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Abstract. De la Llave’s examples are Anosov diffeomorphisms on the four-torus T4 with constant

Lyapunov spectrum, yet they are not C1-conjugate to the linear model or to each other. Nevertheless,

we show that such examples are “locally exceptional”: we prove deformation and local rigidity for
generic diffeomorphisms in proximity of de la Llave’s examples.

1. Introduction

This paper is devoted to deformation and perturbative rigidity of Anosov diffeomorphisms in di-
mension four. Consider an Anosov diffeomorphism F0 on a compact Riemannian manifold M . In
other words, there exists a DF0-invariant splitting TM = Es ⊕ Eu of the tangent bundle into stable
and unstable spaces Es, Eu, such that vectors in Es (resp. Eu) get exponentially contracted under
forward (resp. backward) iteration of DF0. By structural stability, for any diffeomorphism G which
is sufficiently C1-close to F0, there exists a homeomorphism h, called a (topological) conjugacy, such
that h ◦F0 = G ◦ h. Yet, there exist plenty of obstructions to the existence of a C1 conjugacy; indeed,
if the conjugacy map h above can be chosen to be C1, then for any periodic point p = Fn

0 (p), we can
differentiate the conjugacy equation and obtain

Dh(p)DFn
0 (p)(Dh(p))

−1 = DGn(h(p)),

that is, the differentials DFn
0 (p) and DGn(h(p)) must be conjugate. In fact, for any periodic point

p, it is easy to arrange the perturbation G such that the above condition fails (and this is typical).
Therefore, there are countably many obstructions to lift to hope for the existence of a C1 conjugacy,
which are associated to the periodic points.

We say that F0 and G are isospectral if for every periodic point p = Fn
0 (p) the linearized return maps

DFn
0 (p) and DG

n(h(p)) have the same collection of eigenvalues. In particular, given a one-parameter
family1 of Anosov diffeomorphisms {Fs}s∈[0,1], there exists a unique continuous family of conjugacies
{hs}s∈[0,1] such that hs ◦F0 = Fs ◦ hs and h0 = id. Accordingly, such family is called isospectral if for
every periodic point p = Fn

0 (p), all the linearized return maps DFn
s (hs(p)), s ∈ [0, 1], have the same

collection of eigenvalues.
It is a classical result that for 2-dimensional Anosov diffeomorphisms, the collection of eigenvalues

of periodic points is actually a complete set of moduli of smooth conjugacy classes:

Theorem 1.1 (Marco-Moriyón, de la Llave [MM87a, DlL87, MM87b, DlL92]). Let F0, G be two
Cr, r ∈ (1,∞] ∪ {ω}, Anosov diffeomorphisms on T2 which are topologically conjugated, and whose
eigenvalues at corresponding periodic points match. Then the conjugacy is Cr∗ regular, with

r∗ = r, if r /∈ N, and r∗ = (r − 1) + Lip, if r ∈ N.

In particular, in this low-dimensional situation, once the conjugacy is C1, due to the bootstrap
phenomenon, it is actually as regular as the Anosov diffeomorphisms themselves. In higher dimension,
it is not always possible to bootstrap the regularity of a C1 conjugacy between Anosov diffeomor-
phisms. The lack of bootstrap phenomenon is typically related to the lack of regularity of the leaves
of intermediate (weak stable/unstable) foliations, when they exist.

The first author was partially supported by the NSF grant DMS-2247747.
The second author was partially supported by the ANR AAPG 2021 PRC CoSyDy (Grant No. ANR-CE40-0014),

by the ANR JCJC PADAWAN (Grant No. ANR-21-CE40-0012), by the ANR NO-LIMIT, and by the LESET Math-
AMSUD project.

1We assume continuity in C2 topology.
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Definition 1.2. A Cr Anosov diffeomorphism F0 is called Cr-locally rigid, r ≥ 2, if there exists a
neighborhood U of F0 in the Cr topology such that for any diffeomorphism G ∈ U that is isospectral
to F0, the corresponding conjugacy h is, in fact, a C1+H diffeomorphism.2 Similarly, F0 is called
Cr-deformation rigid if for any isospectral one-parameter family {Fs}s∈[0,1] based at F0 such that the
map s 7→ Fs is continuous in the Cr topology, the corresponding family of conjugacies hs is, in fact, a
family of C1+H diffeomorphisms.

In higher dimension, there exist counterexamples to the deformation and local rigidity of Anosov
diffeomorphisms constructed by de la Llave [DlL92], which we now proceed to recall.

1.1. de la Llave examples. Let A and B be automorphisms of the 2-torus T2 induced by hyperbolic
matrices in SL(2,Z). We will assume that the smaller eigenvalues λ and µ of A and B, respectively,
satisfy the following inequalities: 0 < λ < µ < 1. Define α = logµ/ log λ and notice that α ∈ (0, 1).

Definition 1.3. A de la Llave diffeomorphism Lφ0
: T4 → T4 is defined as a skew-product

Lφ0(x, y) = (Ax,By + φ0(x)), ∀ (x, y) ∈ T2 × T2,

where φ0 : T2 → T2 is a smooth function.

Such diffeomorphism is Anosov and, if φ0 is homotopic to a constant, is conjugate to the linear
product automorphism L0. More generally, if φ1 is homotopic to φ0 then the corresponding de la
Llave diffeomorphism Lφ1

is conjugate to Lφ0
with conjugacy h given by

(1.1) h(x, y) = (x, y + ψ(x)), ∀ (x, y) ∈ T2 × T2,

where ψ : T2 → T2 is null-homotopic. Indeed, a solution of the form in (1.1) to the conjugacy equation
h ◦ Lφ0 = Lφ1 ◦ h can be obtained explicitly by solving the cohomological equation for φ1 − φ0:

(1.2) (φ1 − φ0)(x) = ψ ◦A(x)−B ◦ ψ(x), ∀x ∈ T2.

We can check that this equation has a unique solution ψ ∈ Cα(T2), and then, the associated map h
is the unique conjugacy between Lφ0

and Lφ1
in the homotopy class of the identity, and it is also Cα

regular. However, for some simple choices of φ1 − φ0, and even for a generic choice, the function ψ
is not Cα+ε regular, for any ε > 0. Let us, for example, consider the case where φ1 − φ0 is a single
Fourier mode x 7→ eu cos(2π⟨k0, x⟩), k0 ∈ Z2 \ {(0, 0)}, where ⟨·, ·⟩ is the function on T2 × T2 induced
by the Euclidean inner product on R2, and eu is an unstable eigenvector for B, Beu = µ−1eu. The
solution ψ to (1.2) is of the form ψ̃eu, for some function ψ̃ : T2 → R. Considering the Fourier series∑

k∈Z2 ψ̂ke
i2π⟨k,x⟩ of ψ̃, we find that

ψ̂±(A⊤)nk0
= −µn+1, ∀n ≥ 0, ψ̂k = 0, ∀ k /∈ {±(A⊤)nk0}n≥1 ∪ {(0, 0)}.

For some constant K > 0, we have |(A⊤)nk0| ≥ Kλ−n, hence the decay of the Fourier coefficients

ensures that ψ̃ ∈ Cα but ψ̃ /∈ Cα+ε, for any ε > 0. Consequently, the conjugacy h is merely Cα

regular despite the fact that all eigenvalues at corresponding periodic points (and Lyapunov exponents
of all corresponding measures) of Lφ0

and Lφ1
are the same. This very interesting phenomenon was

discovered and explained by de la Llave in [DlL92], see also [Gog08, GRH23] for later expositions. De
la Llave diffeomorphisms also demonstrate several other interesting dynamical features. For example,
they are non-linear Anosov diffeomorphisms for which the invariant volume measure has maximal
entropy; they could be used to exhibit insufficient regularity of weak foliations (when α > 1), etc.

Furthermore, by linearly extrapolating into a family of diffeomorphisms {Lφs
}s∈[0,1], φs = φ0 +

s(φ1 − φ0), s ∈ [0, 1], we obtain an isospectral family, yet the conjugacy between any two diffeomor-
phisms in the family is merely Cα.

The first author studied local C1+H-conjugacy classes of de la Llave diffeomorphisms in [Gog08]. In
particular, it was established that a C1+H isospectral perturbation of a de la Llave diffeomorphism Lφ0

is C1+H-conjugate to a de la Llave diffeomorphism Lφ1
, where φ1 is C1-close to φ0. Hence, de la Llave

examples completely absorb the failure of periodic eigenvalue rigidity for the product automorphism
L0. This naturally raises the question of description of local C1+H-conjugacy classes for perturbations
of L0 and, more generally, of Lφ0

.

2Here, C1+H means C1 with Hölder continuous differential.
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1.2. Deformation and perturbative rigidity. The following theorems constitute progress on a
smooth classification in proximity of de la Llave diffeomorphisms. Recently, Rafael de la Llave com-
municated to the authors that he and others considered the possibility of such rigidity in proximity of
the examples at the time when examples were discovered.

Theorem A. Let Lφ be a de la Llave diffeomorphism. Then there exist a C1 small neighborhood
U of Lφ and a C2-open C∞-dense subset V ⊂ U such that each Anosov diffeomorphism F ∈ V is
C2-deformation rigid.

Theorem B. Let Lφ be a de la Llave diffeomorphism. Then there exist a C1 small neighborhood U of
Lφ and a C2-open C∞-dense subset V ⊂ U such that each Anosov diffeomorphism F ∈ V is C2-locally
rigid.

Remark 1.4. We note that there is no obvious way to deduce Theorem A from Theorem B. The issue is
that an isospectral deformation is not required to be local and stay in a neighborhood of F (moreover,
can leave the neighborhood of Lφ) and, hence, one cannot apply Theorem B to the path, but only
to the beginning of the path. One then could attempt covering the path by a finite number of small
neighborhoods and gradually conjugate the whole path to F . However, this approach is problematic
since the conjugacy we obtain is only C1+H regular, and it seems hard to make our proof work in this
low regularity predicament.

Remark 1.5. To keep the exposition clean, we work with C∞ diffeomorphisms. But by carefully
inspecting the proof, one can check that the same results are true for C4 diffeomorphisms.

The latter result suggests the following open questions.

(Q1) Global rigidity. Show that for F ∈ V, any Anosov diffeomorphism G which is isospectral to F
is C1-conjugate to F.

(Q2) Volume-preserving version. Show that there exists a C1 small neighborhood Uvol of Lφ in the
space of volume-preserving Anosov diffeomorphisms and a C2-open C∞-dense subset Vvol ⊂
Uvol such that each F ∈ Vvol is (C2-locally) rigid.

(Q3) Jacobian rigidity. Show that one can weaken the isospectrality assumption in Theorems A
and B to mere matching of Jacobians at corresponding periodic points.

Remark 1.6. Let us make some observations on these questions:

• our strategy relies on certain period expansions near periodic points with dissipative behav-
ior along the center (see e.g. Proposition 3.1); in the volume-preserving case, as suggested
in Question (Q2), such expansions look different (see [GLH25, Proposition 4.17]), and the
leading exponential term mixes data coming from the (weak-)stable and unstable directions,
which would make harder the identification of bifurcations such as those we research, e.g., in
Proposition 3.15; also, considering suspensions via logarithmic full Jacobian is not useful in
the volume-preserving setting;

• regarding Question (Q3), while the expansions we consider here do assume matching of eigen-
values along the different directions, we may be able to derive such information from matching
of the full Jacobian, similarly to what was achieved in [GLH25, Theorem A-Corollary B].

