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Abstract. In this paper we use the blow-up surgery introduced in [Go16] to produce new

higher dimensional partially hyperbolic flows. The main contribution of the paper is the slow-
down construction which accompanies the blow-up construction. This new ingredient allows

to dispose of a rather strong domination assumption which was crucial for results in [Go16].

Consequently we gain more flexibility which allows to construct new volume-preserving par-
tially hyperbolic flows as well as new examples which are not fiberwise Anosov. The latter

are produced by starting with the geodesic flow on complex hyperbolic manifold which admits

a totally geodesic complex curve. Then by performing the slow-down first and the blow-up
second we obtain a new (volume-preserving) partially hyperbolic flows.

1. Introduction

This paper is a sequel to [Go16] and familiarity with [Go16] would help the reader. We
keep the introduction brief, still we will recall all definitions which are needed.

A flow ϕt : M →M is partially hyperbolic if the tangent bundle TM splits into Df -invariant
continuous subbundles TM = Es ⊕ Ec ⊕ Eu such that

‖Dϕt(vs)‖ < λt < ‖Dϕt(vc)‖ < µt < ‖Dϕt(vu)‖, t ≥ 1, (1.1)

for some Riemannian metric ‖ · ‖, some λ < 1 < µ and all unit vectors vs ∈ Es, vc ∈ Ec and
vu ∈ Eu. Then it is clear that the generating vector field ϕ̇ lies in the center subbundle Ec.

An invariant submanifold N ⊂M is called an Anosov submanifold for ϕt if TN = Es⊕ϕ̇⊕Eu.
Note that then the flow ϕtN is given by the restriction ϕt|N is an Anosov flow. Further, the flow
ϕt : M → M is called locally fiberwise at N if a neighborhood of N can be smoothly identified
with Dk × N , where Dk = {x ∈ Rk : ‖x‖ < 1}, in such a way that the restriction ϕt|Dk×N has
the product form

ϕt(x, y) = (at(x), ϕtN (y)), (1.2)

where at is a linear hyperbolic saddle flow.

Remark 1.1. Note that locally fiberwise assumption in this paper is weaker than the one
in [Go16] as we no longer require Es ⊕ Eu to be tangent to the N -fibers in the neighborhood
Dk ×N . Such weakening is crucial for the examples which we consider here. Also note that the
locally fiberwise assumption implies that the normal bundle to N is trivial. This assumption is
not crucial for our argument, but it does simplify notation and calculations a lot.

∗The first author was partially supported by NSF grant DMS-1823150 and Simons grant 427063.
∗∗The second author was partially supported by NSF grant DMS-1900778.
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Now we can blow-up M along {0}×N by replacing each point in {0}×N with the projective

space of lines which pass through this point perpendicularly to N . The blown-up manifold M̂
comes with a canonical blow-down map π : M̂ → M which collapses each projective space to
its base point. The preimage π−1({0} × N) ' RP k−1 × N is called the exceptional set. In

smooth category, M̂ is the result of replacing Dk×N with (Dk#RP k)×N . We will write D̃k for

(Dk#RP k). If the flow ϕt : M →M is locally fiberwise at N then it induces a flow ϕ̂t : M̂ → M̂
such that the diagram

M̂

π

��

ϕ̂t

// M̂

π

��

M
ϕt

// M

(1.3)

commutes. The induced flow ϕ̂t : M̂ → M̂ may or may not be partially hyperbolic.

Main Theorem. Let ϕt : M →M be a partially hyperbolic flow with C1 invariant splitting
Es ⊕ Ec ⊕ Eu and let N ⊂ M be an invariant Anosov submanifold of M . Assume that the
dynamics is locally fiberwise in a neighborhood of N . Let ϕ̂t : M̂ → M̂ the induced flow on M̂ .
Then there exists a partially hyperbolic flow ϕ̃t : M̂ → M̂ which coincides with ϕ̂t outside of a
neighborhood of the exceptional set.

The Main Theorem builds up on the earlier work [Go16]. However, strictly speaking, it is not
a generalization of the results in [Go16]. Indeed in [Go16] the author showed that the blown-up
flow ϕ̂t is itself partially hyperbolic under more restrictive assumptions, most importantly the
domination assumption, which assures that the Anosov submanifold is sufficiently fast compared
to the center. In this paper we have fully disposed of the domination assumption and, most
interestingly, the Main Theorem applies to examples when ϕ̂t is not partially hyperbolic. The
proof of the Main Theorem relies on some tools developed in [Go16] but also develops different
technology for controlling the returns. The key basic ingredient of the proof is the slow-down
construction in the neighborhood of the Anosov submanifold which provides a remedy for absence
of domination. Consequently, unlike results of [Go16], the construction here can only be used
for flows and not for diffeomorphisms. The benefit of the slow-down construction is that we can
also produce volume preserving examples which was impossible with techniques of [Go16].

We proceed to describe an application of our theorem in the setting of geodesic flows on
compact complex hyperbolic manifolds. Let M be a compact complex hyperbolic manifold of
dimension n (real dimension 2n). One can realize M as a quotient space of the complex hyperbolic
space HnC by an action of a cocompact lattice in the group of biholomorphic isometries, Γ ⊂
SU(n, 1). Assume that there exists a compact totally geodesic complex curve N ⊂ M . Then,
up to conjugating lattice Γ, the embedding N ⊂M is induced by the first coordinate embedding
H1

C ⊂ HnC. Now consider the geodesic flow on the unit tangent bundle ϕt : T 1M → T 1M .
We view ϕt as a partially hyperbolic flow with dimEs = dimEu = 1. Because N is totally
geodesic, ϕt restricts to T 1N . We blow-up T 1N ⊂ T 1M . It is easy to see that the induced

flow ϕ̂t : T̂ 1M → T̂ 1M is not partially hyperbolic because it has periodic orbits with dominated
splittings of different dimension signatures. Further, we can check (see Section 4) that all other
assumptions of Main Theorem are satisfied as well. Hence we obtain the following corollary.

Corollary 1.2. Let M be a compact complex hyperbolic manifold and let N ⊂ M be a

totally geodesic complex curve. Then the blow up T̂ 1M of T 1M along T 1N supports a partially
hyperbolic flow ϕ̃t : M̂ → M̂ . Moreover, the flow ϕ̃t : M̂ → M̂ can be chosen to be an arbitrarily
C∞ small perturbation of ϕ̂t.
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Note that the if ϕt preserves a smooth volume m then ϕ̂t preserves a smooth measure π∗(m).
However the density of π∗(m) vanishes on the exceptional set. Nevertheless, following the idea
of Katok and Lewis [KL96], we adapt our Main Theorem to the conservative setting.

Addendum 1.3. Let N ⊂ M and ϕt : M → M be as in the Main Theorem. Assume that
ϕt preserves a smooth volume m which has product form in the neighborhood Dk × N ; that is,
m|Dk×N = vol ⊗ volN , where vol is the standard Euclidean volume on Dk and volN is a smooth

ϕt|N -invariant volume on N . Then there exists a partially hyperbolic flow on M̂ which preserves
a smooth non-degenerate volume.

