.

9. De la Llave counterexample for dimensions ≥ 4. In general, rigidity of
automorphism in dimensions ≥ 4 is false. The following example is due to de la
Llave.

Let A and B be hyperbolic automorphisms of T2 with Av = λv and Bu = µu
where µ > λ > 1. Consider the product automorphism L(x, y) = (Ax,By) and its
perturbation

f(x, y) = (Ax+ ϕ(y)v,By),

where ϕ(y) = sin(2πy1). Then the conjugacy h has the form

h(x, y) = (x+ ψ(y)v, y)

and can be calculated explicitly in the form of series. Let r0 = log λ/ logµ. Note
that r0 < 1. One can then check that ψ is Cr0 , but no more regular.

2To obtain the global version one needs to use, additionally, more recent results of Wang-Sun
on approximation of Lyapunov exponents, Velozo on SL(2,R) cocycles and also thesis of Potrie.
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10. Lyapunov spectrum rigidity. Let L : Td → Td be an automorphism and let
f : Td → Td be a volume preserving C1 small perturbation of L, h ◦ f = L ◦ h.
Instead of assuming that the Lyapunov exponents at periodic match we can make
the same assumption for volume Lyapunov exponents, that is,

χfi = χLi , i = 1, . . . d (?)

If f is not ergodic we can take average Lyapunov exponent.

10.1. Dimension 2. If d = 2 then

hvol(f) = χf = χL = hvol(L) = hh∗vol(f)

Hence, by uniqueness of the measure of maximal entropy we have h∗vol = vol.
Then one concludes that h is smooth following the proof in Lecture 1.

10.2. Dimension 3.

Theorem (Saghin-Yang). Assume that L : T3 → T3 has real spectrum 0 < λ1 <
1 < λ2 < λ3. Assume that f is a C1 small perturbation of L which satisfies (?).
Then f is smoothly conjugate to L.

Proof. Similarly to the 2-dimensional case one can use Pesin’s formula to obtain
h∗vol = vol. Then, just as in the 2-dimensional case, h ∈ C∞s (T3), that is, h is
smooth along the stable foliation. By, comparing the rates at which points diverge
in the universal cover, one has h(Wwu

f ) = Wwu
L . However, one cannot conclude

smoothness along Wwu
f because the conditional measures of volume typically fail

to be absolutely continuous. This is the main issue and we need the following
lemma to overcome it.

Lemma 0.1 (Ledrappier). Let W be a uniformly expanding foliation for a preserv-
ing diffeomorphism f : M → M . Let m be an ergodic invariant measure. Let ξ be
a measurable, Markov partition subordinate to W . Denote by mξ(x) the conditional

measures on ξ(x). Conditional entropy H(f−1ξ|ξ) is defined by

H(f−1ξ|ξ) =

∫
M

− logmξ(x)(f
−1(ξ(fx))dm

Then the conditional measures mξ are absolutely continuous if and only if

H(f−1ξ|ξ) =

∫
M

log Jac(f |W )dm

We can apply the lemma to Wwu
f and vol. Indeed,

H(f−1ξ|ξ) = H(L−1(h(ξ))|h(ξ)) = log λ2

and ∫
T3

log Jacwu(f)dvol = χwuf = log λ2

hence Wwu
f is absolutely continuous and the rest of the proof proceeds in the same

way as for periodic data rigidity. �

Theorem (AG-Kalinin-Sadovskaya). Assume that L : T3 → T3 has a pair of com-
plex eigenvalues 0 < λ1 < 1 < |λ2| = |λ3|. Assume that f is a C1 small perturbation
of L which satisfies (?). Then f is smoothly conjugate to L.
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Proof. The challenge here is to establish regularity of h along the two dimensional
unstable foliation. To do that we need to control two pieces of data for f : jacobian
and quasi-conformal distortion.

• The unstable jacobian Jacu(f) is continuously cohomologous to constant

Jacu(f) =
ρ(fx)

ρ(x)
|λ2|2

The proof uses absolute continuity of Wu and then the measurable Livshits
theorem for scalar cocycles.

