
NEW PARTIALLY HYPERBOLIC DIFFEOMORPHISMS I

ANDREY GOGOLEV∗, PEDRO ONTANEDA∗∗ AND FEDERICO RODRIGUEZ HERTZ∗∗∗

Abstract. We propose a new method for constructing partially hyperbolic diffeomorphisms on closed

manifolds. As a demonstration of the method we show that there are simply connected closed manifolds

that support partially hyperbolic diffeomorphisms. These are the first new examples of manifolds which
admit partially hyperbolic diffeomorphisms in the past 40 years.

1. Introduction

Let M be a smooth compact d-dimensional manifold. A diffeomorphism F is called Anosov if there exist a
constant λ > 1 and a Riemannian metric along with a DF -invariant splitting TM = Es⊕Eu of the tangent
bundle of M , such that for any unit vectors, vs and vu in Es and Eu, respectively, we have

‖DF (vs)‖ ≤ λ−1

λ ≤ ‖DF (vu)‖

All known examples of Anosov diffeomorphisms are supported on manifolds which are homeomorphic to
infranilmanifolds. The classification problem for Anosov diffeomorphisms is an outstanding open problem
that goes back to Anosov and Smale. The great success of the theory of Anosov diffeomorphisms (and
flows) [A67] motivated Hirsch-Pugh-Shub [HPS70, HPS77] and Brin-Pesin [BP74] to relax the definition as
follows.

A diffeomorphism F is called partially hyperbolic if there exist a constant λ > 1 and a Riemannian metric
along with a DF -invariant splitting TM = Es⊕Ec⊕Eu of the tangent bundle of M , such that for any unit
vectors, vs, vc, vu in Es, Ec, Eu, respectively, we have

‖DF (vs)‖ ≤ λ−1

‖DF (vs)‖ < ‖DF (vc)‖ < ‖DF (vu)‖

λ ≤ ‖DF (vu)‖

In recent years the dynamics of partially hyperbolic diffeomorphisms has been a popular subject, see,
e.g., [PS04, RHRHU06]. The pool of examples of partially hyperbolic diffeomorphisms is larger than that of
Anosov diffeomorphisms, in particular, due to the fact that extensions (e.g., F × idN ) of partially hyperbolic
diffeomorphisms are partially hyperbolic. However, the collection of basic “building blocks” for partially
hyperbolic diffeomorphisms is still rather limited. Up to homotopy, all previously known examples of irre-
ducible1 partially hyperbolic diffeomorphisms are either affine diffeomorphisms on homogeneous spaces or
time-1 maps of Anosov flows. These examples go back to Brin-Pesin [BP74] and Sacksteder [S70].

∗The first author was partially supported by NSF grant DMS-1266282. He also would like to acknowledge excellent working
environment provided by the Institute for Math at Stony Brook University.
∗∗ The second author was partially supported by NSF grant DMS-1206622.
∗∗∗The last author was partially supported by NSF grant DMS-1201326.

1See Section 12.5 for our definition of “irreducible”
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Theorem 1.1 (Main Theorem). For any d ≥ 6 there exist a closed d-dimensional simply connected manifold
M that supports a volume preserving partially hyperbolic diffeomorphism F : M →M . Moreover, F is ergodic
with respect to volume.

Remark 1.2. There are no previously known examples of partially hyperbolic diffeomorphisms on simply
connected manifolds. It is easy to show that simply connected compact Lie groups do not admit partially
hyperbolic automorphisms (use, e.g., [HS13, Theorems 6.61, 6.63]). However, to the best of our knowledge,
the possibility that some simply connected manifolds support Anosov flows is open.

Burago and Ivanov proved that simply connected 3-manifolds (i.e., the sphere S3) do not support par-
tially hyperbolic diffeomorphisms [BI08]. Simply connected 4-manifolds have non-zero Euler characteristic
and hence do not admit line fields. Consequently simply connected 4-manifolds do not support partially
hyperbolic diffeomorphisms.

Question 1.3. Do simply connected 5-manifolds support partially hyperbolic diffeomorphisms?

Remark 1.4. It is easy to see, for topological reasons, that the 5-sphere S5 does not admit partially hyperbolic
diffeomorphisms.

In the next section we briefly (and very informally) outline our approach. Then we proceed with a detailed
discussion leading to the proof of the Main Theorem in Section 11. In a sequel to the current paper we plan
to construct more examples using our approach and study their properties.

2. Informal description of the construction

Our approach is to consider a smooth fiber bundle M → E
p→ X, whose base X is a closed manifold and

whose fiber M is a closed manifold which admits a partially hyperbolic diffeomorphism. The idea now is to
equip the total space E with a fiberwise partially hyperbolic diffeomorphism F : E → E, which fibers over a
diffeomorphism f : X → X, i.e., the following diagram commutes

E

p

��

F // E

p

��

X
f
// X

Then the diffeomorphism F is partially hyperbolic provided that f is dominated by the action (on extremal
subbundles) of F along the fibers. However, for non-trivial fiber bundles the bundle map p : E → X
intertwines the the dynamics in the fiber with dynamics in the base, which makes it difficult to satisfy

1. F is fiberwise partially hyperbolic;
2. f is dominated by F ;

at the same time. In particular, if X is simply connected and f is homotopic to idX such constructions seem
to be out of reach (cf. [FG14, Question 6.5]). Moreover, assuming that f = idX , it was shown in [FG14] that
such construction is, in fact, impossible in certain more restrictive setups. However, in this paper, we show
that if f∗ : H∗(X) → H∗(X) is allowed to be non-trivial then our method works in the setup of principal
torus bundles over simply connected 4-manifolds.