The following is a non-trivial corollary.

Corollary 1.4. Let M be a compact complex hyperbolic manifold and let N ⊂ M be a

totally geodesic complex curve. Then the blow up T̂ 1M of T 1M along T 1N supports a volume

preserving partially hyperbolic flow ϕ̃t : T̂ 1M → T̂ 1M .

Finally we remark that similarly to [Go16, Section 3] one can take multiple blow-ups as well
as connected sums along Anosov submanifolds and produce partially hyperbolic diffeomorphisms
on manifolds with even more complicated topology. Prior to proving the result we include a short
section presenting a concrete evidence (higher homotopy) of altered topology of the manifold after
the blow-up surgery.

We would like to thank the referee for a thorough reading and several very valuable sugges-
tions. In particular, the following discussion on topology of the new manifold appeared on the
suggestion of the referee.

Higher homotopy of T̂ 1M . To see that the examples given by Corollaries 1.2 and 1.4 live
on new manifolds one can look at higher homotopy groups. Namely, we will prove that new
examples are not homotopic to time-1 maps of geodesic flows on negatively curved manifolds.
To do that we will additionally assume that complex dimension of M is n ≥ 3. Then the real
dimension of M is 2n and the dimension of T 1M is 4n− 1.

We begin by observing that since M is aspherical the long exact sequence in higher homotopy
groups for the sphere bundle T 1M yields the isomorphism π2n−1(T 1M) ' π2n−1(S2n−1) ' Z.
Hence, to see that the new flow ϕ̃t is not derived from a geodesic flow (possibly on a different

manifold), it is sufficient to verify that π2n−1(T̂ 1M) is not isomorphic to Z.

To do this calculation we will first construct a special 2-fold cover Q̂ → T̂ 1M . Recall

that T̂ 1M is obtained by blowing-up T 1N ⊂ T 1M in the normal direction. Let’s consider the
same construction but by using the “spherical blow-up” instead of the projective one. Namely,
let’s replace each point in T 1N with the sphere of rays which are based at this point and are
perpendicular to N . In this way we obtain a manifold Q with boundary T 1N × S4n−5. Let
a : T 1N × S4n−5 → T 1N × S4n−5 be an involution given by a(x, y) = (x,−y). Then, clearly,

T̂ 1M = Q/a

Now consider another copy of Q which we denote by Q′ and form the double Q̂ = Q t Q′
by identifying the boundaries via the identity map. The double Q̂ is a closed manifold and
T 1N × S4n−5 ⊂ Q̂ is a separating codimension 1 submanifold. Consider its two-sided thickening

{t : −1/2 ≤ t ≤ 1/2} × T 1N × S4n−5

where t = 0 corresponds to T 1N × S4n−5. Recall that the odd dimensional sphere S4n−5 ⊂ Cn−2

admits the S1-action given by complex multiplication, which we denote by ξt, ξ1 = idS4n−5 .
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Notice that ξ1/2 is precisely the antipodal map y 7→ −y. Hence we can extend the involution a
to the thickening as follows

a(t, x, y) = (−t, x, ξt+1/2(y))

It is straightforward to verify that a is still an involution and that a(−1/2, x, y) = (1/2, x, y).

Hence a can be extended to the rest of Q̂ outside the thickening by using the identity map
Q→ Q′. Hence we obtain a fixed point free involution a : Q̂→ Q̂ which gives a 2-folded covering
map

Q̂→ Q̂/a = Q/a = T̂ 1M

Hence we have π2n−1(T̂ 1M) = π2n−1(Q̂) which now can be calculated. Namely, consider Q̂ as
the union of two open set U and V (corresponding to Q and Q′) so that U ∩ V = (−1/2, 1/2)×
T 1N × S4n−5. Now we would like to apply the Seifert- van Kampen argument to U and V . First
notice that U is homotopy equivalent to Q which, in turn, is homotopy equivalent to T 1M\T 1N .
Because T 1N has codimension 4n− 4 it does not affect (2n− 1)-th homotopy group and we have
π2n−1(U) = π2n−1(V ) = Z. Now it remains to notice that T 1N×S4n−5 have vanishing homotopy
in the range from 2 to 4n − 6. Because 4n − 6 ≥ 2n the Seifert-van Kampen argument works
easily to produces the isomorphism π2n−1(Q̂) ' π2n−1(U)⊕ π2n−1(V ) = Z2, as desired.

2. The proof of the Main Theorem

2.1. Outline of the proof. The partially hyperbolic splitting TM = Es ⊕ Ec ⊕ Eu for
ϕt : M →M induces a splitting TM̂ = Ês⊕ Êc⊕ Êu which is invariant under Dϕ̂t : TM̂ → TM̂ .
It can be checked in local coordinates that, because the partially hyperbolic splitting is C1, the
induced splitting Ês⊕Êc⊕Êu is continuous. Under and additional domination assumption on ϕt

at N (and also a stronger locally fiberwise assumption) the latter splitting is partially hyperbolic
and this situation was examined in [Go16]. However, in general, this splitting is not partially
hyperbolic. To recover partial hyperbolicity we modify ϕ̂t in the neighborhood of the exceptional
set. Recall that by the locally fiberwise assumption, in the neighborhood of N , the generator of
the flow is given by

∂ϕt

∂t
(x, y) = X(x) + Y (y),

where X is the vector field on Dk which generates the hyperbolic saddle at and Y is the generator
of ϕtN . We consider a smooth bump function ρ : Dk → R which is radially symmetric, that is,
ρ(x) = ρ̄(‖x‖) where smooth function ρ̄ verifies

1. ρ̄(s) = ρ0 < 1, for s ≤ δ;
2. ρ̄ is strictly increasing on (δ, 2δ) and |ρ̄′(s)| < 1/δ for s ∈ (δ, 2δ);
3. ρ̄(s) = 1 for s ≥ 2δ

Here the constant ρ0 only depends on the contraction and expansion rates of Dϕt along invariant
subbundles. Constant δ will need to be chosen sufficiently small.

Given such a bump function ρ we replace the flow ϕt|Dk×N with a new flow ϕtρ whose generator
is given by a slow-down of the saddle X

∂ϕtρ
∂t

(x, y) = ρX(x) + Y (y) (2.4)

Because ρ = 1 on the boundary of Dk the flow ϕtρ extends to the rest of M as ϕt and then the

blown-up flow ϕ̂tρ is the posited partially hyperbolic flow.
Now we briefly outline the proof of partial hyperbolicity before proceeding with a more de-

tailed argument. First note that on the δ-neighborhood of N the flow ϕtρ is a direct product of
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the slow saddle aρ0t and ϕtN . Therefore, by choosing ρ0 small enough, the domination condi-
tion of [Go16] holds on the δ-neighborhood and the estimates provided in [Go16] yield partial

hyperbolicity of ϕ̂tρ with respect to the splitting TM̂ = Ês ⊕ Êc ⊕ Êu on the δ-neighborhood

of the exceptional set. Also, by construction, ϕ̂tρ coincides with ϕ̂t outside the 2δ-neighborhood

of the exceptional set. The main technical difficulty is that the splitting Ês ⊕ Êc ⊕ Êu does
not remain invariant as orbits cross the transition region (δ ≤ s ≤ 2δ). However, one can still
consider cones centered at these non-invariant distributions and verify the Cone Criterion for
partial hyperbolicity.