In fact, some years ago the first author gave a conjectural description of all possible “generalized de
la Llave” examples. While our results give a definitive progress on rigidity near de la Llave examples,
they still fall short of such an explicit description. We record this conjecture here.

Conjecture 1.7. Let Lφ be a de la Llave diffeomorphism and let U be a small C1-neighborhood of it
where the 4-way dominated splitting survives. Let F ∈ U and assume that the center foliation W c

F by
2-tori, which is the integral foliation of the weak stable and weak unstable distributions of F , is not C1

regular as a foliation.3 Then F is C1-locally rigid.

Remark 1.8. The condition “W c
F is not C1 regular” can be fully understood in terms of periodic data

of F . Namely, W c
F is C1 regular if and only if for any periodic point p and any other periodic point

q ∈W c
F (p) the strong stable and strong unstable Lyapunov exponents of p and q are equal. This fact

can be derived via a similar argument to the characterization of C1 weak unstable foliations on T3

given in [Gog12].

3See also Remark 1.9 for additional insights about why anomalous regularity of invariant foliations can be an issue

in the study of rigidity questions.
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Let us briefly summarize the main steps of the proof of Theorem B. Fix a diffeomorphism F ∈ V,
and a diffeomorphism G which is sufficiently C2-close to F and isospectral to F .

(1) We consider the suspension flows Xt and Y t over F and G, respectively, with roof functions
given by the logarithmic full Jacobian (+const); by the isospectrality condition, the resulting
flows are conjugate, i.e., for some homeomorphism H, we have H ◦Xt = Y t ◦H, for all t ∈ R.

(2) We fix two periodic points p = XT (p), p̃ = X T̃ (p̃), such that DXT (p), DX T̃ (p̃) expands, resp.
contracts volume along the “center”; given homoclinic points q and q̃ to p and p̃, respectively,
we consider sequences (pn), (p̃n) of periodic points in the associated horseshoe and study the
asymptotics of their periods as n→ +∞ (see Proposition 3.1).

(3) For suitable choice of q, q̃, we show that matching of the periods of pn and H(pn), resp. p̃n and
H(p̃n) for the flowsX

t, Y t forces the conjugacyH to send the strong stable manifold of p to the
strong stable manifold of H(p), resp. the strong unstable manifold of p̃ to the strong unstable
manifold of H(p̃) (see Propositions 2.4-2.6). More specifically, the asymptotic formulae for
the periods allow us to recover the coefficients (one coefficient for each choice of q, q̃) by the
leading exponential terms. This countable collection of coefficients “have full knowledge” of
(completely determine) the position of the strong unstable manifold of p (resp. p̃) inside the
2-dimensional unstable manifold. And matching of the coefficients forces matching of strong
stable manifolds under H. This step constitutes the main novel technique of this paper.

(4) We show that the above condition implies that H preserves strong stable and strong unstable
foliations.

(5) From the preservation of invariant foliations and the isospectrality condition, we conclude that
the conjugacy H is C1+H regular, and similarly for the conjugacy between the diffeomorphisms
F and G.

In Appendix A, we present a rigidity theorem at the level of 5-dimensional Anosov flows to elucidate
key mechanisms and offer additional insight into the proofs of Theorems A and B. Indeed, as outlined in
the proof sketch for Theorems A-B, our approach centers on analyzing the conjugacy of 5-dimensional
Anosov flows that are suspensions over diffeomorphisms near de la Llave’s examples. Some properties
demonstrated in this specific context actually extend to a broader class of 5-dimensional Anosov flows;
the purpose of Theorem C is to formalize this generalization. However, the proofs of Theorems A
and B remain formally independent of Theorem C.

Remark 1.9. Complementing Remark 1.8, the regularity of invariant foliations also appeared as a
possible issue for rigidity in the context of 3-dimensional Anosov flows, see [GLH25, Theorem E]. In
fact, it is directly related to one of the “genericity” conditions we impose in the definition of the set
V in Theorems A-B. Indeed, we require the non-vanishing of a quantity related to certain “templates”
of the suspension flows Xt and Y t, which can be thought of as the temporal coordinate of some
invariant distributions (see Section 2 for the precise definition of these objects, and Proposition 3.10
for the associated genericity condition). By following the approach developed in [GLH25], we claim
that for those F ∈ V which are non-rigid, the aforementioned templates of the suspension flow Xt

exhibit anomalous regularity, which itself reflects anomalous regularity of the associated distributions,
as described in items (1)-(2) of Theorem C. In particular, the genericity condition we need to impose
on F ∈ V is related to their Jacobian, to avoid falling into cases (1)-(2) in Theorem C.

Acknowledgements. The first author was supported by the Simons Fellowship during the 2024-25
academic year. The first author is grateful for excellent working conditions provided by IHES and by
the Mathematics Department at Université Paris-Saclay and especially to Sylvain Crovisier for his
hospitality. This paper was greatly influenced by the authors’ joint work with Federico Rodriguez
Hertz [GLH25] who we thank for many inspiring discussions as well as comments on the first draft.
We also thank Jonathan DeWitt for his insightful feedback on the first draft of this paper.

2. Preparations and structure of the proof

Let us fix an automorphism L0 = (A,B), and a de la Llave diffeomorphism Lφ as in Subsection 1.1.
We first explain how the neighborhood U is chosen. The automorphism L0 admits constant dominated
splitting TT4 = Ess

0 ⊕ Ews
0 ⊕ Ewu

0 ⊕ Euu
0 according to the eigendirections corresponding to λ, µ,

µ−1 and λ−1, respectively. It is a standard exercise on the cone technique to check that a de la
Llave diffeomorphism Lφ also admits a dominated splitting Ess

φ ⊕ Ews
φ ⊕ Ewu

φ ⊕ Euu
φ with the same

exponential rates as L0. In fact Ews
φ = Ews

0 and Ewu
φ = Ewu

0 , but the strong subbundles become
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different. The domination condition is C1-open, so we can choose an open set U ∋ Lφ such that
each F ∈ U is Anosov and admits a dominated splitting Ess

F ⊕ Ews
F ⊕ Ewu

F ⊕ Euu
F which is partially

hyperbolic, with 2-dimensional center Ews
F ⊕Ewu

F . Let Es
F := Ess

F ⊕Ews
F and Eu

F := Euu
F ⊕Ewu

F be the
full (2-dimensional) stable and unstable bundles. Since the decomposition Es

F ⊕Eu
F is hyperbolic, Es

F

and Eu
F integrate uniquely to stable and unstable foliations W s

F and Wu
F , respectively. From partially

hyperbolic theory (see [HPS77]) we have that the strong distributions Ess
F and Euu

F uniquely integrate
to strong foliations W ss

F and Wuu
F , respectively. Furthermore, a standard argument on the universal

cover ensures that the weak distributions Ews
F and Ewu

F integrate uniquely to weak foliations Wws
F and

Wwu
F , respectively [GG08]. Moreover, Ews

F and Ewu
F integrate jointly to a “center” foliation by tori,

which we denote by W c
F , whose leaves are subfoliated by the leaves of Wws

F and Wwu
F ; this fact can be

established by comparison of divergence rates on the universal cover.4

We will need the above foliations to persist through an isospectral deformation which could, a priori,
leave the neighborhood U. First, by choosing U even smaller if needed, we can guarantee that F ∈ U

has narrow periodic data (that is, the Lyapunov exponents at periodic points of F are sufficiently close
to the Lyapunov exponents of Lφ). If a diffeomorphism G is conjugate to F and has the same periodic
data (such as a diffeomorphism from an isospectral deformation of F ) then G also admits a dominated
splitting by the main result of [DG24].

Lemma 2.1. Let F and G be as above. Then the weak stable distribution Ews
G and weak unstable

distribution Ewu
G are uniquely integrable.

Lemma 2.2. Let F and G be as above and let h be the conjugacy, h◦F = G◦h. Then h(Wws
F ) =Wws

G

and h(Wwu
F ) =Wwu

G .

The proofs of these lemmata are quite standard and we only briefly indicate the argument. For
more details the reader could consult [GG08], where similar arguments are carried out in detail. In
the following, we abbreviate as W ∗

φ := W ∗
Lφ

, ∗ ∈ {s, ss, ws, wu, uu, u}, the invariant foliations of the

de la Llave diffeomorphism Lφ.
By the main result of [DG24] the diffeomorphism G also admits an invariant dominated splitting

Ess
G ⊕ Ews

G ⊕ Ewu
G ⊕ Euu

G . Moreover, the exponential contraction and expansion rates along these
subbundles are confined to small intervals (λ− ε, λ+ ε), (µ− ε, µ+ ε), (µ−1 − ε, µ−1 + ε) and (λ−1 −
ε, λ−1 + ε), respectively.

Denote by hG the conjugacy to Lφ, hG ◦ Lφ = G ◦ hG. If Ewu
G does not integrate uniquely it still

has one-dimensional integral curves γwu with γ̇wu ∈ Ewu
G inside the leaves Wu

G because Ewu
G is a one-

dimensional distribution. For any such curve γwu through a point x we have hG(γ
wu) ⊂Wwu

φ (hG(x)).
This fact follows easily from the following observations:

(1) length(Gn(γwu)) ≤ (µ−1 + ε)nlength(γwu);
(2) the lift of the conjugacy hG to R4 is a bounded distance away from idR4 ;
(3) if p ∈Wu

φ (q) and p /∈Wwu
φ (q) then dWu

φ
(Ln

φ(p), L
n
φ(q)) ≍ λ−n, n→ ∞.

If Ewu
G is not uniquely integrable then it admits branching integral curves γwu through a point x all

of which must collapse to the same leaf of Wwu
φ : hG(γ

wu) ⊂ Wwu
φ (x), contradicting the fact that hG

is a homeomorphism. This proves Lemma 2.1 (an analogous argument by iterating backward proves
the unique integrability of Ews

G ).
To establish Lemma 2.2 notice that we proved that hG(W

wu
G ) =Wwu

φ . The same argument also gives

hF (W
wu
F ) =Wwu

φ , where hF is the conjugacy between F and Lφ. Hence, h(Wwu
F ) = h−1

G ◦hF (Wwu
F ) =

h−1
G (Wwu

φ ) =Wwu
G .

2.1. Geometric mechanism of de la Llave examples. Observe that if two Anosov diffeomorphisms
are C1 conjugate then the differential of the conjugacy maps the fine dominated splitting of the
first diffeomorphism to a fine dominated splitting of the second diffeomorphism. Consequently, the
conjugacy maps the “web” of invariant foliations of the first diffeomorphisms to that of the second.

Accordingly, if one would like to establish C1 regularity of the conjugacy it is natural to establish
matching of the “webs” of foliations first. In fact, in the context of de la Llave examples, matching of
the strong foliations is the main step to obtain rigidity.