3. Preliminaries on principal bundles

In this section we review some of the concepts and facts about principal fiber bundles that will be needed
later. For more details consult [Hus94].

Standing assumption: in this and further sections we will always assume that all topological spaces are
connected countable CW complexes.
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LetX be a space andG be a topological group. Recall that a (locally trivial) principalG-bundle π : E → X
is a (locally trivial) fiber bundle with fiber G and structure group G, where (the group) G acts on (the fiber)
G by left multiplication. Let φα : Uα ×G→ π−1Uα, α ∈ A, be a complete collection of trivializing charts of
the principal bundle E. Denote by Uαβ the intersection Uα ∩ Uβ , α, β ∈ A. Also define φαβ : Uαβ → G in
the following way

(φ−1β ◦ φα)(x, g) = (x, φαβ(x) · g), x ∈ Uαβ 6= ∅, g ∈ G.
This collection of transition functions {φαβ}Uαβ 6=∅ satisfies the following cocycle condition

φαβ(x) · φβγ(x) · φγα(x) = e, x ∈ Uα ∩ Uβ ∩ Uγ ,
where e is the identity in G.

Conversely, let {φαβ}Uαβ 6=∅ be a cocycle of transition functions over a covering {Uα}; that is, assume
that we have

1. an open covering {Uα} of the space X;
2. a collection of maps φαβ : Uαβ → G, Uαβ 6= ∅, that satisfy the cocycle condition.

Then we can construct a principal G-bundle E → X by gluing the spaces Uα × G using the transition
functions {φαβ}. The cocycle condition ensures that the gluings are consistent.

We will need the following facts:

(3.1) Every principal G-bundle E → X has a (right) action E×G→ E. This action is free and the orbits are
exactly the fibers. This can be seen from the construction of E using a cocycle of transition functions:
define φα(x, g).h = φα(x, g.h). This is well defined because right and left translations on G commute.
(There are other equivalent ways of defining principal bundles. In some of them the action is included
in the definition.)

(3.2) From (3.1) we get a canonical (up to right translation) way of identifying a fiber of a principal G-bundle
with G.

(3.3) For every G there is a principal G-bundle EG → BG such that for any space X and any principal
G-bundle E → X, there is a unique, up to homotopy, map ρ : X → BG, such that E ∼= ρ∗EG. The
space BG is called the classifying space of G, and the G-bundle EG → BG is called the universal
principal G-bundle.

(3.4) The classifying space of the topological group S1 is CP∞ = ∪n≥0CPn. The universal principal S1-
bundle is ES1 = S∞ → CP∞. Here S∞ = ∪n≥0Sn. This bundle is the limit of S1 → S2n−1 → CPn,
where S1 ⊂ C acts on S2n−1 ⊂ Cn by scalar multiplication.

(3.5) We have B(G × H) = BG × BH, provided that both BG and BH are countable CW complexes.
Moreover, E(G × H) = EG × EH and the action and projections respect the product structure. It
follows that BTk = CP∞ × ...CP∞︸ ︷︷ ︸

k

, where Tk = S1 × ...× S1︸ ︷︷ ︸
k

is the k-torus, and ETk = S∞ × ...× S∞︸ ︷︷ ︸
k

.

4. A(E) construction

Let π1 : E1 → X1 and π2 : E2 → X2 be principal G-bundles. A fiber preserving map F : E1 → E2, covering
f : X1 → X2 (i.e., f ◦ π1 = π2 ◦ F ) is a principal G-bundle map if F commutes with the right action of G,
that is, F (y.g) = F (y).g, y ∈ E1, g ∈ G. Hence F restricted to a fiber is a left translation.

More generally, let A : G → G be an automorphism of the topological group G and let E1, E2 be as
above. We say that a map F : E1 → E2, covering f : X1 → X2 is an A-bundle map (or simply an A-map) if
F (y.g) = F (y).A(g) for all y ∈ E1, g ∈ G. Hence F restricted to a fiber is the automorphism A composed
with a left translation.

Remark 4.1. Of course, an idG-map is just a principal G-bundle map. In particular, an idG-map that covers
the identity idX : X → X is a principal G-bundle equivalence.

Remark 4.2. Note that the composition of an A-map and a B-map is a BA-map.
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Now let π : E → X be a principal G-bundle, and let {φαβ} be a cocycle of transition functions for E.
Note that {A ◦ φαβ} is also a cocycle of transition functions. This is because

A(φαβ(x)) ·A(φβγ(x)) ·A(φγα(x)) = A
(
φαβ(x) · φβγ(x) · φγα(x)

)
= A(e) = e.

Therefore the new cocycle of transition functions {A ◦φαβ} defines a principal G-bundle over X. We denote
this bundle by A(E). Next we show that A(E) is well defined.

Proposition 4.3. The principal G-bundle A(E) does not depend on the choice of the cocycle of transition
functions {φαβ}.