In what follows we will only establish the splitting into unstable and center-stable subbundles.
Roughly speaking, this follows from the fact that the damage done to the cones in the transition
region (δ ≤ s ≤ 2δ) is controlled uniformly (in δ) thanks to the second property of ρ̄ and the fact
that orbits spend a bounded time of order δ in the transition region. Because all our constructions
are time-symmetric, repetitions of the arguments also yields a splitting into center-unstable and
stable subbundles and hence full partial hyperbolicity.

2.2. Cones near the exceptional set. We will need to introduce more notation in order
to proceed with the precise description of the cones and the estimates. Denote by D̃k<δ ×N the
δ-neighborhood of the exceptional set, that is, the preimage

π−1({x ∈ Dk : ‖x‖ < δ} ×N)

Denote by TN = EsN ⊕EcN ⊕EuN the Anosov splitting of the restriction ϕtN (i.e., EcN = ϕ̇tN ) and

by (EsN ⊕EcN ⊕EuN )⊕H the product splitting on D̃k<δ ×N . Given a small number ω > 0 define

the cones on D̃k<δ ×N

Cuω(x, y) = {v ∈ T(x,y)(D̃k<δ ×N) : ](v,EuN ) < ω}

Ccsω (x, y) = {v ∈ T(x,y)(D̃k<δ ×N) : ](v,EsN ⊕ EcN ⊕H) < ω}
(2.5)

Remark 2.1. The splitting EsN ⊕ (EcN ⊕H)⊕EuN coincides with the splitting Ês⊕ Êc⊕ Êu
on the exceptional set only.

Recall that λ < 1 < µ are the constants from the definition of partial hyperbolicity (1.1).
Also let λ′ ∈ (λ, 1] and µ′ ∈ [1, µ) be the some constants for which we have

c−1(λ′)t ≤ ‖Dat(v)‖/‖v‖ ≤ c(µ′)t,
where c > 0.1 Here at is the hyperbolic saddle given by the locally fiberwise structure (1.2) and
v ∈ TDk. Now we pick a constant ρ0 > 0 which enters the definition of the function ρ in the
previous subsection such that we have the following inequality(

λ′

µ′

)ρ0
> max(λ, µ−1) (2.6)

This is the domination condition [Go16, (2.3)] on the flow ϕtρ. This condition yields required

estimates on the cones on D̃k<δ × N for the blown-up flow. We pick ρ0 < 1. (If domination
condition holds with ρ0 = 1, our Main Theorem was already established in [Go16]. In either
case we can always choose ρ0 < 1.) Precisely, we have the following lemma.

Lemma 2.2. There exist ω > 0, c > 0, κ > 1 and δ0 > 0 such that for all δ < δ0 there exists
a Riemannian metric ‖ · ‖δ on M̂ , which coincides with the metric ‖ · ‖ coming from M outside
the δ-neighborhood of the exceptional set, such that the cone fields Cuω and Ccsω defined above

1Constant µ′ and λ′ can be chosen to be arbitrarily close to the “outer” and “inner” spectral radii of at by
choosing large c > 0.
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are eventually (forward and backward) invariant under Dϕtρ and verify the following hyperbolic
properties:

1. for all finite orbits segments {ϕsρ(x, y), 0 ≤ s ≤ t}, which are entirely contained in the
δ-neighborhood of the exceptional set and for all v ∈ Cuω(x, y)

‖Dϕtρ(v)‖δ > µt‖v‖δ, t ≥ 0

2. for all finite orbits segments {ϕsρ(x, y), 0 ≤ s ≤ t}, which are entirely contained in the
δ-neighborhood of the exceptional set, for all v ∈ Cuω(x, y) and for all w ∈ Ccsω (x, y) with
Dϕtw ∈ Ccsω (ϕt(x, y))

‖Dϕtρ(v)‖δ
‖v‖δ

> cκt
‖Dϕtρ(w)‖δ
‖w‖δ

, t ≥ 0

The proof of this lemma is the basic technical ingredient of the prequel paper [Go16]. More
precisely, the construction of appropriate Riemannian metric ‖·‖δ is given in Section 5.1 of [Go16].
(For this construction we need to assume that the Riemannian metric ‖ · ‖ from the definition
of partial hyperbolicity (1.1) on Dk × N is a direct sum of the canonical flat metric and a
metric on N . It was explained in Section 5.3.2 of [Go16] that such assumption can be made
without loss of generality.) Then Lemma 5.1 of [Go16] gives partial hyperbolicity of the splitting
EsN ⊕ (EcN ⊕H)⊕EuN . Finally, the fact that the estimates hold for the vectors in the cones (with
proper choice of ω) is proved in Section 5.3.4 of [Go16].

2.3. Control along the center in the transition domain. Consider the transition do-
main Aδ × N , where Aδ = D̃k<2δ ∩ D̃k>δ. Recall that the Riemannian metric ‖ · ‖δ restricted to
this domain is the direct sum of the flat metric ‖ · ‖ and a metric on N . Also recall that the
flow ϕtρ is generated by ρ(x)X(x) + Y (y), (x, y) ∈ Aδ ×N . It follows that, even though ρ is not
constant, the splitting EsN ⊕EcN ⊕EuN ⊕H stays invariant within this domain. Note that because
of the nature of the dynamics of the hyperbolic saddle (invariance under rescaling) and because
ρ ≥ ρ0 with ρ0 independent of δ, there exists a uniform upper bound on time T which an orbit
can spend in Aδ ×N

T ≤ C1, (2.7)

where C1 is a constant which depends on at and ρ0, but does not depend on δ and ρ.
We proceed to explain how to control extra distortion which occurs along the “horizontal”

distribution H. Hence we focus on the dynamics of reparametrized saddle flow atρ generated by
ρX. The extra distortion which occurs along H is due to ρ-driven shear, however we will see
that such shear is controlled uniformly in δ. We will perform all calculations using the canonical
Euclidean structure on Aδ ⊂ Dk. Let v0 ∈ TxAδ be a unit tangent vector and let vt0 = Datρv0.