4In fact, if φ is sufficiently C1-small, we can also appeal to the general Hirsch-Pugh-Shub machinery: since the
center distribution Ews

0 ⊕ Ewu
0 of L0 is smooth, by plaque-expansiveness, [HPS77] guarantees that Lφ as well as its

perturbations are dynamically coherent; in particular, Ews
F ⊕Ewu

F is uniquely integrable, and by intersecting the leaves

of the resulting foliation with the leaves of W s
F and Wu

F respectively, we obtain foliations integrating Ews
F and Ewu

F .



6 ANDREY GOGOLEV AND MARTIN LEGUIL

Lemma 2.3. Let Lφ be a de la Llave diffeomorphism. Then there exists a C1-neighborhood U ∋ Lφ

such that if F ∈ U and G is conjugate to F via h with the same periodic data and such that h(W ss
F ) =

W ss
G , h(Wuu

F ) =Wuu
G , then h is C1+H regular.

For a detailed proof we refer to [Gog08, Theorem D]. The setting in [Gog08] is more restrictive (only
a neighborhood of the linear automorphism is considered), however, given Lemma 2.2 the same proof
as in [Gog08] gives Lemma 2.3. Let us simply recall the main steps in the proof of such result:

• for ∗ ∈ {ss, ws, wu, uu}, there exist affine structures on the foliation W ∗
F , and accordingly

for the diffeomorphism G; more precisely, there exists a continuous family {Ψ∗
F,x}x∈M of one-

dimensional normal forms which linearize the dynamics along the leaves of W ∗
F , i.e., for each

x ∈M , Ψ∗
F,x : W

∗
F (x) → R is a C1+H diffeomorphism5 such that

Ψ∗
F,x ◦ F = ∥DF (x)|E∗

F
∥ ·ΨF,F (x);

in fact, for ∗ ∈ {wu, uu}, Ψ∗
F,x is defined as (the expression for ∗ ∈ {ss, ws} is similar, reversing

future and past)

Ψ∗
F,x(y) :=

∫ y

x

ρ∗F (x, z) dmW∗
F (x)(z), ∀ y ∈W ∗

F (x),

where the above integral is taken over the piece of W ∗
F (x) from x to y, dmW∗

F (x) being the

induced volume on the leaf W ∗
F (x), and where

ρ∗F (x, z) :=

+∞∏
k=1

∥DF (F−k(x))|E∗
F
∥

∥DF (F−k(z))|E∗
F
∥
, ∀ z ∈W ∗

F (x);

• if F,G are isospectral, then by Livshits theorem, the functions ∥DF |E∗
F
∥ and ∥DG ◦h|E∗

F
∥ are

cohomologous, i.e., for some Hölder continuous function γ∗ : M → R, we have

∥DG(h(x))|E∗
F
∥ = eγ

∗(F (x))−γ∗(x)∥DF (x)|E∗
F
∥, ∀x ∈M ;

if, moreover, the conjugacy h sends W ∗
F to W ∗

G (it is always true for ∗ ∈ {ws,wu}), then for
any x ∈M , z ∈W ∗

F (x), we have

ρ∗G(h(x), h(z)) = eγ
∗(x)−γ∗(z)ρ∗F (x, z);

then, using the affine structures on W ∗
F , it is possible to show that the restriction of h to the

leaves of W ∗
F is uniformly Lipschitz continuous;

• following the construction of Pesin-Sinai [PS82], [GG08]-[Gog08] construct an F -invariant mea-
sure µ whose conditionals along the leaves ofW ∗

F are absolutely continuous with respect to the
induced volume, where for µ-a.e. x ∈M , the density along W ∗

F (x) is proportional to ρ
∗
F (x, ·);

although it is not clear that such measure µ is ergodic, it is shown in [GG08]-[Gog08] that the
set of transitive points has full µ-measure, from which it is possible to upgrade the regularity
of h|W∗

F (x) from Lipschitz to C1+H;

• for ∗ ∈ {s, u}, the conjugacy h is C1+H along the leaves of the two transverse subfoliations of
W c∗

F , hence by Journé’s regularity lemma, h is C1+H along the leaves of W ∗
F ; since the two

foliations W s
F and Wu

F are transverse, again by Journé’s lemma, we conclude that h is C1+H.

Let p = Fn(p) be a periodic point of F ∈ U and let µ̂p < µp < λp < λ̂p. We say that p is center-
expanding if µpλp > 1 and center-contracting if µpλp < 1. We proceed to state our main technical
result which then would supply the hypothesis for Lemma 2.3, which would, in turn, imply the main
theorem.

Given a periodic point p0 we denote by ps = Fn
s (ps) = hs(p0) its continuation along the family. Also

p0 admits a unique continuation to the neighborhood U and we will write pG0 for the corresponding
periodic point of G ∈ U.

Proposition 2.4. If F̄ ∈ U and p0 is a center-expanding periodic point then there exist an arbitrarily
C∞-small perturbation F̂ of F̄ and a C2-open neighborhood W, F̂ ∈ W ⊂ U such that for all G ∈ W and
all isospectral deformations {Gs}s∈[0,1] of G we have hs(W

ss
G,loc(p

G
0 )) =W ss

Gs,loc
(pGs ) for all s ∈ [0, 1].

Remark 2.5. By reversing the time we also have the symmetric statement for center-contracting peri-
odic point q0 with the conclusion hs(W

uu
G,loc(p

G
0 )) =Wuu

Gs,loc
(pGs ).

5In fact, Ψ∗
F,x is smooth for ∗ ∈ {ss, uu}; the lack of smoothness of Ψ∗

F,x for ∗ ∈ {ws,wu} is due to the lack of

regularity of the leaves of W ∗
F , which are only C1+H regular in general.
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We have the following perturbative counterpart of Proposition 2.4:

Proposition 2.6. If F̄ ∈ U and p0 is a center-expanding periodic point then there exist an arbitrarily
C∞-small perturbation F̂ of F̄ and a C2-open neighborhood W, F̂ ∈ W ⊂ U such that for all G ∈ W

and any isospectral diffeomorphism G1 which is sufficiently C2-close to G, the conjugacy h between
them satisfies h(W ss

G,loc(p
G)) =W ss

G1,loc
(pG1).

Proof of Theorem A assuming Proposition 2.4. The following lemma is the starting point.

Lemma 2.7. Any F ∈ U admits arbitrarily C∞-small perturbation F̄ such that F̄ has a center-
expanding periodic point p0 and a center-contracting periodic point, whose eigenvalues satisfy non-
resonant conditions (2.1).

The proof is very standard via a localized perturbation in the neighborhood of periodic points and
we omit it.

We can apply Proposition 2.4 to F̄ and p0 given by the lemma to obtain a perturbation F̂ and a
C2-open set W(p0) ⊂ U, F̂ ∈ W(p0), such that for all diffeomorphisms G ∈ W(p0) and all isospectral
deformations Gs, s ∈ [0, 1], we have hs(W

ss
G,loc(p

G
0 )) = W ss

Gs,loc
(pGs ). Further, by taking a smaller

perturbation if necessary, we can also assume that F̂ still has a center-contracting periodic point
which we denote by q0.

6 We can now apply Proposition 2.4 again to F̂ and q0 to obtain a perturbation
F̃ and a C2-open set W(q0), F̃ ∈ W(q0) such that for all G ∈ W(q0) all isospectral deformations Gs,
s ∈ [0, 1] we have hs(W

uu
G,loc(q

G
0 )) = Wuu

Gs,loc
(qGs ), where q

G
s is the continuation of qG0 . Also, note that

by choosing the second perturbation to be sufficiently small we can make sure that F̃ ∈ W(p0) so

that W(F, F̄, F̂, F̃ ) := W(p0) ∩ W(q0) is a non-empty set. Note that for any G ∈ W(F, F̄, F̂, F̃ ) and
any isospectral deformation Gs we have both hs(W

uu
G,loc(q

G
0 )) = Wuu

Gs,loc
(qGs ) and hs(W

ss
G,loc(p

G
0 )) =

W ss
Gs,loc

(pGs ).

The open set W(F, F̄, F̂, F̃ ) is near F , but F does not belong to its closure. To fix this problem
we do the following. For every k ≥ 1 we can repeat the same construction while ensuring that
dC∞(F, F̄k) < 1/k, dC∞(F̄k, F̂k) < 1/k and dC∞(F̂k, F̃k) < 1/k. Then

W(F ) =
⋃
k≥1

W(F, F̄k, F̂k, F̃k)

is a C2-open set which contains F in its C∞-closure. Finally, we let

V =
⋃
F∈U

W(F ).

This is the C2-open and C∞-dense set posited in Theorem A. Indeed let G ∈ V and let Gs be an
isospectral deformation. Since G ∈ W(F, F̄k, F̂k, F̃k) for some F we have some periodic points pG0 and
qG0 such that the local strong stable manifolds at pGs and local strong unstable manifolds at qGs match
under the conjugacies. In fact, since we can iterate both backward and forward and the base-points are
periodic we immediately deduce matching of global strong manifolds — hs(W

ss
G (pG0 )) =W ss

Gs
(pGs ) and

hs(W
uu
G (qG0 )) =Wuu

Gs
(qGs ). Now by [GG08, Section 4.4] we also have that hs(W

ss
G (x)) =W ss

Gs
(hs(x)) for

all x ∈W s(pG0 ). Since the full stable manifold W s(pG0 ) is dense in T4 we deduce that hs(W
ss
G ) =W ss

Gs

and, similarly, hs(W
uu
G ) =Wuu

Gs
.

Finally, we can apply Lemma 2.3 and conclude that hs is C1+H regular. □

We now have established Theorem A modulo the proof of Proposition 2.4. By a very similar
argument, we can show Theorem B modulo the proof of Proposition 2.6. We proceed with some more
preparations and then the proof of Propositions 2.4-2.6 in the next section.

2.2. Passing to suspension flows. Let F ∈ U and let Fs, s ∈ [0, 1], be an isospectral deformation of
F0 = F . Denote by Js : T4 → R the (full) Jacobian of Fs. We pick a sufficiently large constant K such
that K + log Js > 0 for all s ∈ [0, 1], and consider the suspension flows Xt

s : M → M of Fs with the
roof function K + log Js. The suspensions flow inherit the dominated splitting structure. That is, for
all s ∈ [0, 1], and Xt = Xt

s we have an DXt-invariant splitting TM = Ess
X ⊕Ews

X ⊕RX ⊕Ewu
X ⊕Euu

X ,
and we denote the corresponding foliations by W ∗

X . We also denote by Es
X := Ess

X ⊕Ews
X (resp. Eu

X :=

6In fact, the construction of perturbation F̂ is localized and the eigenvalues of the center-expanding periodic point

won’t change under the perturbation.
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Ewu
X ⊕Esu

X ) the full 2-dimensional stable (resp. unstable) distribution of the flow Xt. In the following,
we will sometimes drop the index X and write E∗, W ∗ instead of E∗

X , W ∗
X , ∗ ∈ {ss, ws, wu, uu}.

Since the deformation is isospectral, we have that the sum over the period of log Js is independent
of s for any periodic point of Fs. Hence, by the Livshits theorem, we have that flows Xt

s are conjugate
to the initial flow Xt

0. We denote the conjugacy by Hs — Hs ◦Xt
0 = Xt

s ◦Hs, t ∈ R. (The conjugacies
Hs are unique up to composition with the flow and we can pick a continuous family of conjugacies Hs,
s ∈ [0, 1].)