Proof. Let {φαβ}, over the covering {Uα}, and {ψab}, over the covering {Va}, be two cocycles of transition
functions, both defining equivalent principal G-bundles. Denote the corresponding bundles by E and E′,
respectively.

Special case. The cocycle {ψab} is a refinement of {φαβ}. That is, the covering {Va} is a refinement of
{Uα} (i.e every Va is contained in some Uα), and every ψab is the restriction of some φαβ.

Recall that in this case the principal bundle equivalence between E and E′ is simply given by inclusions:
the element (x, g) ∈ Va ×G maps to (x, g) ∈ Uα ×G, where Uα is a fixed (for each a) element of {Uα} such
that Va ⊂ Uα.

It is straightforward to verify that the same rule defines an equivalence between {A◦φαβ} and {A◦ψαβ}.
This proves the special case.

Because of the special case we can now assume that both cocycles {φαβ}, {ψab} are defined over the same
covering {Uα}. Then the existence of a principal bundle equivalence between E and E′ is equivalent to the
existence a collection of functions {rα}, rα : Uα → G such that

φαβ(x) · rα(x) = rβ(x) · ψαβ(x) (1)

for x ∈ Uαβ (see [Hus94, Chapter 5, Theorem 2.7]). Applying A to equation (1) we obtain(
A ◦ φαβ

)
(x) ·

(
A ◦ rα

)
(x) =

(
A ◦ rβ

)
(x) ·

(
A ◦ ψαβ

)
(x).

Therefore, the collection {A◦rα} defines a principal bundle equivalence between {A◦φαβ} and {A◦ψαβ}. �

Proposition 4.4. Let E → X be a principal G-bundle. Also let A and B be automorphisms of G. Then

(AB)(E) = A(B(E)) and idG(E) = E.

Proof. Direct from the definition of A(E). �

Proposition 4.5. Let E → X be a principal G-bundle, let A an automorphism of G and let f : Z → X be
a map. Then

f∗
(
A(E)

)
= A

(
f∗(E)

)
Proof. Let {φαβ} be a cocycle of transition functions for E defined over a covering {Uα}. Then {A◦φαβ ◦f}
is cocycle of transition functions over {f−1Uα} for both f∗

(
A(E)

)
and A

(
f∗(E)

)
. �

Proposition 4.6. Let E → X be a principal G-bundle and let A be an automorphism of G. Then there is
an A-map FA : E → A(E), covering the identity idX : X → X.

Proof. Let {φαβ} be a cocycle of transition functions for E over a covering {Uα}. Then {A◦φαβ} is a cocycle
of transition functions for A(E) over {Uα}. Define map FA in charts as follows:

Uα ×G 3 (x, g) 7→ (x,A(g)) ∈ Uα ×G,
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where the latter copy of Uα × G is a chart of A(E). The map FA is well defined because the following
diagram commutes

G

A
��

Lφαβ(x)
// G

A
��

G
LA(φαβ(x))

// G

Here Lh denotes left multiplication by h. �

Corollary 4.7. Let E → X be a principal G-bundle and let A be an automorphism of G. Then there is an
A-map FA−1 : A−1(E)→ E, covering the identity idX : X → X.

Proof. This follows from Propositions 4.6 and Remark 4.2. �

Let EG→ BG be the universal principal G-bundle and let A be an automorphism of G. Then A(EG) is
a principal G-bundle, hence (see (3.3)) there is a map ρA : BG→ BG such that

A(EG) ∼= ρ∗A(EG). (2)

Moreover, this map is unique up to homotopy.

5. Principal Tk-Bundles

We now take G = Tk = S1×. . .×S1. Recall that by (3.5) BTk = (CP∞)k. Therefore π2BTk is canonically
identified with Zk (by identifying i-th generator of Zk with the canonical generator of the second homotopy
group of the i-th copy of CP∞.).

Let A ∈ SL(Z, k). Matrix A induces automorphisms A : Zk → Zk and A : Tk → Tk for which we use the
same notation.

The next proposition is a key result and its proof occupies the rest of this section (except for the lemma
at the end of this section). Recall that ρA is characterized by equation (2).

Proposition 5.1. Let g : BTk → BTk be a map such that π2(g) = A ∈ SL(Z, k). Then g is homotopic to
ρA, that is,

A(ETk) ∼= g∗(ETk).

Proof. The proof will require some lemmas and claims.
We consider CP∞ = ∪nCPn with the usual CW -structure, i.e., one cell in each even dimension. This

structure induces product CW -structure on BTk = (CP∞)k. Then the 2-skeleton of BTk is the wedge∨k
i=1 S2i of k copies of the 2-sphere S2. Denote by Y this 2-skeleton and by E → Y the restriction of

ETk → BTk to Y . We first prove the proposition for the principal Tk-bundle E → Y .

Lemma 5.2. Let gY : Y → Y be a map such that π2(gY ) = A ∈ SL(Z, k). Then

A(E) ∼= g∗Y (E).

Proof. Let p be the wedge point of Y . Then we have S2i ∩S2j = {p}, i 6= j. We identify p with the south pole

of each S2i . Denote by D+
i and D−i the closed upper and lower hemispheres of S2i , respectively.