We would like to obtain uniform control on derivative of the norm of vt0. Clearly it is sufficient
to estimate the derivative at t = 0. Denote by V the vector field on Aδ obtained by translating
v0 to every point. Then by the definition of derivative a vector field we have

DatρV − V ◦ atρ
t

= −LρXV = [V, ρX]

Hence

vt0 = V ◦ atρ + [V, ρX]t+ h.o.t.
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We proceed to estimate the derivative.

d‖vt0‖
dt

∣∣∣
t=0

=
1

2‖v0‖
d‖vt0‖2

dt

∣∣∣
t=0

=
1

2‖v0‖
d〈V ◦ atρ + [V, ρX]t, V ◦ atρ + [V, ρX]t〉

dt
=

〈[V, ρX], v0〉
‖v0‖

≤ ‖[V, ρX]‖ ‖v0‖
‖v0‖

= ‖ρ[V,X] + V (ρ)X‖ ≤

‖[V,X]‖+ |V (ρ)|‖X‖ ≤ C2 + ‖∇ρ‖C3δ ≤ C4

In the last inequality we used the fact that ‖X‖ ≤ C3‖δ‖ on Aδ and that ‖∇ρ‖ ≤ 1/δ by the
construction of ρ.

Now, using the above bound and the time control (2.7), we immediately obtain.

Lemma 2.3. Assume that an orbit segment {asρ(x), 0 ≤ s ≤ T} is entirely contained in Aδ,
then for all v ∈ TxAδ, x ∈ Aδ

‖DaTρ v‖
‖v‖

≤ C5, and
‖DaTρ v‖
‖v‖

≥ 1

C5
,

where C5 is a constant which does not depend on ρ and δ.

2.4. Cones away from the exceptional set. To define the cones on M\(D̃k>2δ ×N) we
use the same ω given by Lemma 2.2 and let

Cuω(p) = {v ∈ Tp(M\(D̃k>2δ ×N)) : ](v, Êu) < ω}

Ccsω (p) = {v ∈ Tp(M\(D̃k>2δ ×N)) : ](v, Êc ⊕ Ês) < ω}

Because ϕtρ = ϕt and ‖ · ‖δ = ‖ · ‖ on M\(D̃k>2δ ×N) we then have invariance and hyperbolicity

properties of these cones for orbit segments which stay in M\(D̃k>2δ×N) by partial hyperbolicity
of the flow ϕt.

2.5. Proof of partial hyperbolicity. To obtain partially hyperbolic splitting Euρ ⊕ Ecsρ
for ϕtρ we use the cone criterion applied to Cuω and Ccsω . We recall that on D̃k<δ × N the cone

families are centered at EuN and EsN ⊕ EcN ⊕ H while on M\(D̃k>2δ × N) the cone families are

centered at Êu and Êc ⊕ Ês. Note also that our cone families are not defined in the transition
domain Aδ ×N . However, we don’t need to extend cones there because orbits spend a uniformly
bounded time in Aδ ×N .

By preceding discussion the cones are eventually invariant and and possess hyperbolic prop-
erties required by the Cone Criterion as long as the orbit stays disjoint with Aδ × N . Hence
we are left to analyze the case when ϕs(p) ∈ Aδ × N , 0 < s < T , with p and ϕT (p) in the

boundary of Aδ×N . For the sake of concreteness we can focus on the case when p ∈ ∂(D̃k<δ×N)

and ϕT (p) ∈ ∂(D̃k>2δ × N). (The other two cases p ∈ ∂(D̃k>2δ × N), ϕT (p) ∈ ∂(D̃k<δ × N) and

p ∈ ∂(D̃k>2δ×N), ϕT (p) ∈ ∂(D̃k>2δ×N) can be treated completely analogously.) Recall that cone

aperture ω is a fixed number given by Lemma 2.2 and is independent of δ. Also recall that Ês,
Êc and Êu are continuous distributions2 which coincide with EsN , EcN ⊕H and EuN , respectively,
on the exceptional set. Hence for all sufficiently small δ we have

dist(EsN ⊕ EcN ⊕H(q), Ês ⊕ Êc(q)) < ω

10
and

dist(EuN (q), Êu(q)) <
ω

10

2Here we rely on the smoothness assumption for the partially hyperbolic splitting of ϕt in an essential way.
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for all q ∈ D̃k<3δ × N . Because, locally in the neighborhood of the exceptional set, the flow ϕtρ
preserves both splittings EuN ⊕ (EcN ⊕H)⊕ EsN and Ês ⊕ Êc ⊕ Êu it follows that

DϕTρ (EuN (p)) ⊂ Cuω(ϕTρ (p)),

Dϕ−Tρ (Êc ⊕ Ês(ϕTρ (p))) ⊂ Ccsω (p)

Combining this observation with control provided by Lemma 2.3 one can easily verify the following
statement.

Lemma 2.4. There exist constants C6 > 0 and C7 > 0 such that for all sufficiently small
δ > 0 and for all points {p, ϕT (p)} ⊂ ∂(Aδ ×N) we have

DϕTρ (Cuω(p)) ⊂ CuC6ω(ϕTρ (p)),

Dϕ−Tρ (Ccsω (ϕTρ (p))) ⊂ CcsC6ω(p),

‖DϕTρ v‖δ ≥ C7‖v‖δ, v ∈ Cuω(p),

‖Dϕ−Tρ v‖δ ≥ C7‖v‖δ, v ∈ Ccsω (ϕTρ (p))

Now note that by decreasing δ we can increase the return time to the 2δ-neighborhood of
the exceptional set, D̃k<2δ ×N , as much as we wish. This observation combined with Lemma 2.4
implies that Cuω is eventually forward invariant and Ccsω is eventually backward invariant for all
sufficiently small δ. Finally the exponential expansion of vectors in Cuω and domination of Cuω
over Ccsω can be checked by using a standard argument: subdividing the orbit into segments and
pasting together the estimates given by Lemmas 2.2, 2.4 as well as hyperbolicity of cone families
outside D̃k<2δ ×N . This arguments takes an advantage of the long return time to D̃k<2δ ×N one
more time. We suppress detailed estimates as they are very standard.

3. Volume preserving modification via Katok-Lewis trick

We first formulate a standard lemma.

Lemma 3.1. Let M be a smooth manifold equipped with a smooth non-degenerate volume
form m. Assume that a flow generated by a smooth vector field preserves m. Consider a smooth
function ρ : M → R, ρ > 0. Then the flow generated by ρX preserves m/ρ.