2.3. Local coordinates and templates. We consider the deformation Xt
s, s ∈ [0, 1], and a periodic

point p0 = XT
0 (p0) with its continuation ps. Note that the period T is shared by all points ps. Denote

by µ̂ < µ < 1 < λ < λ̂ the eigenvalues of DpsX
T
s . Note that all these numbers are independent of

s ∈ [0, 1] since the deformation is assumed to be isospectral. From now on, we will focus on various
local considerations in the neighborhood of ps. All constructions that will follow as well as the various
choices that will be made can be made continuous in s, since the hyperbolic structures depend on the
on the dynamics continuously. In order to make the notation lighter, we will omit the index s and
simply write Xt for Xt

s, p for ps, etc. Only in the last step of the proof will we reintroduce dependence
on s into the notation as the presence of a family becomes important.

Let Σp be a smooth 4-dimensional local transversal to the flow which contains the local stable mani-

foldW s
loc(p) and the local unstable manifoldWu

loc(p). Let us denote by Λ = (λi)
4
i=1 := (µ̂, µ, λ, λ̂) ∈ R4

the vector of eigenvalues; we can assume that there are no resonances of the form

(2.1) λi = Λα, ∀ i ∈ {1, · · · , 4}, ∀multi-indices α ∈ Z4, |α| ≤ 3.

(Indeed, the resonances at a periodic point can be perturbed away and the absence of resonances
is an open property.) Then, by Sternberg linearization theorem, there exists a C3 parametrization
Φp : (−1, 1)4 → Σp such that the Poincaré return map Πp to Σp is linearized,

(2.2) L := Φ−1
p ◦Πp ◦ Φp : (ξ̂, ξ, η, η̂) 7→ (µ̂ξ̂, µξ, λη, λ̂η̂).

The parametrization Φp can be easily extended to an actual chart ιp : (−1, 1)5 → M around p =

ι(0, 0, 0, 0, 0) such that Σp = ιp((−1, 1)2 × {0} × (−1, 1)2), and for any (ξ̂, ξ, t, η, η̂) ∈ (−1, 1)5,

(1) ιp(ξ̂, ξ, 0, η, η̂) = Φp(ξ̂, ξ, η, η̂);

(2) ιp(ξ̂, ξ, t, η, η̂) = Xt(ιp(ξ̂, ξ, 0, η, η̂)).

Note that the local weak and strong stable/unstable manifolds through p are just the coordinate
axes in this parametrization.

Using this chart we define two functions, the weak stable template Tws
p and the strong stable template

Tss
p , which represent the angular coordinates of (the image in normal coordinates of) the 2-plane
Es

X = Ess
X ⊕ Ews

X as we move along the local unstable manifold Wu
loc(p):

(2.3)
Dιp(0, 0, 0, η, η̂)

(
Span(0, 1,Tws

p (η, η̂), ∗, ∗)
)
⊂ Es

X(Φp(0, 0, η, η̂)),
Dιp(0, 0, 0, η, η̂)

(
Span(1, 0,Tss

p (η, η̂), ∗, ∗)
)
⊂ Es

X(Φp(0, 0, η, η̂)).

Remark 2.8. The subspace Dιp(0, 0, 0, η, η̂)
(
Span(0, 1,Tws

p (η, η̂), ∗, ∗)
)
is close to Ews

X (Φp(0, 0, η, η̂))

and Dιp(0, 0, 0, η, η̂)
(
Span(1, 0,Tss

p (η, η̂), ∗, ∗)
)
is close to Ess

X (Φp(0, 0, η, η̂)), hence the choice of nota-
tion. In fact, Tws

p , resp. Twu
p can be thought of as the temporal coordinate of the bundle Ews

X ⊕ Eu
X ,

resp. Es
X ⊕ Ewu

X , along Wu
loc(p), resp. W

s
loc(p), in connection with items (1)-(2) in Theorem C.

We also denote by τp : Σp → R the first return time of the flow Xt on the transversal Σp, specifically,

for x ∈ Σp, Πp(x) = Xτp(x)(x). In the following, we identify τp with τp ◦Φp. Note that by construction

(2.4) τp(·, ·, 0, 0) = τp(0, 0, ·, ·) ≡ T.

2.4. Coarse local coordinates. While the local sections and charts we have described above are
very nice for performing calculations, they do have one drawback: since the linearization procedure
depends on higher jets at the fixed point, the sections vary continuously with respect to the flow only
in a sufficiently high topology. Meanwhile we have a family of suspension flows which is continuous in
C1 topology. Since continuity in parameter s will play an important role, we will also need to have
another family of transversals and charts which would vary continuously in C1 topology with s.

Specifically, we still consider transversals Σp, but impose less rigid conditions on the parametrization

Φ̂p : (−1, 1)4 → Σp. Namely, we only require the following weaker conditions.
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(1) Φ̂p((−1, 1)× (−1, 1)× {0} × {0}) =W s
X,loc(p);

(2) Φ̂p((−1, 1)× {0} × {0} × {0}) =W ss
X,loc(p);

(3) DΦ̂p(
∂
∂ξ )(p) = Ews

X (p);

(4) Φ̂p({0} × {0} × (−1, 1)× (−1, 1)) =Wu
X,loc(p);

(5) Φ̂p({0} × {0} × {0} × (−1, 1)) =Wuu
Xloc(p);

(6) DΦ̂p(
∂
∂η )(p) = Ewu

X (p).

We denote by Π̂p the corresponding Poincaré return map, Π̂p := Φ̂−1
p ◦ Πp ◦ Φ̂p. By the above

conditions we have DΠ̂p(0, 0, 0, 0) = L. We extend the parametrization Φ̂p to an actual local chart ι̂p
in exactly the same way as before and we will need the corresponding return time τ̂p = τ ◦ Φ̂p. Finally
we also define corresponding templates in the exact same way:

Dι̂p(0, 0, 0, η, η̂)
(
Span(0, 1, T̂ws

p (η, η̂), ∗, ∗)
)
⊂ Es

X(Φ̂p(0, 0, η, η̂)),

Dι̂p(0, 0, 0, η, η̂)
(
Span(1, 0, T̂ss

p (η, η̂), ∗, ∗)
)
⊂ Es

X(Φ̂p(0, 0, η, η̂)).

Remark 2.9. It will be important that for the C1 family of suspension flows Xt
s (which comes from

the C2 family of Anosov diffeomorphisms Fs) the coarse charts at ps, s ∈ [0, 1], can be chosen in
a continuous manner. Indeed, this is clear because all local invariant manifolds at through ps vary
continuously in C1 topology on the flows and all that is required of the coarse charts Φ̂ps

is that they
align in certain way with these invariant manifolds.

In fact the proof simplifies quite a bit for smooth families, since then for the most part the reader
can pretend that coarse charts are the same as linearizing charts. Indeed, the main point of coarse
charts is that they depend continuously on the parameter and, if the family is smooth, the linearizing
charts do depend continuously on the parameter. Still coarse charts are needed for Lemma 3.12.

2.5. Prescribed families of shadowing periodic orbits. As above, we consider a center-expanding

periodic point p ∈M , of period T > 0, with eigenvalues µ̂ < µ < 1 < λ < λ̂.
We fix some homoclinic point q ∈ Wu

loc(p). We fix a time T ′ > 0 with the property that q′ =

XT ′
(q) ∈W s

loc(p). Without loss of generality, we can assume that q, q′ ∈ Σp. The following shadowing
result is standard; see e.g. [GLH25, Lemma 4.1] for more details.

Lemma 2.10. There exist a constant C0 > 0 and an integer n0 ∈ N such that for n ≥ n0, there exists
a unique periodic point pn ∈ Σp of period

Tn ≃ nT + T ′

such that

d(Xt(pn), X
t(q)) ≤ C0µ

n
2 , ∀ t ∈

[
−nT
2

,
nT

2
+ T ′

]
.

3. The Proof

This section is devoted to the proof of Proposition 2.4. Recall that we have reduced the proof of
the main theorem to Proposition 2.4.

3.1. Asymptotic formula for full Jacobian along shadowing periodic orbits (uniform in the
family). Let p = XT (p) be a center-expanding periodic point. Let q = Φp(0, 0, η∞, η̂∞) ∈ Wu

loc(p)

be a homoclinic point, and fix T ′ > 0 such that q′ = XT ′
(q) = Φp(ξ̂∞, ξ∞, 0, 0) ∈ W s

loc(p). Let

(pn = Φp(ξ̂n, ξn, ηn, η̂n))n be the sequence of shadowing periodic points associated to q given by

Lemma 2.10, and let p′n = Xτn(pn) = Φp(ξ̂
′
n, ξ

′
n, η

′
n, η̂

′
n) ∈ Σp the point in the orbit of pn which is

closest to q′. In particular, τn ≈ T ′, pn ≈ XnT (p′n), and by the shadowing lemma,

(3.1) (ξ̂n, ξn, ηn, η̂n) = (0, 0, η∞, η̂∞) +O(µ
n
2 ), (ξ̂′n, ξ

′
n, η

′
n, η̂

′
n) = (ξ̂∞, ξ∞, 0, 0) +O(µ

n
2 ).

Recall that we denote by Tn ≈ nT + T ′ the period of the point pn.

Proposition 3.1. Given a center-expanding periodic point p = XT (p), any homoclinic point q ∈
Wu

loc(p), q
′ = XT ′

(q) ∈ W s
loc(p), and the corresponding sequence of shadowing periodic points (pn)

associated to q, q′, their periods Tn obey the following asymptotic expansion:

Tn = nT + T ′ + ξ∞
(
Tws
p (η∞, η̂∞)− Pp(η∞, η̂∞)

)
µn +O(θn),
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with θ := µ
2 log λ

log λ−log µ ∈ (µ2, µ), and

Pp(η∞, η̂∞) = −
+∞∑
ℓ=1

µ−ℓ∂2τp(0, 0, λ
−ℓη∞, λ̂

−ℓη̂∞),

where ∂2 is the partial derivative with respect to the second variable ξ.

In the following, we abuse notation and denote Tws
p (q) := Tws

p (η∞, η̂∞), Pp(q) := Pp(η∞, η̂∞).

Remark 3.2. Since the conjugacy map Φp between Πp and its linearization is C3, after this change of
coordinates the first return time τp is also C

3. Moreover, ∂2τp(0, 0, 0, 0) = 0, hence by Taylor expansion,

we see that the terms P
(ℓ)
p (η∞, η̂∞) := µ−ℓ∂2τp(0, 0, λ

−ℓη∞, λ̂
−ℓη̂∞) of the series defining Pp(η∞, η̂∞)

decay at least like (µλ)−ℓ (recall (µλ)−1 < 1 since p is center-expanding), so (η∞, η̂∞) 7→ Pp(η∞, η̂∞)
is indeed a well-defined continuous function. Moreover, for any ℓ ∈ N, the function (η∞, η̂∞) 7→
P

(ℓ)
p (η∞, η̂∞) is C1 (in fact, C2), and both partial derivatives of P

(ℓ)
p decay faster than (µλ)−ℓ, which

ensures that the function Pp is, in fact, C1 regular.