Let Ei → Si be the restriction of E → Y to Si, i = 1, . . . k.

Claim 5.3. The principal Tk-bundle Ei → Si is obtained by identifying D−i × Tk with D+
i × Tk along their

boundaries using the gluing map ωi : S1 → Tk, ωi(u) = (1, ..., 1, u, 1, ...1), that is, all coordinates of ωi(u) are
equal to 1 ∈ S1, except for the i-th coordinate, which is equal to u.

Proof. The claim follows from putting together the following two facts; see also (3.5).
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1. The 2-skeleton of BS1 = CP∞ is CP 1 = S2, and the restriction of ES1 = S∞ to S2 is the Hopf
bundle S1 → S3 → S2. Moreover, S3 is obtained by identifying two copies of D2 × S1 along the
boundaries using the identity map idS1 : S1 → S1.

2. Let F1 → E1 → X1 and F2 → E2 → X2 be two fiber bundles. Consider the inclusion X1 ↪→ X1×X2,
x 7→ (x, ∗), for some fixed ∗ ∈ X2. Then the restriction (E1 × E2)|X1

of the product bundle
F1 × F2 → E1 × E2 → X1 ×X2 to X1 ⊂ X1 ×X2 is the bundle F1 × F2 → E1 × F2 → X1.

�

Write A = (aij) ∈ SL(Z, k). Because A = π2(g), after performing a homotopy, we can assume that g
satisfies the following property.

5.4. For each j there are k disjoint closed 2-disks Dij ⊂ D+
j , i = 1, ..., k, such that

1. g : (Dij , ∂Dij) 7→ (D+
i , ∂D

+
i );

2. the degree of g : (Dij , ∂Dij)→ (D+
i , ∂D

+
i ) is aij.

Claim 5.5. The bundle g∗E|S2j is obtained by gluing D−j × Tk with D+
j × Tk along their boundaries using

the gluing map fj =
∏k
i=1(ωi)

aij : S1 → Tk. That is, fj(u) = (ua1j , . . . , uakj ).

Proof. It follows from Claim 5.3 and Property 5.4 that g∗E|S2j is obtained by identifying
∐k
i=1Dij ×Tk with

(S2j −
⋃
i intDij)×Tk along their boundaries (which is the union of k copies of S1×Tk) via the gluing maps

ω
aij
i : ∂Dij = S1 → Tk, i = 1, . . . , k. (Here we are identifying ∂Dij with S1 using the orientation on ∂Dij

induced by Dij .)
The claim now follows from the fact that the inclusion S1 = ∂D+

j ↪→ D+
j is a path in D+

j −
⋃
i intDij

which winds positively around each Dij exactly once. �

Claim 5.6. The principal S1-bundle A(E)|S2j → S2j is obtained by identifying D−j × Tk with D+
j × Tk along

their boundaries using the gluing map fj : S1 → Tk.

Proof. By applying Proposition 4.5 to the inclusion map S2j ↪→ Y we obtain

A(E)|S2j = A(E|S2j ) = A(Ej).

This together with Claim 5.3 and the definition of A(Ej) implies that A(Ej) is obtained by identifying
D−j × Tk with D+

j × Tk along their boundaries using the gluing map A ◦ ωj : S1 → Tk. But

A(ωj(u)) = A(1, ..., 1, u, 1, ..., 1) = (ua1j , ..., uakj ) = fj(u).

�

Lemma 5.2 now directly follows from Claims 5.5 and 5.6. �

To finish the proof of Proposition 5.1 we need the following lemma.

Lemma 5.7. Let E1 → BTk and E2 → BTk be principal Tk-bundles. Let Z be a space and let h : Z → BTk
be a map. Assume that h∗ : H2(BTk;Z)→ H2(Z;Z) is injective. Then h∗E1

∼= h∗E2 implies E1
∼= E2.

Proof. Recall that by (3.5) BTk = (CP∞)k. Hence BTk is an Eilenberg-MacLane space of type (Zk, 2), i.e.,
π2BTk = Zk and πiBTk = 0, i 6= 2. Therefore, we have that for any space X the group [X,BTk] of homotopy
classes of maps from X to BTk is isomorphic to H2(X;Zk) which splits by the universal coefficients theorem
as follows

H2(X;Zk) ∼= H2(X;Z)⊕ ...⊕H2(X;Z). (3)

Let hi : BTk → BTk classify Ei. Then hi ◦ h : Z → BTk classifies h∗Ei. But the map h∗ : [BTk, BTk]→
[Z,BTk], f 7→ f◦h is the map h∗ : H2(BTk;Zk)→ H2(Z;Zk). This map is injective because h∗ : H2(BTk;Z)→
H2(Z;Z) is injective and the splitting (3) is natural. Therefore h1 ◦ h ' h2 ◦ h implies h1 ' h2. �
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By cellular approximation theorem, we can assume that g : BTk → BTk is a cellular map. Hence g
restricts to the 2-skeleton Y .

Let ι : Y → BTk be the inclusion map. Note that

A(E) = A(ι∗ETk) ∼= ι∗A(ETk),

where the last equivalence is by Proposition 4.5. Also note that

(g|Y )∗E = ι∗g∗(ETk).