• There exists a Hölder continuous Riemannian metric on Eu such that Df |Eu
is conformal

‖Dfvx‖ = a(x)‖vx‖, ∀vx ∈ Eu

The tool for proving this is the trichotomy of Kalinin-Sadovskaya. Namely,
if 2× 2 matrix cocycle over f has only one volume exponent then:

1. the cocycle is conformal;
2. the cocycle admits a continuous invariant line bundle;
3. the cocycle admits an invariant pair of transverse line bundles;

Note that in our setting we have that at the fixed point p, Df |Eu(p) is close
to an irrational rotation which eliminates possibilities 2 and 3.

• The conjugacy h is Lipschitz along Wu.
We approximate h by an h0 which is C1 along Wu. Then define

hn = Ln ◦ h ◦ f−n

By using conformality and the fact that a(x) is cohomologous to a constant
it is easy to check that hn are uniformly bounded in C1 topology and, in
fact converge to h.

• It follows from the Rademacher theorem that h is differentiable almost ev-
erywhere along Wu, that is,

Duh ◦Duf = DuL ◦Duh

has a measurable solution Duh. Then by a result of Sadovskaya it must have
a continuous version and hence, h ∈ C1+(Wu). After that the classical de
la Llave bootsrap argument kicks in.

�

Combining the above techniques yields a higher dimensional result.

Theorem (Saghin-Yang/ AG-Kalinin-Sadovskaya). Let f be a C1 small perturba-
tion of L : Td → Td, where L4 is a hyperbolic irreducible automorphism such that no
three eigenvalues have the same absolute value. Then the conjugacy h ∈ C1+Holder.

Remark 0.2. In contrast to periodic data rigidity, the Lyapunov spectrum rigidity
is an “extremal” property of the automorphism. It is easy to produce non-linear
Anosov diffeomorphisms with the same Lyapunov spectrum which are not C1 con-
jugate.
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11. Rigidity of partially hyperbolic automorphisms.

11.1. Dimension 3.

Theorem (Saghin-Yang). Let L : T3 → T3 be the product partially hyperbolic au-
tomorphism

L(x, y, z) = (A(x, y), z)

and let f be a volume preserving perturbation with the same (average) Lyapunov
exponents (?). Then f is smoothly conjugate to

L′(x, y, z) = (A(x, y), z + α(x, y))

Proof. Consider the semi-conjugacy h : T3 → T2, h ◦ f = A ◦ h. Let ξ be a measur-
able, Markov partition partition subordinate to Wu

f (by pulling-back the Markov

partition h(ξ) for A).
Invariance Principle. (Avila-Viana, Tahzibi-Yang)

Hvol(f
−1(ξ)|ξ) ≤ Hh∗vol(A

−1(h(ξ))|h(ξ))

and the equality holds if and only if the conditional measures are invariant under
the center holonomy. We have

χuuf = Hvol(f
−1ξ|ξ) ≤ Hh∗vol(A

−1(h(ξ))|h(ξ)) ≤ χuuL = χuuA

By the assumption on the Lyapunov spectrum (?) we have that both inequalities
above are, in fact, equalities. Hence, the center holonomy is absolutely continuous,
hence, smooth, both within W cu and W cs. Therefore W c is a smooth circle fibra-
tion. Straightening this fibration we can conjugate f to a diffeomorphism of the
form

(x, y, z) 7→ (g(x, y), α(x,y)(z))

Then applying the earlier 2-dimensional argument to A and g we obtain that g is
smoothly conjugate to A. �

11.2. Dimension 4.

Theorem. Let L : T4 → T4 be an irreducible partially hyperbolic diffeomorphism,
λ1 < |λ2| = |λ3| = 1 < λ4. And let f be a volume preserving Cinfty small
perturbation with the same Lyapunov exponents (?). Then f is smoothly conjugate
to L.

This relies on two big reults:

F. Rodriguez Hertz dichotomy: Either

1. f is conjugate to L (and conjugacy is smooth along W c via a KAM argu-
ment); or

2. f is accessible.

Avila-Viana: If f is accessible then f has at least one non-zero center exponent.
Combining this with (?) we have that f is conjugate to L. We only need to check

smoothness along stable and unstable foliations. Berg proved that volume is the
unique measure of maximal entropy for L. As before we have:

hh∗vol(L) = hvol(f) = χuuf = χuuL = hvol(L)

Hence, the same argument as in dimension 2, we obtain smoothness along Wuu,
and, similarly, along W ss.
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1. Lecture III

This lecture is entirely based on a joint work with F. Rodriguez Hertz, under
preparation.