Lemma 3.3. We have the following expansions

(ξ̂n, ξn, ηn, η̂n)− (0, 0, η∞, η̂∞) = (µ̂nξ̂∞ +O(µ̂nµn), µnξ∞ +O(µ2n), O(λ−n), O(λ−n)),

(ξ̂′n, ξ
′
n, η

′
n, η̂

′
n)− (ξ̂∞, ξ∞, 0, 0) = (O(µn), O(µn), λ−nη∞ +O(λ−2n), λ̂−nη̂∞ +O(λ̂−nλ−n)).

Proof. By (3.1), and since in the chart Φp the dynamics is given by the linear map L (2.2), we have

(η′n, η̂
′
n) = (λ−nηn, λ̂

−nη̂n) = (λ−nη∞ +O(λ−nµ
n
2 ), λ̂−nη̂∞ +O(λ̂−nµ

n
2 )),(3.2)

(ξ̂n, ξn) = (µ̂nξ̂′n, µ
nξ′n) = (µ̂nξ̂∞ +O(µ̂nµ

1
2n), µnξ∞ +O(µ

3
2n)).(3.3)

Let us denote by Π̄ = X τ̄ : Uq → Uq′ the Poincaré map from a neighborhood Uq ⊂ Σp of q to a
neighboorhod Uq′ ⊂ Σp of q′, with τ̄ ≈ T ′. Since Φ−1

p (W s
loc(q

′)) ⊂ (−1, 1)2×{(0, 0)} and Φ−1
p (Wu

loc(q
′))

are transverse, estimate (3.2) shows that the unstable distance dWu(q′, p′n) between q′ and p′n is of
order O(λ−n). Applying the C3 diffeomorphism Π̄−1, we see that the unstable distance dWu(q, pn)
between the points q = Π̄−1(q′) and pn = Π̄−1(p′n) is also of order O(λ−n). Since Φ−1

p (Wu
loc(q)) ⊂

{(0, 0)} × (−1, 1)2, we deduce that

(ηn, η̂n) = (η∞, η̂∞) +O(λ−n).

Using estimate (3.3), analogous reasoning leads to

(ξ̂′n, ξ
′
n) = (ξ̂∞, ξ∞) +O(µn).

Applying L±n to the last two estimates as in (3.2)-(3.3) allows us to obtain upgraded estimates

(ξ̂n, ξn) = (µ̂nξ̂∞ +O(µ̂nµn), µnξ∞ +O(µ2n)),

(η′n, η̂
′
n) = (λ−nη∞ +O(λ−2n), λ̂−nη̂∞ +O(λ̂−nλ−n)),

which concludes the proof. □

Again, since the dynamics in the charts is linear (2.2), the previous estimates at the entrance/exit
points p′n, pn can be immediately propagated to the whole orbit:

Corollary 3.4. For any ℓ ∈ {0, · · · , n}, let

p̃n(−ℓ) := Φ−1
p (Π−ℓ

p (pn)) = (µ̂−ℓξ̂n, µ
−ℓξn, λ

−ℓηn, λ̂
−ℓη̂n),

q̃(−ℓ) := Φ−1
p (Π−ℓ

p (q)) = (0, 0, λ−ℓη∞, λ̂
−ℓη̂∞),

q̃′(ℓ) := Φ−1
p (Πℓ

p(q
′)) = (µ̂ℓξ̂∞, µ

ℓξ∞, 0, 0).

Then, we have

p̃n(−ℓ)− q̃(−ℓ) = (µ̂−ℓξ̂n, µ
−ℓξn, λ

−ℓηn, λ̂
−ℓη̂n)− (0, 0, λ−ℓη∞, λ̂

−ℓη̂∞)

= (µ̂n−ℓξ̂∞ +O(µnµ̂n−ℓ), µn−ℓξ∞ +O(µ2n−ℓ), O(λ−(n+ℓ)), O(λ−nλ̂−ℓ)),

p̃n(−ℓ)− q̃′(n− ℓ) = (µ̂n−ℓξ̂′n, µ
n−ℓξ′n, λ

n−ℓη′n, λ̂
n−ℓη̂′n)− (µ̂n−ℓξ̂∞, µ

n−ℓξ∞, 0, 0)

= (O(µnµ̂n−ℓ), O(µ2n−ℓ), λ−ℓη∞ +O(λ−(n+ℓ)), λ̂−ℓη̂∞ +O(λ−nλ̂−ℓ)).
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Corollary 3.5. As n→ +∞, we have the asymptotic expansion

(3.4)

n∑
ℓ=1

τp(p̃n(−ℓ)) = nT + ξ∞

[
+∞∑
ℓ=1

∂2τp(q̃(−ℓ))µ−ℓ

]
µn +O(θn),

where θ := µ
2 log λ

log λ−log µ ∈ (µ2, µ).

Proof. For any n ≥ 0, we define the integer

(3.5) ℓn :=

⌊
− logµ

log λ− logµ
n

⌋
, so that µn−ℓn ≈ λ−ℓn .

Recall that the roof function τp in normal coordinates is C3. By (2.4), we have ∂3τp(0, 0, ·, ·) =
∂4τp(0, 0, ·, ·) ≡ 0; similarly, ∂1τp(·, ·, 0, 0) = ∂2τp(·, ·, 0, 0) ≡ 0. Then, by Corollary 3.4, and by Taylor
expansion, for n≫ 1 and for any ℓ ∈ {1, · · · , ℓn}, we have

τp(p̃n(−ℓ)) = τp(q̃(−ℓ)) + ∂1τp(q̃(−ℓ))(µ̂n−ℓξ̂∞ +O(µnµ̂n−ℓ))

+ ∂2τp(q̃(−ℓ))(µn−ℓξ∞ +O(µ2n−ℓ)) +O

[
sup

[q̃(−ℓ),p̃n(−ℓ)]

D2τp (p̃n(−ℓ)− q̃(−ℓ))2
]

= T +
[
∂1τp(0R4) +O(λ−ℓ)

]
(µ̂n−ℓξ̂∞ +O(µnµ̂n−ℓ))

+ ∂2τp(q̃(−ℓ))µn−ℓξ∞ +
[
∂2τp(0R4) +O(λ−ℓ)

]
O(µ2n−ℓ)

+O
[[
D2τp(0R4) +O(λ−ℓ)

]
(p̃n(−ℓ)− q̃(−ℓ))2

]
= T + ∂2τp(q̃(−ℓ))µn−ℓξ∞ +O(λ−ℓµ̂n−ℓ) +O(λ−ℓµ2n−ℓ)

+O(µn−ℓλ−(n+ℓ)) +O(λ−ℓµ2(n−ℓ)).

In the above estimates we have used that:

• for ℓ ∈ {1, · · · , ℓn}, the main discrepancy between the periodic point p̃n(−ℓ)) and the homo-
clinic point q̃(−ℓ) is along the second (ξ) coordinate, and it is of order µn−ℓ;

• ∂1τp(0R4) = ∂2τp(0R4) = 0;
• the HessianD2τp(0R4) has ∂21τp(0R4) = ∂1∂2τp(0R4) = ∂22τp(0R4) = 0, and similarly, ∂23τp(0R4) =
∂3∂4τp(0R4) = ∂24τp(0R4) = 0; in other words, its only nonzero terms are those involving a mixed
derivative of the form stable direction (ws or ss) vs. unstable direction (wu or uu).

Recall that µλ > 1, µ̂ < µ < 1, and that ∂2τp(q̃(−ℓ)) = O(λ−ℓ). We deduce that

ℓn∑
ℓ=1

τp(p̃n(−ℓ)) = ℓnT + ξ∞

[
+∞∑
ℓ=1

∂2τp(q̃(−ℓ))µ−ℓ

]
µn +O((µλ)−ℓn)µn.

Note that by (3.5), we have

(µλ)−ℓnµn ≈ λ−2ℓn ≈ µγn, with γ :=
2 log λ

log λ− logµ
∈ (1, 2).

Moreover, for any ℓ ∈ {ℓn + 1, · · · , n}, we have

τp(p̃n(−ℓ)) = τp(q̃
′(n− ℓ)) +O

[
sup

[q̃′(n−ℓ),p̃n(−ℓ)]

∂3τp

]
λ−ℓ +O

[
sup

[q̃′(n−ℓ),p̃n(−ℓ)]

∂4τp

]
λ̂−ℓ

= T +O(µn−ℓλ−ℓ).

Gathering together the above estimates, we thus conclude that

n∑
ℓ=1

τp(p̃n(−ℓ)) = nT + ξ∞

[
+∞∑
ℓ=1

∂2τp(q̃(−ℓ))µ−ℓ

]
µn +O(µγn). □

Let us now explain how to conclude the proof of Proposition 3.1. In Corollary 3.5, we have computed
the total discrepancy between the period T and the return times to the transverse section Σp = {t = 0}
of the iterates Π−ℓ

p (pn), ℓ ∈ {1, · · · , n}, which accounts for the term ξ∞Pp(η∞, η̂∞)µn in the asymptotic
expansion of the periods Tn. It thus remains to deal with the time of the excursion from pn to p′n,
which itself shadows closely the homoclinic excursion from q to q′. In particular, this excursion time
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is of the form T ′ + τ̄(pn), with τ̄(pn) = o(1). In fact, τ̄(pn) accounts for the term involving the weak
stable template Tws

p in Proposition 3.1:

Lemma 3.6. As n→ +∞, we have the following asymptotic expansion:

(3.6) τ̄(pn) = ξ∞Tws
p (η∞, η̂∞)µn +O(max(λ−n, µ2n)).