By Lemma 5.2, A(E) ∼= (g|Y )∗E. Hence, ι∗A(ETk) ∼= ι∗g∗(ETk). Now, because ι∗ is an isomorphism,
Lemma 5.7 applies and we conclude that A(ETk) ∼= g∗(ETk). This completes the proof of Proposition 5.1
. �

The following is a natural question: given a homomorphism A : Zk → Zk, is there a map f : BTk → BTk
such that π2(f) = A? It is well known that the answer to this question is affirmative. Moreover, the map f
is unique up to homotopy. The next lemma is a bit more general, and will be needed later.

Lemma 5.8. Let X be a simply connected space and let A : π2X → Zk = π2BTk be a homomorphism. Then
there is a unique up to homotopy f : X → BTk with π2(f) = A.

Proof. We can assume X has no 1-cells. By a simple argument we can define f on the 3-skeleton of X so
that π2(f) = A (see [Hat02, Lemma 4.31]). And since πiBTk = 0, i > 2, obstruction arguments show that f
can be extended cell by cell to the whole of X. The proof of the uniqueness up to homotopy is similar. �

6. Principal Tk-Bundles that admit A-Maps

Let E → X be a principal Tk-bundle and f : X → X. Also let A ∈ SL(k,Z). In this section we answer
the following question:

Question 6.1. When does there exist an A-map E → E covering f?

E
A−map

//

��

E

��

X
f

// X

Recall that by (3.3) every principal Tk-bundle over X is equivalent (as principal bundle) to the pull-back
h∗ETk for some h : X → BTk. We will use the following notation:

Eh
def
= h∗ETk.

The next result answers Question 6.1. It gives a relationship between A, f and E = Eh which is equivalent
to the existence of an A-map E → E covering f . The map ρA, characterized by equation (2), appears in the
next theorem.

Theorem 6.2. Let A ∈ SL(k,Z), let X be a space and let f : X → X be a map. Also let h : X → BTk.
Then there exists an A-map Eh → Eh covering f

Eh

��

A−map
// Eh

��

X
f

// X
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if and only if h ◦ f ' ρA ◦ h. That is, the following diagram homotopy commutes

X
f
//

h
��

X

h
��

BTk
ρA // BTk

Proof. First suppose that there exists an A-map Eh → Eh covering f . We have the following diagram

A(Eh)
A−1−map

//

��

Eh

��

A−map
// Eh

��

X
idX // X

f
// X

where the first square comes from Corollary 4.7 (by taking A−1 instead of A). By composing the consecutive
horizontal arrows and using Remark 4.1 we obtain a principal Tk-bundle map A(Eh) → Eh covering f .
Therefore

A(Eh) ∼= f∗Eh (4)

and, using Proposition 4.5 we obtain the following equivalences

(ρA ◦ h)∗ETk = h∗(ρ∗A(ETk))
(2)∼= h∗A(ETk)

4.5
= A(Eh)

(4)∼= f∗(Eh) = (h ◦ f)∗ETk

and it follows that ρA ◦ h ' h ◦ f .
Conversely, suppose

ρA ◦ h ' h ◦ f (5)

Then

A(Eh) = A(h∗ETk)
4.5
= h∗A(ETk)

(2)∼= h∗(ρ∗A(ETk)) = (ρA ◦ h)∗ETk

(5)∼= (h ◦ f)∗ETk = f∗Eh.

Therefore there is a principal bundle equivalence between A(Eh) and f∗Eh, that is there is a idTk -map
A(Eh)→ f∗Eh covering idX . This gives the second square in the diagram

Eh

��

A−map
// A(Eh)

��

idTk−map
// f∗(Eh)

��

idTk−map
// Eh

��

X
idX // X

idX // X
f

// X

The first square comes from Proposition 4.6 and the third one from the definition of pull-back bundle. By
composing the consecutive horizontal arrows and using Remark 4.2 we obtain an A-map Eh → Eh covering
f . This completes the proof of the theorem. �

Our next result says that to verify condition ρA ◦ h ' h ◦ f in the theorem above it is enough to verify it
algebraically at the H2 level.

Proposition 6.3. The following are equivalent

(1) ρA ◦ h ' h ◦ f
(2) H2(h) ◦H2(ρA) = H2(f) ◦H2(h).

Moreover, if X is simply connected and H2(X) is free then (1) and (2) are equivalent to

(3) H2(ρA) ◦H2(h) = H2(h) ◦H2(f).
(4) π2(ρA) ◦ π2(h) = π2(h) ◦ π2(f).
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This proposition follows from the following lemma.

Lemma 6.4. Let X be a space and let φ, ψ : X → BTk be maps. Then the following are equivalent

(1) φ ' ψ,
(2) H2(φ) = H2(ψ).

Moreover, if X is simply connected and H2(X) is free then (1) and (2) are equivalent to

(3) H2(φ) = H2(ψ),
(4) π2(φ) = π2(ψ).

Proof. Clearly (1) implies (2). Assume H2(φ) = H2(ψ), then, by naturality of the splitting (3), the induced
maps on the cohomology with Zk also coincide. Recall that the map H2(φ;Zk) : H2(BTk;Zk)→ H2(X;Zk)
coincides with the map φ∗ : [BTk, BTk] → [X,BTk] given by [λ] 7→ [λ ◦ φ]. Similarly for H2(ψ;Zk). Hence
λ ◦ φ ' λ ◦ ψ for every λ. Taking λ = idBTk we obtain φ ' ψ. This proves that (2) implies (1).