1. Otal-Croke marked length spectrum rigidity. Let (S, g1) and (S, g2) be
negatively curved surfaces. Denote by [γ] the free homotopy class loops S1 → S.
For any non-trivial [γ] consider the unique geodesic representatives γ1 ∈ [γ] and
γ2 ∈ [γ] for g1 and g2, correspondingly and assume that

`g1(γ1) = `g2(γ2) (�)

Then there exists an isometry σ : (S, g1)→ (S, g2).

2. Khalil-Lafont question. Consider additional data: two positive smooth func-
tions ϕ1, ϕ2 : S → R. Instead of (�) assume that

∀[γ]

∫
γ1

ϕ1(γ(t))dt =

∫
γ2

ϕ2(γ(t))dt (♥)

Does it follow that (S, g1) and (S, g2) are homothetic? That is, does there exists a
constant c > 0 and an isometry σ : (S, g1)→ (S, c2g2).
Note that if ϕ1 = ϕ2 = 1 then this is precisely MLS rigidity. Also note that if
g1 = c2g2 then (ϕ1, ϕ2) = (ϕ, cϕ) verify (♥).

3. Sharpened MLS rigidity. Let (S, g1) and (S, g2) be negatively curved surfaces.
Let ϕi : T 1S → R be smooth functions such that ϕ1 is not an abelian coboundary.
Assume that for every homologically trivial homotopy class of loops [γ] ∈ π1(S),
[γ] 6= 0, we have ∫

γ1

ϕ1 =

∫
γ2

ϕ2

Then there exists a constant c > 0 and an isometry σ : (S, g1)→ (S, c2g2).

4. Examples of non abelian coboundaries. Let X be an Anosov vector field on
a closed manifold M . A Hölder continuous function ϕ : M → R is called an abelian
coboundary if there exists a closed 1-form ω and a Hölder function (differentiable
along X) such that

ϕ = Xu+ ω(X)

Notice that the decomposition ϕ = Xu+ω(X) is highly non-unique because we can
change ω by any an exact 1-form. Indeed given any smooth function v : M → R we
can write a different decomposition

ϕ = (ω + dv)(X) +X(u− v)

IfX is the geodesic flow on (S, g1) then there two classes of non abelian coboundaries
(to which Sharpened MLS rigidity would apply).

1. Function ϕ : T 1S → R is not an abelian coboundary if it is non-negative and
takes at least one positive value.

2. Function ϕ : T 1S → R is not an abelian coboundary if it is a pullback of a
non-zero function on the surface, in other words, ϕ(v, x) = ϕ(x).
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5. An example without rigidity. Let S be a surface equipped with a coho-
mologically non-trivial closed 1−form ω : TS → R. Consider two non-isometric
Riemannian metrics g1 and g2 on S. Then the corresponding unit tangent bundles
are naturally embedded in the full tangent bundle T 1

giS ⊂ TS and we can define

ϕi : T 1
giS → R by ϕi(x, v) = ωx(v). Let γi ⊂ T 1

giS be homotopic unit-speed closed
gi-geodesics. Then∫

γ1

ϕ1(γ1(s))ds =

∫
γ1

ω(γ1(s))ds = 〈[ω], [γ]〉 =

∫
γ2

ω(γ2(s))ds =

∫
γ2

ϕ2(γ2(s))ds

where [ω] is the cohomology class of ω and [γ] is the homology class of γi, i = 1, 2.

6. Abelian Livshits theorem. We follow Sharp and say that a transitive Anosov
flow Xt : M → M is homologically full if every integral homology class contains a
closed orbit of Xt.

Theorem. Assume that Xt : M →M is a homologically full transitive Anosov flow
and let ϕ ∈ Cr(M), r > 0, ϕ : M → R such that∫

γ

ϕ = 0

for all homologically trivial closed orbits γ. Then there is a C∞ smooth closed 1-
form ω on M and a function u ∈ Cr−ε(M), where ε > 0 is arbitrarily small, such
that

ϕ = Xu+ ω(X)

Proof. By work of Sharp homologically trivial orbits equidistribute according to
a certain equilibrium state. In particular, it follows that the homologically trivial
orbits are dense. However, one can avoid using Sharp’s machinery and give a simpler
proof by using shadowing.