Proof. Let us sketch the proof of (3.6); for more details, we refer the reader to [GLH25, Lemma
4.7-Claim 4.8]). The main steps are as follows:

• we claim that τ̄(pn) is equal to the time that the point pn needs to reach the stable manifold
W s

X,loc(q) (which is a priori not contained in Σp); indeed, the point X
τ̄(pn)(pn) travels together

with q, hence reaches Σp exactly after time T ′;

• near the homoclinic point q (i.e., for |ξ̂|, |ξ| ≪ 1 in normal coordinates), the stable manifold
W s

X,loc(q) is well approximated by its tangent space Es
X(q), which in normal coordinates can

be expressed as a graph

(3.7)
{
(ξ̂, ξ, ξ̂Tss

p (η∞, η̂∞) + ξTws
p (η∞, η̂∞), ∗, ∗) : ξ̂, ξ ∈ R

}
,

by the definition of the weak-stable and strong stable templates in (2.3);
• by Lemma 3.3, the leading term of the discrepancy between pn and q is along the weak-stable
direction, i.e., the second coordinate in normal coordinates, and it is of order ξ∞µ

n +O(λ−n);
• since pn ∈ Σp = {t = 0}, by (3.7), we deduce that

τ̄(pn) = ξ∞Tws
p (η∞, η̂∞)µn +O(max(λ−n, µ2n)),

where the error term µ2n comes from the approximation of W s
X,loc(q) by its tangent space

Es
X(q). □

Since Tn =
∑n

ℓ=1 τp(p̃n(−ℓ)) + τ̄(pn) + T ′, combining the asymptotic expansion of the former sum
obtained in Corollary 3.5 with the estimate of τ̄(pn) derived in Lemma 3.6, this concludes the proof
of Proposition 3.1. □

3.2. Reinterpreting the leading term of the asymptotic formula in the coarse charts. As
explained in Subsection 2.4, the computations above are performed in linearizing charts which vary
continuously with respect to the flow only in a sufficiently high topology (in fact, C4 topology). Here,
given a center-expanding point p ∈ M , and homoclinic points q, q′ as above, we explain how the
coefficient by the leading exponentially small term in the asymptotic formula in Proposition 3.1 can
be reinterpreted in coarser charts which depend continuously on the flow in C1 topology. We let

ζp(q) := Tws
p (η∞, η̂∞)− Pp(η∞, η̂∞),

ωp(q, q
′) := ξ∞ · ζp(q),

so that ωp(q, q
′) is the coefficient by the leading exponentially small term in the asymptotic formula

derived in Proposition 3.1. We let Φ̂p, Π̂p, τ̂p, and T̂ws
p be the associated objects in the coarse charts

introduced in Subsection 2.4. For any ℓ ≥ 0, we let µ̂p,q(−ℓ) be the stable Jacobian of DΠ̂−ℓ
p at Φ̂−1

p (q),
and let

(0, 0, η◦∞, η̂
◦
∞) := Φ̂−1

p (q),

(ξ̂◦∞, ξ
◦
∞, 0, 0) := Φ̂−1

p (q′),

(3.8) P̂p(η
◦
∞, η̂

◦
∞) := −

+∞∑
ℓ=1

µ̂p,q(−ℓ)∂2τ̂p
(
Π̂−ℓ

p (Φ̂−1
p (q))

)
,

ζ̂p(q) := T̂ws
p (η◦∞, η̂

◦
∞)− P̂p(η

◦
∞, η̂

◦
∞),

ω̂p(q, q
′) := ξ◦∞ · ζ̂p(q).

The following result is precisely the content of [GLH25, Lemma 7.16]:

Lemma 3.7. There exists a positive constant ϑp(q) > 0 such that ζp(q) = ϑp(q) · ζ̂p(q).

Remark 3.8. In fact, in the exact same way, we can define two functions ζp, ζ̂p along Wu
X(p); moreover,

Lemma [GLH25, Lemma 7.16] guarantees that there exists a positive function ϑp : W
u
X(p) → R+ such

that ζp = ϑp · ζ̂p.
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Corollary 3.9. The quantity ω̂p(q, q
′) is > 0, resp. = 0, resp. < 0 if and only if the quantity ωp(q, q

′)
is > 0, resp. = 0, resp. < 0.

Proof. It follows directly from Lemma 3.7; indeed, ξ∞ and ξ◦∞ have the same sign, since they encode

the position of q′ ∈W s
X,loc(p) relative to W ss

X,loc(p) in the respective charts Φp, Φ̂p. □

3.3. Non-vanishing of the leading term after a C∞ perturbation.

Proposition 3.10. Fix an Anosov diffeomorphism F̄ , a center-expanding periodic point p for the
suspension flow as above. Fix any (η, η̂) ∈ (−1, 1)2 such that q = Φ̂p(0, 0, η, η̂) is homoclinic. For

any ε > 0, there exists a C∞ diffeomorphism F̂ , dC∞(F̄, F̂ ) < ε, and r > 0, such that for any C∞

diffeomorphism G satisfying dC2(G, F̂ ) < r, denoting by Y t the suspension flow of G, and by pG the

continuation of p, the functions T̂ws
pG and P̂pG associated to Y t (in the coarse chart Φ̂pG) satisfy

T̂ws
pG (η

′, η̂′)− P̂pG(η′, η̂′) ̸= 0, ∀ (η′, η̂′) ∈ B
(
(η, η̂), r

)
.

The notation for the diffeomorphisms F̄ , F̂ and G in Proposition 3.10 is consistent with the notation
in Proposition 2.4.

Remark 3.11. In particular, for any diffeomorphism G which is sufficiently C2-close to F̂ , for any
homoclinic point qG = ΦG

p (0, 0, η∞, η̂∞) = Φ̂G
p (0, 0, η

◦
∞, η̂

◦
∞) with (η◦∞, η̂

◦
∞) ∈ B

(
(η, η̂), r

)
, Proposi-

tion 3.10 ensures that ζ̂p(q) = T̂ws
pG (η

◦
∞, η̂

◦
∞) − P̂pG(η◦∞, η̂

◦
∞) ̸= 0, hence also, by Lemma 3.7, ζp(q) =

Tws
pG (η∞, η̂∞) − PpG(η∞, η̂∞) ̸= 0. Consequently, in the asymptotic expansion obtained in Proposi-

tion 3.1, the coefficient ωp(q, q
′) = ξ∞

(
Tws
pG (η∞, η̂∞) − PpG(η∞, η̂∞)

)
by the leading exponential term

is non-zero unless ξ∞ = 0.

We split the proof of this proposition into two lemmata, showing respectively the C∞-density and
C2-openness of the above property.

Lemma 3.12. There exists a C∞-small perturbation F̂ of F̄ such that the functions T̂ws
p,F̂

and P̂p,F̂

associated to the suspension flow of F̂ (in the coarse chart Φ̂p) satisfy

T̂ws
p,F̂

(η, η̂)− P̂p,F̂ (η, η̂) ̸= 0.

Sketch of the proof. We only explain the basic mechanism of non-vanishing without carrying out de-
tailed computations. This is because the perturbative argument is rather standard, in particular it
is used to show that strong stable distribution of an Anosov flows is typically not C1 regular, see,
e.g. [GLH25, Lemma 7.12].

The perturbation F̂ will be localized at a homoclinic point which corresponds to the preimage of the
homoclinic point, i.e., Π̂−1(0, 0, η, η̂). Further, the perturbation can be arranged so that the periodic

point p and all invariant manifolds through p (and dynamics on them) remain the same for F̂ . Then

we can use exactly the same coarse chart Φ̂p for both F̄ and F̂ because it is only adapted with respect
to these invariant manifolds.

The template T̂ws
p (η, η̂) is defined via the chart and the stable subspace Es

X(q) = Es
X(Φ̂p(0, 0, η, η̂)).

Hence, T̂ws
p (η, η̂) is completely determined by the future of q and the chart Φ̂p. Since the forward

orbit of q is asymptotic to p, it never intersects a small neighborhood of Φ̂p(Π̂
−1(0, 0, η, η̂)), the stable

manifold for such localized perturbation at q remains the same; and since we are still using the same
chart, we conclude that the template remains exactly the same for the perturbation F̂ :

T̂ws
p,F̄ (η, η̂) = T̂ws

p,F̂
(η, η̂).

Now recall that P̂p is given by the series (3.8) which go into the past along the local unstable
manifold of p. The only term of these series which could change under such localized perturbation is

µ̂p,q(−1)∂2τ̂(Π̂
−1
p (0, 0, η, η̂)).

Indeed, the value of this first term can be easily changed by a C∞-small localized perturbation. For
example, we can keep the first jet along the Wu

X,loc(p) the same, hence µ̂p,q(−1) will stay the same

for F̂ . At the same time we can perturb the second jet at Π̂−1
p (0, 0, η, η̂) changing the derivative of

Jacobian at this point with respect to ξ, thus changing the value of ∂2τ̂(Π̂
−1
p (0, 0, η, η̂)) (indeed, what

we are actually perturbing here is the Jacobian of the diffeomorphism F̄ , because the roof function is
the logarithmic Jacobian + const). □
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Remark 3.13. Note that usage of coarse chart (and corresponding template and series P̂p) is really
helpful for making the perturbation. Otherwise, if we use linearizing chart Φp, then perturbing the
Jacobian would necessarily result in perturbation of the chart (because it needs to be linearizing for
the perturbation), which makes the calculation very delicate.

Lemma 3.14. Assume that the diffeomorphism F̂ and its associated suspension flow satisfy T̂ws
p̂ (q̂)−

P̂p̂(q̂) ̸= 0. Then the same holds for any C2-small perturbation G of F̂ , and for all (η′, η̂′) sufficiently

close to (η, η̂), namely, the functions T̂ws
pG and P̂pG for the associated suspension flow of G satisfy

T̂ws
pG (η

′, η̂′)− P̂pG(η′, η̂′) ̸= 0.

Proof. Recall that the coarser charts Φ̂pG depend continuously on the flow in C1 topology, and, ac-

cordingly, on the diffeomorphism in C2 topology. The template T̂ws
pG is just a particular coordinate

(relative to a continuously varying chart) of the stable distribution which depends continuously on the

flow in C1 topology on the space of flows (hence, in C2 topology on G); and P̂pG is given by an infinite
series involving a first order derivative of the roof function (as in Subsection 3.2) which is given by
the logarithm of the Jacobian of G, hence also varies continuously in C2 topology with G. Thus, it is

clear that the map (G, (η′, η̂′)) 7→ ζ̂pG(η′, η̂′) = T̂ws
pG (η

′, η̂′) − P̂pG(η′, η̂′) is continuous in C2 topology

on G. □

3.4. Arriving at a contradiction via particular choices of a homoclinic point and parame-
ters. In this section, we conclude the proof of the main results, i.e., Theorem A and Theorem B. We
start with the proof of the deformation rigidity of typical perturbation of de la Llave examples, and
then explain how it can be adapted to show the perturbative rigidity result.

According to the discussion in Section 2.1, all that is left to do is to prove Propositions 2.4-2.6,
that is, verifying that given “generic” isospectral diffeomorphisms near de la Llave’s examples, the
conjugacy between them preserves the strong stable/unstable manifolds at some periodic point. This
follows immediately from Proposition 3.10 and the following propositions.

Proposition 3.15. Consider an Anosov diffeomorphism G, a center-expanding periodic point pG =
Y T (pG) for its suspension flow Y t, and (η, η̂) ∈ (−1, 1)2, r > 0, as in Proposition 3.10, such that the

functions T̂ws
pG and P̂pG associated to Y t satisfy

T̂ws
pG (η

′, η̂′)− P̂pG(η′, η̂′) ̸= 0, ∀ (η′, η̂′) ∈ B
(
(η, η̂), r

)
.

Then for any isospectral deformation {Gs}s∈[0,1] based at G0 = G, we have hs(W
ss
G,loc(p

G)) =W ss
Gs,loc

(pGs ),

where hs is the conjugacy map between G and Gs, and p
G
s is the continuation of pG for Gs.