Proof. By Cartan’s formula

0 = LXm = ιXdm+ dιXm = dιXm

and similarly LX(m/ρ) = dιX(m/ρ). We calculate

LρX(m/ρ) = ρLX(m/ρ) + dρ ∧ ιX(m/ρ) = ρdιX(m/ρ) +
1

ρ
dρ ∧ ιXm =

ρd(
1

ρ
ιXm) +

1

ρ
dρ ∧ ιXm = ρ

(
− 1

ρ2
dρ ∧ ιXm+

1

ρ
dιXm

)
+

1

ρ
dρ ∧ ιXm = dιXm = 0

�

The goal of this section is to prove the Addendum 1.3. Recall that we assume that ϕt : M →
M preserves a smooth volume m and m|Dk×N = vol ⊗ volN . Recall that ϕtρ is a slow down of

ϕt along Dk. By Lemma 3.1, the flow ϕtρ also locally preserves the smooth volume mρ|Dk×N =
1
ρvol ⊗ volN . Note that mρ = m near the boundary and hence extend to a smooth ϕtρ-invariant

volume on the whole of M which we still denote by mρ. Because ρ = ρ0 is a constant on Dk<δ,
we see that mρ still have a product form 1

ρ0
vol ⊗ volN on Dk<δ ×N .
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3.1. Replacing the smooth structure. If we equip Dk with the standard Euclidean co-
ordinates (x1, x2, . . . , xk) then

vol = dx1 ∧ dx2 ∧ . . . ∧ dxk. (3.8)

By commutativity of (1.3) the flow ϕ̂tρ preserves π∗mρ, which is a smooth measure away from
the exceptional set.

Let’s examine the form of π∗mρ at the exceptional set. Because π is a product, we only need

to look at the pullback of vol to D̃k under D̃k → Dk. Recall that

D̃k = {(x1, x2, . . . xk, `) : (x1, x2, . . . xk) ∈ `, ` ∈ RP k−1}

and that the standard smooth charts for D̃k are given by extending the standard charts for the
projective space RP k−1. Namely the i-th chart is given by

Ψi(u1, u2, . . . uk) =

(u1ui, u2ui, . . . ui−1ui, ui, ui+1ui, . . . ukui, [u1 : . . . : ui−1 : 1 : ui+1 : . . . : uk]) (3.9)

We can calculate the pull-back of vol

d(u1ui) ∧ d(u2ui) ∧ . . . ∧ dui ∧ . . . ∧ d(ukui) = uk−1
i du1 ∧ du2 ∧ . . . ∧ duk.

Hence, when k > 1 the pull-back vanishes on the projective space. To remedy the situation we
follow the idea of Katok-Lewis (which they used to construct non-standard higher rank volume
preserving group actions.) Namely we replace the smooth structure on Dk by declaring that

Φ: ~u 7→ ‖~u‖α~u, α < 0

is a smooth chart near the origin (i.e., by changing the smooth atlas). With respect to this chart
the Euclidean norm of a vector ~u is given by

‖~u‖new = ‖~u‖1+α (3.10)

Accordingly we change the smooth structure on M by declaring that Φ× idN : Dk×N →M
is a smooth chart at N . Note that M equipped with the new smooth atlas, which we denote by
Mnew, is obviously diffeomorphic to the originalM . However, it is easy to check that atρ : Dk → Dk
and, hence, ϕtρ : Mnew →Mnew fail to be smooth.

Accordingly we replace we replace charts (3.9) for D̃k by composing Ψi and Φ, that is,

Ψnew
i (u1, u2, . . . uk) =(

fα(u1, . . . , ui−1, ui+1, . . . uk)‖ui‖α(u1ui, u2ui, . . . ui, . . . ukui), [u1 : . . . : 1 : . . . : uk])
)
,

where

fα(u1, . . . , ui−1, ui+1, . . . uk) = (u2
1 + u2

2 + . . .+ u2
i−1 + 1 + u2

i+1 + . . .+ u2
k)α/2

Because the new smooth structure amounts to mere reparametrization in the radial direction
the projective dynamics remains exactly the same. A direct calculation in chart shows that
âtρ : D̃k → D̃k is smooth with respect to the new smooth structure. Hence ϕ̂tρ : M̂new → M̂new

is also smooth. Further, by appropriate choice of α we can now guarantee that π∗m is a non-
degenerate volume on M̂new. We present the chart calculation which determines the “right” value
of α. In order to simplify notation we perform this calculation in the first chart Ψnew

1 . We also
abbreviate fα(u2, u3, . . . uk) to simply fα. Note that

dfα ∧ du2 ∧ du3 ∧ . . . ∧ duk = 0



BLOW-UPS OF PARTIALLY HYPERBOLIC DYNAMICAL SYSTEMS 10

This is very helpful for the calculation:

d(fα‖u1‖αu1) ∧ d(fα‖u1‖αu1u2) ∧ . . . ∧ d(fα‖u1‖αu1uk) =

d(fα‖u1‖αu1) ∧ (u2d(fα‖u1‖αu1) + fα‖u1‖αu1du2) ∧ . . . ∧ (ukd(fα‖u1‖αu1) + fα‖u1‖αu1duk) =

(fα‖u1‖αu1)k−1d(fα‖u1‖αu1) ∧ du2 ∧ . . . ∧ duk =

(fα‖u1‖αu1)k−1
(
fαd(‖u1‖αu1) ∧ du2 ∧ . . . ∧ duk + ‖u1‖αu1dfα ∧ du2 ∧ du3 ∧ . . . ∧ duk

)
=

(fα‖u1‖αu1)k−1(α+ 1)fα‖u1‖αdu1 ∧ du2 ∧ . . . ∧ duk) = (α+ 1)fkα‖u1‖kαuk−1
1

Notice that fα is a smooth function. Hence the pull-back of vol is a smooth and non-degenerate
on Mnew when kα+ k − 1 = 0, i.e.,

α = −k − 1

k

Remark 3.2. It is crucial for this construction that the initial volume on Dk given by (3.8)
has constant density. Indeed, if we allow for a non-trivial density β(x1, . . . xk) and begin with
βdx1 ∧ dx2 ∧ . . . ∧ dxk instead, then all computations go through in the same way. However the
expression for the density after the blow-up in the chart Ψnew

i will have an additional factor

β(fα(u1, . . . , ui−1, ui+1, . . . uk)‖ui‖α(u1ui, u2ui, . . . ui, . . . ukui))

which is not C1 at the exceptional set given by ui = 0 (unless the Taylor coefficients of β up to
order k vanish). Hence we have a positive continuous density which is not C1 on the exceptional
set. This issue, in fact, gives us an additional difficulty to overcome in the proof of Corollary 1.4.