If X is simply connected and H2(X) is free then H2(X) ∼= H2(X) ∼= π2(X). Furthermore, H2(φ) ∼=
H2(φ)T ∼= π2(φ)T (the superscript T denotes the transpose). �

To prove the proposition apply the above lemma to φ = ρA ◦ h and ψ = h ◦ f .

7. Simply Connected Principal Tk-Bundles

Let E → X be a principal Tk-bundle. Recall that E ∼= Eh = h∗ETk, where the map h : X → BTk is
unique up to homotopy. In this section we deal with the following question:

Question 7.1. When is the total space Eh simply connected?

Note that the fundamental group of the total space Eh surjects onto the fundamental group of X. There-
fore X has to be simply connected. The next result answers Question 7.1 when X is simply connected.

Proposition 7.2. Let X be a simply connected space, and let h : X → BTk be a map. Then the following
are equivalent:

(1) the total space Eh is simply connected;
(2) the homomorphism π2(h) : π2X → π2BTk is onto;
(3) the homomorphism H2(h) : H2X → H2BTk is onto.

Proof. From the homotopy exact sequence of the Tk-bundle Tk → Eh → X and the fact that π1X = 0 we
obtain the exact sequence

→ π2X
∂→ π1Tk → π1Eh → 0

Therefore π1Eh = 0 if and only if ∂ is onto. On the other hand from the homotopy exact sequence of the
Tk-bundle Tk → ETk → BTk and the fact that ETk is contractible we obtain that

π2BTk ∂′−→ π1Tk

is an isomorphism. Then the equivalence (1)⇔(2) follows from the following claim.

Claim 7.3. The following diagram commutes

π2X

π2(h) ##

∂ // π1Tk

π2BTk
∂′

::

The claim follows from the naturality of the homotopy exact sequence of a pair and the definition of the
boundary map.

The equivalence (2)⇔(3) follows from the naturality of the Hurewicz map and Hurewicz Theorem. This
proves the proposition. �
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8. The construction

We specify to the case where X is a simply connected 4-manifold and f : X → X is a diffeomorphism.
We make the following collection of assumptions (∗).

(∗8.1) Second homotopy group π2(X) is a free abelian group on m generators.
(∗8.2) The group π2(X) splits as a direct sum Zk ⊕ Zm−k in such a way that the first summand is π2(f)-

invariant, i.e., π2(f)|Zk is an automorphism of Zk ⊂ π2(X).
(∗8.3) Let A ∈ SL(k,Z) be the matrix that represents π2(f)|Zk then A also represents an automorphism

Rk → Rk. Assume that there exists an A-invariant splitting Rk = EsA ⊕EcA ⊕EuA and a Riemannian
metric ‖ · ‖ on X such that the numbers

λσ = min
v∈EσA,
‖v‖=1

‖Av‖, µσ = max
v∈EσA,
‖v‖=1

‖Av‖, σ = s, c, u,

satisfy the following inequalities

λs ≤ µs < λc ≤ µc < λu ≤ µu,
µs < m(f),

λu > ‖Df‖,
where m(f) is minimum of the conorm m(Dfx), i.e.,

m(f) = min
v∈TX,
‖v‖=1

‖Df(v)‖

and ‖Df‖ is the maximum of the norm ‖Dfx‖, i.e.,

‖Df‖ = max
v∈TX,
‖v‖=1

‖Df(v)‖.

Remark 8.1. We allow EcA to be trivial.

Theorem 8.2. Let X be a simply connected closed 4-manifold, let f : X → X be a diffeomorphism that
satisfies (∗) and let πh : Eh → X be a principal Tk-bundle. Assume that Eh admits an A-map F : Eh → Eh.
Then F : Eh → Eh is a partially hyperbolic diffeomorphism.

Clearly the splitting of (∗8.3) descends to a Tk-invariant splitting of the tangent bundle TTk = EsA ⊕
EcA ⊕ EuA. Then the action of Tk on Eh induces a Tk invariant splitting of TTk = Es ⊕ Ec ⊕ Eu; here,
abusing notation, TTk is the subbundle of TEh that consists of vectors tangent to the torus fibers. Because
F : Eh → Eh is an A-map, this splitting is DF -invariant.

Addendum 8.3 (to Theorem 8.2). The subbundles Es and Eu defined above are the stable and the unstable
subbundles for F , respectively. The center subbundle for F has the form Ec ⊕ H ′, where H ′ is a certain
subbundle complementary to TTk.