Proof. In the following, we slightly abuse notation and identify periodic points pGs for the diffeomor-
phisms Gs with the associated periodic points for the flows Y t

s . For each s ∈ [0, 1], we abbreviate as
Σs = ΣpG

s
a transversal for the suspension flow Y t

s of Gs containing the local manifolds W s
Y t
s ,loc(p

G
s ),

Wu
Y t
s ,loc(p

G
s ), we abbreviate as Φs = ΦpG

s
a chart in which the associated Poincaré map is linearized7

as in (2.2), we abbreviate as Φ̂s = Φ̂pG
s
a coarse chart as in Subsection 3.2, and we denote by Hs the

conjugacy between the suspension flows Y t
0 and Y t

s ,

Hs ◦ Y t
0 = Y t

s ◦Hs, ∀ t ∈ R.
Note that all these objects, except Φs, can be chosen to vary continuously with respect to the parameter
s ∈ [0, 1], cf. Remark 2.9. Moreover, by construction of the parametrizations Φs, and similarly for

Φ̂s, we have Hs ◦ Φ0((−1, 1)2 × {(0, 0)}) ⊂ Φs((−1, 1)2 × {(0, 0)}), because the local stable manifold
W s

Y t,loc(p
G) ⊂ Σ0 is mapped to the local stable manifold W s

Y t
s ,loc(p

G
s ) ⊂ Σs by the conjugacy Hs.

Let us consider the set

G := {s ∈ [0, 1] : Hs(W
ss
Y t,loc(p

G)) =W ss
Y t
s ,loc(p

G
s )}.

We want to show that the set G is equal to the whole interval [0, 1]. Given ξ̂0 ∈ (−1, 1), we define

Hölder continuous functions [0, 1] ∋ s 7→ ξ̂◦(ξ̂0, s) and [0, 1] ∋ s 7→ ξ◦(ξ̂0, s) implicitly by

(ξ̂◦(ξ̂0, s), ξ
◦(ξ̂0, s), 0, 0) := Φ̂−1

s ◦Hs ◦ Φ̂0(ξ̂0, 0, 0, 0), ∀ s ∈ [0, 1].

7Note that the linear map L does not depend on the parameter s due to the isospectrality condition.
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We argue by contradiction and assume that G ̸= [0, 1], i.e.,

∃ s0 ∈ [0, 1] and ∃ ξ̂0 ∈ (−1, 1) such that ξ◦(ξ̂0, s0) ̸= 0.

In the following, we fix such s0 and ξ̂0 ∈ (−1, 1) and abbreviate ξ̂◦(s) := ξ̂◦(ξ̂0, s) and ξ
◦(s) := ξ◦(ξ̂0, s),

for s ∈ [0, 1]. Without loss of generality, we can assume that ξ◦(s0) > 0. By the continuity of strong
stable manifolds, there exists a small strong stable segment W0 ⊂ W ss

Y t,loc(p
G) which contains the

point Φ̂0(ξ̂0, 0, 0, 0) such that Hs0(W0) is disjoint with the strong stable manifold W ss
Y t
s0

,loc(p
G
s0). See

Figure 1. By continuity, there exist ξ0 < 0, and ϱ > 0 such that for any (ξ̂′, ξ′) ∈ B((ξ̂0, ξ0), ϱ), letting

(ξ̂′(s), ξ′(s), 0, 0) := Φ̂−1
s ◦Hs ◦ Φ̂0(ξ̂

′, ξ′, 0, 0), s ∈ [0, 1], we have ξ′(s) < 0 for s ≈ 0 and ξ′(s) > 0 for
s ≈ s0.

By the density of homoclinic points, there exists a homoclinic point qG = Φ0(0, 0, η∞, η̂∞) =

Φ̂0(0, 0, η
◦
∞, η̂

◦
∞) ∈ Wu

Y t,loc(p
G), with (η◦∞, η̂

◦
∞) ∈ B((η, η̂), r), such that for some time T ′ > 0, the

point (q′)G := Y T ′
(qG) satisfies (q′)G = Φ0(ξ̂∞, ξ∞, 0, 0) = Φ̂0(ξ̂

◦
∞, ξ

◦
∞, 0, 0) ∈ W s

Y t,loc(p
G), with

(ξ̂◦∞, ξ
◦
∞) ∈ B((ξ̂0, ξ0), ϱ). For any s ∈ [0, 1], let us consider the respective continuations qGs and (q′)Gs

of the points qG and (q′)G:

qGs = Φs(0, 0, η∞(s), η̂∞(s)) = Φ̂s(0, 0, η
◦
∞(s), η̂◦∞(s)) ∈Wu

Y t
s ,loc(p

G
s ),

(q′)Gs = Φs(ξ̂∞(s), ξ∞(s), 0, 0) = Φ̂s(ξ̂
◦
∞(s), ξ◦∞(s), 0, 0) ∈W s

Y t
s ,loc(p

G
s ).

In particular, since (η◦∞, η̂
◦
∞) ∈ B((η, η̂), r), by Proposition 3.10, we have

ζ̂pG(qG) = T̂ws
pG (η

◦
∞, η̂

◦
∞)− P̂pG(η◦∞, η̂

◦
∞) ̸= 0,

and for s ∈ (0, s0), we have

ξ◦∞(s) < 0, s ≈ 0, ξ◦∞(s) > 0, s ≈ s0.

Since the map s 7→ ξ◦∞(s) is continuous (by the continuity of s 7→ Φ̂s), by the intermediate value
theorem, we deduce that ξ◦∞(s′) = 0, for some s′ ∈ (0, s0). This means that at the parameter value s′

the homoclinic point (q′)Gs′ lies precisely on the strong stable manifold of the point pGs′ as indicated on
Figure 1 (recall item (2) from the definition of the coarse chart in Section 2.4).

Let us now explain how to reach a contradiction. On the one hand, by the (time-preserving)
conjugacy between the flows Y t

0 and Y t
s′ , the periods of the shadowing periodic points pn and their

continuations for Y t
s′ are equal to the same numbers Tn, which is independent of s (and the same

applies to the excursion time T ′). On the other hand, applying the asymptotic expansion given by
Proposition 3.1 to the flow Y t

0 , we obtain

Tn − nT − T ′ = ωpG(qG, (q′)G)µn +O(θn),

with θ ∈ (0, µ) and ωpG(qG, (q′)G) := ξ∞
(
Tws
pG (η∞, η̂∞)− PpG(η∞, η̂∞)

)
̸= 0, while for the flow Y t

s′ ,

Tn − nT − T ′ = ωpG
s′
(qGs′ , (q

′)Gs′)µ
n +O(θn),

with ωpG
s′
(qGs′ , (q

′)Gs′) := ξ∞(s′)
(
Tws
pG
s′
(η∞(s′), η̂∞(s′)) − PpG

s′
(η∞(s′), η̂∞(s′))

)
. Comparing the two ex-

pressions above, we thus have

ωpG(qG, (q′)G) = ωpG
s′
(qGs′ , (q

′)Gs′) ̸= 0.

By Corollary 3.9, we deduce that the associated quantity ω̂pG
s′
(qGs′ , (q

′)Gs′) in coarse charts also satisfies

ω̂pG
s′
(qGs′ , (q

′)Gs′) = ξ◦∞(s′)ζpG
s′
(qGs′) ̸= 0,

yielding a contradiction since s′ was chosen such that ξ◦∞(s′) = 0. We conclude that G = [0, 1], i.e., for
any s ∈ [0, 1],Hs(W

ss
Y t,loc(p

G)) =W ss
Y t
s ,loc(p

G
s ). Recall that for each s ∈ [0, 1], the flow Y t

s is a suspension

flow over the Anosov diffeomorphism Gs; more precisely, Y t
s is the flow induced by the vertical flow in

T4×R on the quotient manifoldM := (T4×R)/Ĝs, with Ĝs : (x, α) 7→ (Gs(x), α−(K+log Js(x))). In
particular, the local strong stable manifold W ss

Y t
s ,loc(p

G) lifts to a local graph in T4 × R over the local

strong manifold W ss
Gs,loc

(pGs ) for Gs. Moreover, the conjugacies Hs between the Anosov flows locally
project to conjugacies hs between the associated Anosov diffeomorphisms, from which we conclude
that hs(W

ss
G,loc(p

G)) =W ss
Gs,loc

(pGs ). □

Let us now turn to the following perturbative version:
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Figure 1. Change of sign of the “center” coordinate ξ◦∞(s) as s changes.

Proposition 3.16. Consider an Anosov diffeomorphism G, a center-expanding periodic point pG =
Y T (pG) for its suspension flow Y t. Let (η, η̂) ∈ (−1, 1)2 and r > 0 be as in Proposition 3.10, such that

the functions T̂ws
pG and P̂pG associated to Y t satisfy

(3.9) T̂ws
pG (η

′, η̂′)− P̂pG(η′, η̂′) ̸= 0, ∀ (η′, η̂′) ∈ B
(
(η, η̂), r

)
.

Then there exists a C2 open neighborhood V of G such that for any G1 ∈ V which is isospectral to G,
we have h(W ss

G,loc(p
G)) = W ss

G1,loc
(pG1), where h is the conjugacy map between G and G1, and p

G1 is

the continuation of pG for G1.

Proof. Without loss of generality, we can assume that the quantity in (3.9) is positive. By Lemma 3.14,
we can thus fix a C2 neighborhood V of G such that for any G1 ∈ V conjugate to G, if we denote by
Y t
1 the associated suspension flow, and by H the conjugacy between the suspension flows Y t and Y t

1 ,
H ◦ Y t = Y t

1 ◦H, then we have

(3.10) T̂ws
pG̃ (H(η′, η̂′))− P̂pG̃(H(η′, η̂′)) > 0, ∀ (η′, η̂′) ∈ B

(
(η, η̂), r

)
.

Fix such a diffeomorphism G1 ∈ V. We take Y t
1 , H as above, and abbreviate p = pG and p1 = pG1

in the following. We denote by Σ,Σ1 transversals for the suspension flows Y t, Y t
1 containing the local

stable and unstable manifolds at p and p1, respectively. Let Φ,Φ1 be the associated linearizing charts,
and let Φ̂, Φ̂1 be the associated coarse charts. Assume by contradiction that

H(W ss
Y t,loc(p)) ̸=W ss

Y t
1 ,loc(p1).

Then, there exists ξ̂0 ∈ (−1, 1) such that

(ξ̂◦, ξ◦, 0, 0) := Φ̂−1
1 ◦H ◦ Φ̂(ξ̂0, 0, 0, 0) has ξ◦ ̸= 0.

Arguing as in the above proof of deformation rigidity, we can then find a homoclinic point qG =
Φ(0, 0, η∞, η̂∞) = Φ̂(0, 0, η◦∞, η̂

◦
∞) ∈ Wu

Y t,loc(p), with (η◦∞, η̂
◦
∞) ∈ B((η, η̂), r), such that for some time

T ′ > 0, the point (q′)G := Y T ′
(qG) ∈W s

Y t,loc(p) satisfies

(q′)G = Φ(ξ̂∞, ξ∞, 0, 0) = Φ̂(ξ̂◦∞, ξ
◦
∞, 0, 0) ∈W s

Y t,loc(p), with ξ
◦
∞ < 0,
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while for the points q1 := H(qG) ∈Wu
Y t
1 ,loc(p1) and q

′
1 := H((q′)G) = Y T ′

1 (q1) ∈W s
Y t
1 ,loc(p1), we have

q′1 = Φ1(ξ̂
1
∞, ξ

1
∞, 0, 0) = Φ̂1(ξ̂

◦,1
∞ , ξ◦,1∞ , 0, 0), with ξ◦,1∞ > 0.