3.2. Partial hyperbolicity in volume preserving setting. We now have a volume pre-
serving flow ϕ̂tρ : Mnew → Mnew. Here we explain that this flow is also partially hyperbolic
provided that constant ρ0 (from the definition of ρ) is chosen to be sufficiently small. Namely,
we amend the domination condition (2.6), as follows(

λ′

µ′

)ρ0
> max(λ, µ−1), λ < (λ′)ρ0/k, (µ′)ρ0/k < µ (3.11)

Clearly these inequalities are verified for a sufficiently small ρ0.
The proof of partial hyperbolicity is the same as the one given in Section 2. The only

difference which requires some commentary is the Lemma 2.2 for ϕ̂tρ : Mnew → Mnew under the
condition (3.11). Recall that the proof of this lemma mostly rests on Lemma 5.1 of [Go16]
and the proof of Lemma 5.1 is the only place which requires some adjustments. We indicate
how (3.11) must be used in the proof of Lemma 5.1. Recall that on the small neighborhood of
the projective space the dynamics of âtρ is given by

âtρ(s, v) = (ˆ̂atρ(s), ā
t
s(v)), s ∈ RP k−1, v ∈ R+

where ˆ̂atρ : RP k−1 → RP k−1 is the projectivization of atρ (which coincides with the restriction of

âtρ to RP k−1) and āts is the cocycle over ˆ̂atρ given by the action of atρ on lines (see the proof of

Lemma 5.3 in [Go16]).3

The estimate on ˆ̂atρ (Claim 5.4 of [Go16]) remains exactly the same as the alternation of the
smooth structure did not change the projective dynamics. The place where (3.11) is needed is
the inequality (5.16) of [Go16] (estimate on the cocycle āts). Indeed, given a small ~u, according
to (3.10), we have the local estimate

‖atρ(~u)‖new = ‖atρ(~u)‖1+α ≤ (c(µ′ρ0 )t‖~u‖)1+α = c1/k(µ′)ρ0t/k‖~u‖new

3One difference which appears is that even though, with respect to the new smooth chart Ψnew, atρ still sends

lines to line the cocycle āts is no longer linear. This, however, does not present any additional difficulty.
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and similarly

‖atρ(~u)‖new ≥ c−1/k(λ′)ρ0t/k‖~u‖new

This effects the last inequality in the proof of Lemma 5.3 of [Go16]. Namely, we obtain an
exponential upper bound in

max

((
λ′

µ′

)ρ0
, (µ′)ρ0/k

)
(and, analogously, a lower bound with (λ′)ρ0/k) Hence, in order for the rest of the proof to work
we need to use (3.11) instead of (2.6).

4. The example

In this section we introduce geodesic flows on complex hyperbolic manifolds in detail and
then prove Corollaries 1.2 and 1.4.

4.1. Complex hyperbolic manifolds. First recall that 1-dimensional complex hyperbolic
space can be identified with 2-dimensional real hyperbolic space with metric equal to one quarter
of the standard Poincaré metric. The linear fractional transformations form the group of holo-
morphic isometries (to generate the full group of isometries one also needs the anti-holomorphic
transformation) and can be identified with PSU(1, 1) = ±Id\SU(1, 1). Because of the 1

4 multiple
in the expression for the metric the curvature is −4 and the contraction and expansion rates of
the geodesic flow on the complex hyperbolic space are twice bigger. It follows that the full stable
and unstable horocycles of geodesic flows on higher dimensional complex hyperbolic manifolds
contain one dimensional “fast” horocycles which correspond to the complex lines in the tangent
bundle. This yields a partially hyperbolic splitting which is different from the Anosov one and
makes the geodesic flow on complex hyperbolic manifold suitable for the blow-up surgery.

We begin by summarizing some standard material on complex hyperbolic manifolds. We
mostly follow the lucid exposition by D.B.A. Epstein [E84]. Consider the following Hermitian
quadratic forms on Cn+1 of signature (n, 1).

Q(x) =

n∑
i=1

ziz̄i − zn+1z̄n+1

Q̂(x) =

n−1∑
i=1

ziz̄i + znz̄n+1 + z̄nzn+1

These forms have the following associated matrices

J = diag(1, 1, . . . 1,−1)

Ĵ =

(
Id 0
0 J0

)
respectively. Here J0 = ( 0 1

1 0 ). Let SU(n, 1;Q) and SU(n, 1; Q̂) be the groups of (n+ 1)× (n+ 1)
complex matrices which have determinant 1 and preserve corresponding form. These groups are
conjugate in GL(n+ 1) by

T =

(
Id 0
0 T0

)
where T0 = 1√

2

(
1 1
−1 1

)
.

Recall that the complex hyperbolic n-space HnC can be defined as

HnC = {[x] ∈ CPn : Q(x) < 0}
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Clearly the action of SU(n, 1;Q) on Cn+1 induces an action on HnC and, in fact, SU(n, 1) coincides
with the group of biholomorphic isometries of HnC. If Γ is a discrete cocompact subgroup of
SU(n, 1) acting on the right then the orbit space

M = HnC/Γ

is a closed complex hyperbolic manifold. Moreover, every closed complex hyperbolic manifold
arises in this way.

4.2. The geodesic flow as a homogenous flow. We describe M and its unit tangent
bundle as homogeneous spaces. The group SU(n, 1;Q) acts transitively on HnC and the stabilizer
of [(0, 0, . . . 0, 1)] is {(

A 0

0 detA

)
: AĀt = Id

}
' U(n).

The stabilizer of a tangent vector is the group W (n− 1) given by4

W (n− 1) =


A 0 0

0 λ̄ 0
0 0 λ̄

 : AĀt = Id, λ2 = detA


Hence we have

M = U(n)\SU(n, 1;Q)/Γ T 1M = W (n− 1)\SU(n, 1;Q)/Γ.

The same descriptions work using SU(n, 1; Q̂) as the underlying Lie group with embeddings
of W (n − 1) and U(n) are conjugated by T . Also note that W (0) = {±Id} and we will write
PSU(1, 1) instead of W (0)\SU(1, 1).

From now on it would be more convenient to only use the form Q̂ and we abbreviate
SU(n, 1; Q̂) to SU(n, 1).

Now recall the Lie algebras

u(n− 1) = {A ∈Mn−1 : Āᵀ = −A}
and

su(n, 1) = su(n, 1, Q̂) = {B ∈Mn+1 : Tr(B) = 0, B̄ᵀĴ + ĴB = 0} (4.12)

If we write a traceless matrix B ∈ su(n, 1) in block form, then B ∈ su(n, 1) if and only if

B =

(
A v

−J0v̄
ᵀ D

)
where A ∈ o(n− 1) and D =

(
a ib
ic −ā

)
, a ∈ C, b, c ∈ R.

The geodesic flow dt : T
1M → T 1M is given by W (n−1)gΓ 7→ dtW (n−1)gΓ = W (n−1)dtgΓ,

where

dt =

(
Id 0
0 d0

t

)
, with d0

t =

(
et 0
0 e−t

)
The strong stable and strong unstable horocycle subgroups are

h
s/u
t =

(
Id 0

0 h
s0/u0
t

)
, with hs0t =

(
1 it
0 1

)
, hu0

t =

(
1 0
it 1

)
.

We refer to [FK01] for a more detailed exposition on the geodesic flow as a homogeneous flow.