Proof. We equip TEh with a Riemannian metric in the following way. The flat metric on the torus induces
a metric on TTk. Also recall that by (∗8.3) we have equipped X with a Riemannian metric ‖ · ‖. Choose a
continuous horizontal subbundle H ⊂ TEh such that TEh = TTk ⊕H. Then

(Dπh)x : H(x)→ Tπh(x)X

is an isomorphism for every x ∈ Eh. Set
‖v‖ = ‖Dπh(v)‖

for v ∈ H. Then extend Riemannian metric ‖ · ‖ to the rest of TEh by declaring TTk and H perpendicular.
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Consider the following commutative diagram

0 // Es //

DF |Es
��

TEh //

DF

��

Ec ⊕ Eu ⊕H //

DF◦p
��

0

0 // Es // TEh // Ec ⊕ Eu ⊕H // 0

(6)

The horizontal rows are short exact sequences of Riemannian vector bundles and all vertical automorphisms
fiber over f : X → X. The last vertical arrow is defined as the composition of DF and the orthogonal
projection p on Ec ⊕ Eu ⊕H. Note that the diagram

Ec ⊕ Eu ⊕H

Dπh
��

Df◦p
// Ec ⊕ Eu ⊕H

Dπh
��

TX
Df

//
Df

// TX

commutes and, hence, by our choice of the Riemannian metric

‖DF (p(v))‖ ≥ min(λc,m(f))‖v‖.

Combining with (∗8.3) we obtain we following bound on the minimum of the conorm

m(Df ◦ p) > µs (7)

Lemma 8.4 ([HPS77], Lemma 2.18). Let

0 // E1
i //

T1

��

E2
j
//

T2

��

E3
//

T3

��

0

0 // E1
i // E2

j
// E3

// 0

be a commutative diagram of short exact sequences of Riemannian vector bundles, all over a compact metric
space X, where Ti : Ei → Ei are bundle automorphisms over the base homeomorphism f : X → X, i = 1, 2, 3.
If

m(T3|E3(x)) > ‖T1|E1(x)‖
for all x ∈ X, then i(E1) has a unique T2-invariant complement in E2.

Because we have (7), we can apply Lemma 8.4 to (6) and obtain a DF -invariant splitting TEh = Es⊕ Ês.
Exchange the roles of Es and Eu and apply the same argument to obtain a DF -invariant splitting TEh =

Êu ⊕ Eu. It is easy to see that Ec ⊕ Eu ⊂ Ês and Es ⊕ Ec ⊂ Êu. Let

V c = Ês ∩ Êu.

Then, clearly, we have a DF -invariant splitting TEh = Es ⊕ V c ⊕ Eu.
To see that F is partially hyperbolic with respect to this splitting pick a continuous decomposition

V c = Ec ⊕H ′. And define a new Riemannian metric ‖ · ‖′ on TEh in the same way ‖ · ‖ was defined, but
using H ′ instead of H; i.e., we declare

1. ‖v‖′ = ‖v‖ if v ∈ TTk,
2. ‖v‖′ = ‖Dπh(v)‖ if v ∈ H ′,
3. H ′ is orthogonal to TTk.

Now partial hyperbolicity (with respect to ‖ · ‖′) is immediate from the inequalities of (∗8.3). �
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9. The base space — the Kummer surface

A K3 surface is a simply connected complex surface whose canonical bundle is trivial. All K3 surfaces
are pairwise diffeomorphic and have the same intersection form 2(−E8) ⊕ 3 ( 0 1

1 0 ). In this section we recall
Kummer’s construction of the K3 surface and describe a holomorphic atlas on it.

Consider the complex torus

T2
C = C2/(Z⊕ iZ)2.

Also consider the involution ι : T2
C → T2

C given by ι(z1, z2) = (−z1,−z2). It has 16 fixed points which we call
the exceptional set and which we denote by E(T2

C). Note that T2
C/ι is not a topological manifold because the

neighborhoods of the points in the exceptional set are cones over RP 3-s. Replace the neighborhoods of the

points from the exceptional set with copies of CP 2
to obtain the blown up torus T2

C#16CP 2
(see e.g., [Sc05,

p. 286] for details on complex blow up). The involution ι naturally induces a holomorphic involution ι′ of

T2
C#16CP 2

. Involution ι′ fixes 16 copies of CP 1. One can check that the quotient

X
def
= T2

C#16CP 2
/ι′

is a 4-dimensional manifold called the Kummer surface. Note that it comes with a map

σ : T2
C\E(T2

C)→ X, (8)

which is a double cover of it’s image X\E(X), where E(X) is the exceptional set in X, i.e., the union of 16
copies of CP 1. One can also check that X is simply connected. (See [Sc05, Chapter 3.3] for more details.)

In fact, X is a complex surface and we proceed to describe the complex structure on X. For any connected
open set V which is disjoint from the exceptional set E(X) and whose preimage under σ has 2 connected
components, a holomorphic chart on T2

C for one of the connected components of σ−1(V) induces a chart on
V by composing with σ. Hence we are left to describe the charts on a neighborhood of E(X).

Let p ∈ E(T2
C). We identify a neighborhood of p in T2

C with a neighborhood U of (0, 0) in C2. Then we
blow up p, which amounts to replacing U with

U ′ = {(z1, z2, `(z1, z2)) : (z1, z2) ∈ U , (z1, z2) ∈ `(z1, z2)}.

Here `(z1, z2) is a complex line through (0, 0) and (z1, z2). Hence, if (z1, z2) 6= (0, 0) then `(z1, z2) = [z1 : z2]
in homogeneous coordinates. Finally, note that

U ′′ = {(z1, z2, `(z1, z2)) ∈ U ′}/(z1, z2, `(z1, z2)) ∼ (−z1,−z2, `(z1, z2)) (9)

is identified with a neighborhood of CP 1 ⊂ E(X) in X. We will cover U ′′ by two charts.