We then have the following expansions for the (common) periods Tn of the shadowing periodic points,
for the flows Y t and Y t

1 :

Tn − nT − T ′ = ωp(q
G, (q′)G)µn +O(θn),

Tn − nT − T ′ = ωp1
(q1, q

′
1)µ

n +O(θn),

with θ ∈ (0, µ), and

ωp(q
G, (q′)G) := ξ∞

(
Tws
p (η∞, η̂∞)− Pp(η∞, η̂∞)

)
,

ωp1(q1, q
′
1) := ξ1∞

(
Tws
p1

(H(η∞, η̂∞))− Pp1(H(η∞, η̂∞))
)
.

In particular, we deduce that ωp(q
G, (q′)G) = ωp1

(q1, q
′
1). Let ω̂p(q

G, (q′)G) and ω̂p1
(q1, q

′
1) be the

corresponding quantities in coarse charts. Arguing as in the proof of Proposition 3.15, we deduce that
ω̂p(q

G, (q′)G) and ω̂p1(q1, q
′
1) have the same sign. But by the definition of the latter quantities, by (3.10)

(recall that (η◦∞, η̂
◦
∞) ∈ B((η, η̂), r)), and since ξ◦∞ < 0 < ξ◦,1∞ , we have ω̂p(q

G, (q′)G) < 0 < ω̂p1
(q1, q

′
1),

yielding a contradiction. □

Appendix A. On the conjugacy between 5-dimensional Anosov flows with a fine
splitting into 1-dimensional subbundles

In this appendix, we introduce Theorem C, which extends the results previously established for the
restricted class of suspension flows over perturbations of de la Llave’s examples. While we omit the
full proof of Theorem C, we outline the main ideas below. As we explain, some steps in the proof
closely follow the arguments used for suspension flows, while the remaining points can be addressed
using reasoning analogous to that in the proof of [GLH25, Theorem E].

Theorem C. Let Xt : M → M be a C∞ transitive Anosov flow on a 5-manifold M which is not a
constant roof suspension flow, with a fine dominated splitting into 1-dimensional subbundles:

TM = Ess
X ⊕ Ews

X ⊕ RX ⊕ Ewu
X ⊕ Euu

X ,

where Es
X := Ess

X ⊕Ews
X and Eu

X := Ewu
X ⊕Euu

X are uniformly contracted, respectively expanded, and

X := d
dt

∣∣
t=0

Xt is the generating vector field of the flow. For ∗ ∈ {ss, s, u, uu}, let W ∗
X be the invariant

foliation tangent to E∗
X . Assume that Xt is “center-dissipative”, i.e., log detDXt|Ews⊕Ewu is not a

coboundary. Then, at least one of the following points is true:

(1) for each x ∈ M the image of the stable subbundle Es
X in the quotient bundle TM/Eu

X ,
restricted to Wu

X,loc(x) has a C
∞ section;

(2) for each x ∈ M the image of the unstable subbundle Eu
X in the quotient bundle TM/Es

X ,
restricted to W s

X,loc(x) has a C
∞ section;

(3) there exists a C1-small neighborhood Ũ of X such that if a C∞ Anosov flow Y t in the neigh-

borhood Ũ is C0 conjugate to Xt, i.e., for some homeomorphism H, we have

(A.1) H ◦Xt = Y t ◦H, ∀ t ∈ R,

then:
(a) Xt and Y t have the same weak-stable/weak-unstable eigenvalues at periodic points, i.e.,

for any p = XT (p), and ∗ ∈ {ws,wu}, we have detDXT (p)|E∗
X
= detDY T (H(p))|E∗

Y
;

(b) H preserves strong foliations, i.e., for ∗ ∈ {ss, uu}, H(W ∗
X(x)) =W ∗

Y (H(x)), ∀x ∈M ;
(c) if, moreover, Xt and Y t have the same strong-stable/strong-unstable eigenvalues at cor-

responding periodic points, then Xt and Y t are C1+H-conjugate.

Remark A.1. We stress that cases (1)-(2) of Theorem C are “exceptional”. Indeed, while the bundle
TM/Eu

X is smooth along unstable leaves Wu
X,loc(x), x ∈ M , the bundle Es

X is in general only Hölder

continuous along unstable leaves, hence we do not expect the existence of smooth sections as in case (1)
(and similarly for case (2)). Note that while case (1) provided some additional partial smoothness of
Es

X , we do not claim that these local sections overlap in coherent way to give a global section. It
is, however, natural to expect that with further arguments case (1) can be improved to a dichotomy:
either image of Es

X or the image of Ews
X in TM/Eu

X is smooth along the unstable foliation.
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Remark A.2. Let us also emphasize that the core of this paper focuses on showing items (3b)-(3c)
within the framework of conjugate suspension Anosov flows over isospectral diffeomorphisms near de
la Llave’s examples, under appropriate genericity conditions. In this context, the eigenvalue matching
described in item (3a) is already ensured by the isospectrality of the underlying diffeomorphisms.

Below we give some details about the main steps of the proof of Theorem C. As in the statement of
the theorem, we fix a 5-dimensional transitive Anosov flow Xt which is not a constant roof suspension
flow.

In Subsection 2.3, given a periodic point p = XT (p) satisfying certain non-resonance conditions, we
considered linearizing coordinates for the Poincaré map of a smooth transversal Σp and defined certain
“templates” Tws

p ,Tss
p along its unstable manifold Wu

X,loc(p). The issue is that these objects depend on
the non-resonance conditions, hence are not uniform with respect to the periodic point p.

To handle this issue, similarly to the strategy in [GLH25], we replace linearizing coordinates with
less nice normal forms, in order to keep uniformity with respect to the base point, following the
construction of adapted charts in the work of Tsujii-Zhang [TZ23] (see also [GLH25, Proposition 3.2]).
More precisely, we can construct a continuous family {ıx}x∈M of uniformly smooth charts such that the

dynamics of Xt in these charts is partially normalized. We associate to these charts a family {Σ̃x}x∈M

of uniformly smooth sections transverse to the flow Xt, where for each x ∈ M , Σ̃x contains the local
2-dimensional stable and unstable manifolds W s

X,loc(x),W
u
X,loc(x); in particular, the jet of the hitting

times of Xt alongW s
X,loc(x),W

u
X,loc(x) ⊂ Σ̃x is normalized to be a polynomial with uniformly bounded

degree. In the same way as in Subsection 2.3, we can then define templates T̃ws
x , T̃ss

x along Wu
X,loc(x),

and similarly, templates T̃wu
x , T̃uu

x along W s
X,loc(x), where these objects are now defined relative to the

sections Σ̃x.
Then, following the proof of [GLH25, Proposition 4.2], given a center-expanding periodic point p,

homoclinic points q, q′ = XT ′
(q), and for the associated sequence (pn)n of periodic points, we can

derive asymptotic expansions of their periods Tn similar to those obtained in Proposition 3.1, but in
terms of the templates T̃ws

x corresponding to the uniform charts: the formula in Proposition 3.1 would
then become

Tn = nT + T ′ + ξ̃∞
(
T̃ws
p (η̃∞, ˜̂η∞)− P̃p(η̃∞, ˜̂η∞)

)
µn +O(θn),

where θ ∈ (0, µ), where P̃p(η̃∞, ˜̂η∞) is a polynomial with uniformly bounded degree, and where

ξ̃∞, η̃∞, ˜̂η∞ represent the coordinates of q, q′ in Σ̃p.

Instead of performing a perturbation as in Section 3.3 to ensure that the leading term ζ̃p(q, q
′) :=

T̃ws
p (η̃∞, ˜̂η∞)− P̃p(η̃∞, ˜̂η∞) in the above expansions is non-vanishing, we then argue as in [GLH25] and

show a dichotomy:

(1) either the term ζ̃p(q, q
′) vanishes in a “robust way” (i.e., for a dense set of homoclinic points,

by varying the points p, q, q′), in which case, we can conclude that the templates {T̃ws
x }x∈M

are actually bounded polynomials; this corresponds to case (1) of Theorem C.
Let us outline the latter implication. Denote by Ēs

X the image of Es
X in the quotient bundle

TM/Eu
X . Recall that given a point x ∈M and y ∈Wu

X,loc(x), the weak stable template T̃ws
x (y)

is defined so that
Zx(y) := (0, 1, T̃ws

x (y), ∗, ∗) ∈ Es
X(y).

Accordingly we have the local sections

(A.2) Z̄x : W
u
X,loc(x) → Ēs

X , y 7→ Z̄x(y) := (0, 1, T̃ws
x (y)) ∈ Ēs

X(y).

Such sections have the following properties:
• since {T̃ws

x }x∈M are bounded polynomials, for any x ∈M , the section Z̄x(·) is uniformly
smooth in y ∈Wu

X,loc(x);

• span(Z̄x(x)) = Ēws
X (x), where Ēws

X is the image of Ews
X in TM/Eu

X ;
• the span of these sections is locally invariant, i.e., for |t| sufficiently small, we have
DX̄t(y)(Z̄x(y)) ∈ span(Z̄Xt(x)(X

t(y))), where DX̄t(y) : Ēs
X(y) → Ēs

X(Xt(y)) is the map
induced by the differential of the flow Xt between quotient spaces; indeed, in adapted
charts, for small t, Xt simply becomes the vertical translation by t along the third coor-
dinate (see [GLH25, Proposition 3.2]);

(2) or for a set of “positive proportion” of center-expanding periodic points p ∈M , we can find q, q′

such that ζ̃p(q, q
′) ̸= 0, in which case we can deduce several things as in case (3) of Theorem C:
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(a) from period expansions, we can recover the weak-stable eigenvalue µ = µp ∈ (0, 1) for
this positive proportion set of periodic points p; in particular, by the positive proportion
Livshits theorem of [DMR24], if Y t is another Anosov flow conjugate to Xt, with gener-
ating vector field sufficiently C1-close to the generating vector field of Xt, then we deduce
that such eigenvalues have to match for the two flows as in item (3a) of Theorem C;

(b) if Y t is another Anosov flow conjugate to Xt through a homeomorphism H, then, by the

non-vanishing of the leading term ζ̃p(q, q
′) ̸= 0 for suitable choices of p, q, q′, and since

such property is robust (similarly to what was shown in Lemma 3.14), exactly as we did
for suspension flows in the proof of Theorems A-B, if the generating vector field of Y t

is sufficiently C1-close to the generating vector field of Xt, then we can show that the
conjugacy H sends the strong stable foliation W ss

X of Xt to the strong foliation W ss
Y of

the conjugate flow Y t as claimed in item (3b) of Theorem C;
(c) finally, from preservation of these foliations, and isospectrality conditions, we can deduce

item (3c) of Theorem C in the same way as we did in the proof of Theorems A-B.

Of course, case (2) of Theorem C occurs in the symmetric way, when considering center-contracting
periodic points instead of center-expanding periodic points. Similarly, information about strong un-
stable foliations can be deduced from the non-vanishing of the leading exponential term of associated
period expansions.

Let us also stress that the case of “swapping SRB measures” which appears in the similar re-
sult [GLH25, Theorem E] does not occur here, namely in case (3a), due to the C1-closeness we assume
on the vector fields X,Y (see, e.g., the proof of [GLH25, Theorem C] for more details).
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