4Notice that, by mapping to the (n− 1)× (n− 1) upper diagonal matrix A, the group W (n− 1) is a double

cover of U(n − 1). It is curious to notice that, unlike in the real case, W (n − 1) is not isomorphic to U(n − 1).
However using the fact that det : U(n) → U(1) is a trivial principal fiber bundle one can check that W (n − 1) is

diffeomorphic to U(n− 1).
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4.3. Totally geodesic holomorphic curve. The complex hyperbolic space H1
C can be

identified with {z1 = z2 = . . . = zn−1 = 0} ∩HnC. The group of holomorphic isometries SU(1, 1)
of H1

C embeds into SU(n, 1) as lower diagonal block. Let Γ be a cocompact lattice in SU(n, 1)
and let Γ1 = SU(1, 1) ∩ Γ. We assume that Γ1 is a cocompact subgroup of SU(1, 1). Hence the
embedding H1

C ⊂ HnC yields the embeddings

N = U(1)\SU(1, 1)/Γ1 ⊂ U(n)\SU(n, 1)/Γ = M, and

T 1N = PSU(1, 1)/Γ1 ⊂W (n− 1)\SU(n, 1)/Γ = T 1M

where N is a totally geodesic one dimensional complex curve.

4.4. Parametrization of the neighborhood and the geodesic flow. We introduce a
parametrization of a neighborhood U of PSU(1, 1) in W (n− 1)\SU(n, 1). This parametrization
will be constructed to be Γ1 equivariant and, hence, will descend to a parametrization of a
neighborhood of T 1N in T 1M .

Pick a small ε0 > 0 and take the following as a transversal to the Lie algebras of SU(1, 1)
and W (n− 1). Using the block from (4.12) let

Dε0 =

{(
0 v

−J0v̄
ᵀ 0

)
∈ su(n, 1), where ‖v‖ < ε0

}
This is a (4n− 4)-dimensional transversal spanned by weak stable and unstable horocycles. Let
Σ = Σε0 = exp(Dε0).

Now we define a parametrization p : Σ×PSU(1, 1)→W (n− 1)\SU(n, 1) of a neighborhood
U = Uε0 of PSU(1, 1) in W (n− 1)\SU(n, 1) as follows

p(σ, u) = W (n− 1)σu. (4.13)

To verify that this is a well-defined parametrization for a sufficiently small ε0 it is sufficient to
check that the map P : W (n − 1) × Σ × PSU(1, 1) → SU(n, 1) given by P (w, σ, u) = wσu is
a diffeomorphism on its image. And that the image contains a neighborhood of W (n − 1) ×
PSU(1, 1) ⊂ SU(n, 1). To do this we consider a metric d on SU(n, 1) which is invariant under
the right action of PSU(1, 1) and left action of W (n − 1). One can obtain such a metric by
starting with a right invariant Riemannian metric and then averaging with respect to the left
action of (compact group) W (n− 1).

Notice that TidΣ, su(1, 1) and w(n− 1) span the full Lie algebra su(n, 1), and, hence, P is a
local diffeomorphism on the neighborhood of (0, 0, 0). More precisely, by choosing appropriately
small ε0 > 0 and r > 0 we have that the restriction of P to the neighborhood

{w ∈W (n− 1) : d(w, id) < r} × Σ× {u ∈ PSU(1, 1) : d(u, id) < r}
is a local diffeomorhism on its image. Further, because P (w′w, σ, uu′) = w′P (w, σ, u)u′ we obtain
that each point P (w′, 0, u′) has a neighborhood which has a uniform size (with respect to metric
d) entirely contained in the image of P .

It remains to check that P is one-to-one. Let

δ0 = sup
σ∈Σ

d(id, σ)

Note that by choosing smaller ε0 we can make δ0 > 0 as small as desired. Assume that
P (w1, σ1, u1) = P (w2, σ2, u2), i.e.,

w−1
2 w1σ1 = σ2u2u

−1
1 (4.14)

Then

d(w−1
2 w1, u2u

−1
1 ) ≤ d(w−1

2 w1, w
−1
2 w1σ1) + d(σ2u2u

−1
1 , u2u

−1
1 ) = d(id, σ1) + d(σ2, id) ≤ 2δ0
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Recall that W (n− 1)× PSU(1, 1) is (explicitly) properly embedded in SU(n, 1). Hence the last
inequality implies that both w−1

2 w1 and u2u
−1
1 are close to id. On the other hand we have already

shown that P is a local diffeomorphism on the neighborhood of id. Hence (4.14) implies that
w−1

2 w1 = id, u2u
−1
1 = id and σ1 = σ2 proving that P is injective.

Finally, we let Γ1 act on Σ × PSU(1, 1) by γ1 : (σ, u) 7→ (σ, uγ1). Our parametrization is
equivariant with respect to the right action of Γ1 and hence descends to a parametrization of a
neighborhood of T 1N ⊂ T 1M by Σ× PSU(1, 1)/Γ1 ' Σ× T 1N ' Dε0 × T 1N .5

4.5. Proof of Corollary 1.2. The Corollary 1.2 follows from the Main Theorem provided
that we verify the locally fiberwise assumption with respect to our parametrization. We write v
as a column vectors v = (v1, v2) which parametrizes Σ. That is,

A(v1, v2) =

(
0 v

−J0v̄
ᵀ 0

)
and σ(v1, v2) = expA(v1, v2).

Notice that

dtσ(v1, v2)d−1
t = dt expA(v1, v2)d−1

t

= exp dtA(v1, v2)d−1
t = expA(e−tv1, e

tv2) = σ(e−tv1, e
tv2)

Now we can deduce the formula for the geodesic flow using the coordinates (v1, v2, u) ∈ Σ ×
PSU(1, 1)

dt(v1, v2, u) = W (n− 1)dtσ(v1, v2)u = W (n− 1)dtσ(v1, v2)d−1
t dtu

= (e−tv1, e
tv2, dtu)

We conclude that with respect to the coordinates (v1, v2, u) the geodesic flow is the product
of (4n − 4)-dimensional hyperbolic saddle and the geodesic flow on a holomorphic curve. This
verifies the assumption of the Main Theorem on locally fiberwise structure of dt on U .

Finally to see that the partially hyperbolic flow ϕ̃t could be chosen to be arbitrarily close to

ϕ̂t : T̂ 1M → T̂ 1M in C∞ topology recall that we obtain ϕ̃t by blowing up the reparametrized
flow ϕtρ. The reparametrization is localized in the neighborhood of T 1N and is given by (2.4).
Function ρ has to be chosen so that (2.6) holds:(

λ′

µ′

)ρ0
> max(λ, µ−1)

In the current setting λ′−1 = µ′ = e and λ−1 = µ = e2. Hence any value of ρ0 < 1 would work.
It follows that the function ρ can be chosen to be arbitrarily close to 1 in the C∞ topology.
Therefore ϕtρ can be arbitrarily C∞ close to ϕt and, accordingly, ϕ̃t can be arbitrarily C∞ close

to ϕ̂t.