Let M̂ be the universal abelian cover of M , that is, the cover which corresponds
to the commutator subgroup [π1M,π1M ]. Note that homologically trivial periodic

orbits in M lift to periodic orbits in M̂ . Hence periodic orbits of the lifted flow
are dense in M̂ and, by applying the standard Smale argument we conclude that
Xt : M̂ → M̂ is a transitive flow. Hence we can carry out the standard proof of
Livshits theorem on M̂ . The conclusion is that the lift ϕ̂ : M̂ → R is a coboundary
(in the usual sense), which translates into ϕ being an abelian coboundary. �

7. Matching rigidity for Anosov flows.

Theorem. Let Xt
i : M → M , i = 1, 2 be C1+α 3-dimensional transitive Anosov

flows. Assume they are orbit equivalent via H : M → M . Let ϕi : M → R be
C1 functions. If

∫
γ1
ϕ1 =

∫
H∗γ1

ϕ2 for every X1−closed orbit γ1, then one of the

following holds:

1. ϕi are Xi abelian coboundary;
2. H is C1 after adjusting it through a time change.

8. Another application to 3-dimensional Anosov flows. Recall from the first
lecture.

Theorem (de la Llave-Moriyon, Pollicott). Assume that Xt
1 and Xt

2 are orbit
equivalent 3-dimensional transitive Anosov flows. Assume

∀p ∈ Per(X1) : Tp = perX1
(p) = perX2

(h(p)) = Th(p) (A1)
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Also assume that the differentials of Poincaré return maps for all periodic points
are conjugate:

∀p ∈ Per(X1) ∃C : DX
Tp
1 (p) = C ◦DXTh(p)

2 (h(p)) ◦ C−1 (A2)

Then Xt
1 and Xt

2 are smoothly conjugate.

In the first lecture we discussed what happens if (A2) is dropped.
If one drops the assumption (A1) and, keeps (A2) instead, then the matching

theorem could be applied to infinitesimal stable and unstable jacobians yields the
following.

Theorem. Assume that Xt
1 and Xt

2 are orbit equivalent 3-dimensional transitive
Anosov flows. Assume that the differentials of Poincaré return maps for all periodic
points are conjugate (A2). Then Xt

1 and Xt
2 are smoothly orbit equivalent.

9. Outline of the proof of Sharpened MLS rigidity.

9.1. Reduction to a reparametrization. Applying the Matching Theorem to the ge-
odesic flows X1 and X2 we obtain a C1+ orbit equivalence H. Let

X̃1 = DH(X1)

Then obviously,

X̃1 = ρX2, ρ > 0

that is X̃1 is a C1 flow which is reparametrization of X2. Our goal is to prove that
X̃t

1 and X2/c are conjugate.

9.2. Matching of homologically trivial spectra. Both flows X̃1 and X2 are contact.
Denote by α and β the contact 1−forms for X2 and X̃1, respectively. Then we have
that dα is an exact X2-invariant 2−form. On the other hand, by using Cartan’s
formula, dβ is also X2-invariant. Hamenstädt proved that such form is unique, that
is dβ = cdα, c > 0. Hence the 1−form

µ = β − cα

is closed. Plugging X2 yields a formula for ρ in terms of µ

ρ =
1

c+ µ(X2)

9.3. Sharpening the reparametrization. Our goal now is to show that µ is exact.
Then the periods of Y1 = cX̃1 and Y2 = X2 match and we would conclude that Y1
and Y2 are conjugate. To do this we rely on work of R. Sharp, which is based on
earlier work of Katsuda-Sunada.

If Y t : M →M is a homologically full Anosov flow then the functional β : H1(M,R)→
R given by

β([θ]) = PY (θ(Y )) = sup
µ
{hµ +

∫
M

θ(Y )dµ}

attains a unique minimum at ξY ∈ H1(M,R). Geodesic flows are special among
homologically full flows:

Fact 1. If Y is a geodesic flow then ξY = 0;
Using the minimizer property it is not hard to study the behavior of the mini-

mizer under the reparametrizations.
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Fact 2. If Y1 = Y2/(1 + ω(Y2)) then

ξ1 = ξ2 + β(ξ2)[ω]

Since both Y1 and Y2 come from geodesic flows this boils down to β(ξ2)[ω] = 0.
But one can also check that β(ξ2) = hµξ2 (Y2) > 0. Hence ω = dv.

We conclude that Y1 and Y2 are conjugate and, hence, we can apply Otal-Croke
theorem to obtain the posited isometry σ : (S, g1)→ (S, c2g2).