4.6. Proof of Corollary 1.4. Corollary 1.4 does not immediately follow from Adden-
dum 1.3. The reason is that the pull-back of the Liouville volume form p∗vol under parametriza-
tion p has the form

α(v1, v2)ω0 ∧ volT 1N ,

5Notice that in particular we have shown that the normal bundle of T 1N in T 1M is trivial. This happens
because W (n− 1)∩PSU(1, 1) = {Id}. It was pointed out to us by Mike Davis that in general the normal bundle

of N in M is twisted and the twisting is controlled by the Chern class.
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where ω0 is the standard volume form on Dε0 and volT 1N is the Liouville volume form on T 1N .
Indeed, because the Liouville measure comes from the Haar measure on SU(n, 1) and p is equivari-
ant with respect to the right action of PSU(1, 1) the density α is independent of the u-coordinate.
However, the dependence on v1 and v2 is non-trivial. Hence the Addendum 1.3 does not apply
directly (cf. Remark 3.2). Our approach is to replace the flow ϕt with a different flow ϕ̄t to
which Addendum 1.3 can be applied. More precisely, on the neighborhood Dε0 ×T 1N we will let

ϕ̄t = h̄ ◦ ϕt ◦ h̄−1

where h̄ = (h, idT 1N ) and h is C1 small and tapers away to identity on the neighborhood of the
boundary of Dε0 .

Let ω1 = α(v1, v2)ω0. By rescaling ω0 if needed, we may assume that α(0, 0) = 1. Denote by
at the saddle flow, at(v1, v2) = (e−tv1, e

tv2). Note that, because α is continuous and at-invariant,
we also have α(0, v2) = α(v1, 0) = 1.

Lemma 4.1. For all sufficiently small ε1 ∈ (0, ε0) there exists a diffeomorphism h : Dε1 →
h(Dε1) ⊂ Dε0 such that h∗ω1 = ω0 and h commutes with the saddle flow, when defined:

h ◦ at = at ◦ h

Before proving the lemma we first finish the proof of Corollary 1.4. First extend h : Dε1 →
h(Dε1) to a diffeomorphism h : Dε0 → Dε0 which equals to identity near the boundary. Then
replace the geodesic flow ϕt with the new flow ϕ̄t by replacing the restriction ϕt|Dε0

×T 1N with

(h ◦ at ◦ h−1, ϕtT 1N ). Clearly ϕ̄t is smoothly conjugate to ϕt. Hence ϕ̄t is partially hyperbolic
with C1 splitting. Further, T 1N remains ϕ̄t-invariant and, because h commutes with at on Dε1
we have

ϕ̄t(v1, v2, u) = ϕt(v1, v2, u) = (at(v1, v2), ϕtT 1N (u))

for (v1, v2) ∈ Dε1 . Hence the locally fiberwise assumption is also verified for ϕ̄t. On the neigh-
borhood Dε1 × T 1N the ϕ̄t-invariant volume has the form h̄∗(ω1 ∧ volT 1N ) = h∗ω1 ∧ volT 1N =
ω0 ∧ volT 1N and hence the assumption of Addendum 1.3 is also verified. We conclude that
Addendum 1.3 applies to ϕ̄t and yields Corollary 1.4. �

Hence it only remains to prove the Lemma.

Proof of Lemma 4.1. The idea of the proof is perform an at-equivariant Moser trick.6

To obtain the diffeomorphism h such that h∗ω1 = ω0 consider the path ωt = (1 − s)ω0 + sω1,
s ∈ [0, 1]. Then, by the Poincaré Lemma, there exists η such that

dη = ω1 − ω0 = γω0, γ = α− 1

Further, we can choose η to be at-invariant; that is, LXη = 0, where X = ∂at/∂t. We proceed
with the proof assuming this fact, which we will verify later via a direct calculation.

Because ωs are non-degenerate forms the equation

ιYs
ωs = η,

uniquely defines “time-dependent vector field” Ys. Then, by Cartan’s formula, we have for every
s ∈ [0, 1]

LYs
ωs = (ιYs

◦ d+ d ◦ ιYs
)ωs = dβ

Hence by integrating Ys we obtain a one-parameter family of diffeomorphisms hs such that

(hs)∗ω0 = ωs

6While such trick is standard in the context of equivariant cohomology, when the acting group is compact,
see e.g. [GS84], we were unable to locate any prior work on “locally equivariant” Moser trick. While we only do

it here for the saddle singularity, presumably it is much more general.
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Recall that volume forms ωs are invariant under X, i.e., LXωs = 0 Hence

0 = LXβ = LX(ιYsωs) = ιYs(LXωs) + ιLXYsωs = ιLXYsωs,

which implies that [X,Ys] = LXYs = 0 because ωs in non-degenerate. It follows from the
Frobenius Theorem that at commutes with hs as posited. Note that hs(0, 0) = (0, 0). It remains
to set h = h1 and restrict to a sufficiently small disk Dε1 such that h(Dε1) ⊂ Dε0 .

Hence, to finish the proof of the Lemma it remains to show that the form η can be chosen to
be at invariant. For the sake of notation we prove this fact only when dimDε0 = 4. The general
case can be addressed in the same way.

We use coordinates (x1, x2, x3, x4). Then ω0 = dx1 ∧ dx2 ∧ dx3 ∧ dx4 and the generator of at

is given by

X = −x1
∂

∂x1
− x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

First let η0 = x1dx2∧dx3∧dx4. Then dη0 = ω0 and, using Cartan formula LXη0 = ιXω0 +dιXη0

it is straightforward to verify that LXη0 = 0, i.e., η0 is at-invariant.
Our goal now is to find an at-invariant function β such that d(βη0) = γω0. We have

d(βη0) = βη0 + dβ ∧ η0 = βω0 + x1
∂β

∂x1
ω

Hence we need to solve the equation

β + x1
∂β

∂x1
=

∂

∂x1
(x1β) = γ

for β. Then

β(x1, x2, x3, x4) =
1

x1

∫ x1

0

γ(q, x2, x3, x4)dq

is a solution.
We check that β is at-invariant. Let Γ = Γ(x1, x2, x3, x4) =

∫ x1

0
γ(q, x2, x3, x4)dq. Because γ

is at-invariant we have

0 =

∫ x1

0

Xγ(q, x2, x3, x4)dq = −
∫ x1

0

q
∂

∂q
γ(q, x2, x3, x4)dq − x2

∂

∂x2
Γ + x3

∂

∂x3
Γ + x4

∂

∂x4
Γ

= −x1γ(x1, x2, x3, x4) + Γ(x1, x2, x3, x4)− x2
∂

∂x2
Γ + x3

∂

∂x3
Γ + x4

∂

∂x4
Γ = Γ +XΓ

where we used integration by parts and the fundamental theorem of calculus. Now differentiating
x1β = Γ with respect to X gives

X(x1)β + x1Xβ = XΓ

which yields

x1Xβ = XΓ + x1β = XΓ + Γ = 0.

Hence Xβ = 0. Finally by the product formula

LXβη0 = X(β)η0 + βLXη0 = 0.

�
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