Note that the inclusion U ↪→ C2 induces the inclusion U ′ ↪→ C2#CP 2
and then the inclusion U ′′ ↪→

C2#CP 2
/ι′′, where ι′′ is induced by (z1, z2) 7→ (−z1,−z2). We will define charts for C2#CP 2

/ι′′. Then to

obtain charts for U ′′ one just need to take the restrictions of the charts for C2#CP 2
/ι′′.

First note that

C2#CP 2
= {(z1, z2, `(z1, z2)) : (z1, z2) ∈ C2, (z1, z2) ∈ `(z1, z2)} ⊂ C2 × CP 1.

The projective line CP 1 can be covered by two charts u 7→ [u : 1] and u′ 7→ [1 : u′]. These charts extend to

charts for C2#CP 2
as follows

ϕ1 : (u1, u2) 7→ (u1u2, u2, [u1 : 1])

and

ϕ2 : (u′1, u
′
2) 7→ (u′2, u

′
1u
′
2, [1 : u′1]).

Define ξ : C2 → C2 by ξ(u1, u2) = (u1, u
2
2). By a direct check, we see that the following composition

C2 ξ−1

// C2 ϕi // C2#CP 2
// C2#CP 2

/ι′′
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is independent of the branch of ξ and gives a well defined chart ψi (homeomorphism on the image), i = 1, 2.

It is also easy to see that the images of ψ1 and ψ2 cover C2#CP 2
. Calculating

ψ−12 ◦ ψ1(v, w) = (1/v, v2w) (10)

confirms that the atlas is holomorphic.

Remark 9.1. Formulas

ψ1(v, w) = (v
√
w,
√
w, [v : 1]); ψ2(v, w) = (

√
w, v
√
w, [1 : v])

also show that charts ψ1 and ψ2 are compatible with the charts induced from C2\{(0, 0)} by the double

cover C2\{(0, 0)} →
(
C2#CP 2

/ι
)
\CP 1 of the complement of the exceptional set.

Remark 9.2. Consider the 2-form dz1 ∧ dz2 on T2
C and its pushforward η = σ∗(dz1 ∧ dz2) to X\E(X) (it is

well defined because dz1 ∧ dz2 = (−dz1) ∧ (−dz2)). Calculating the latter in the chart ψ1 yields

d(v
√
w) ∧ d

√
w =

1

2
dv ∧ dw.

Together with analogous calculation in the chart ψ2 this implies that η extends to a non-vanishing 2-form
on X.

Remark 9.1 shows that the charts defined above for E(X) are compatible with charts induced by σ from
charts for T2

C. Hence we have equipped X with a holomorphic atlas.

10. The base dynamics — automorphisms of Kummer surfaces

Let B ∈ SL(2,Z) be a hyperbolic matrix then B induces an automorphism BC : T2
C → T2

C. Note that
after appropriately identifying T2

C with the real torus T4 the matrix that represents BC is B ⊕ B = (B 0
0 B ).

We use this identification T2
C
∼= T4 repeatedly in what follows. Automorphism BC naturally induces an

automorphism of T2
C#16CP 2

and, hence, because the latter commutes with ι′, descends to a homeomorphism
fB : X → X. It is easy to verify that fB is, in fact, complex automorphism of X. The second integral
cohomology group of X is Z22 and the second rational cohomology group admits a splitting

H2(X;Q) ∼= Q6 ⊕Q16, (11)

where Q6 is inherited H2(T2
C;Q) and the rest 16 copies of Q come from the 16 copies of CP 1 in E(X).

See [BHPV04, Chapter VIII] for a proof of these facts.

Proposition 10.1. The induced automorphism f∗B : H2(X;Z) → H2(X;Z) is represented by the matrix
diag(B2, idZ4 , S16), where S16 is a permutation matrix given by the restriction of BC to E(T2

C).

Proof. Note that, by the universal coefficients theorem, it suffices to show that the induced automorphism
of the rational cohomology f∗B : H2(X;Q)→ H2(X;Q) has the posited form. Then we can use naturality of
the isomorphism (11). Under this isomorphism the restriction f∗B |H2(T2

C;Q) corresponds to B∗C : H2(T2
C;Q)→

H2(T2
C;Q) given by (B ⊕ B) ∧ (B ⊕ B). And the restriction f∗B |Q16 permutes the coordinates according to

the permutation S16 given by the restriction of BC to E(T2
C). After an (integral) change of basis we obtain

that f∗B is given by diag(B2, idZ4 , S16). �

Remark 10.2. Note that the basis in which the automorphism has the above diagonal form is not completely
canonical because we use the eigenvectors that correspond to unit eigenvalues to write (B ⊕ B) ∧ (B ⊕ B)
as diag(B2, idZ4).
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The goal now is to perturb fB so that the perturbation satisfies the collection of assumptions (∗) from
Section 8.

Set B = ( 13 8
8 5 ) and let λ > 1 be the larger eigenvalue of B. Note that because of this choice of B the

automorphism BC fixes points in E(T2
C).

Embed the automorphism B : T2 → T2 into a 2-parameter family of diffeomorphisms of T2

Bε,d(x, y) = (13x− hε,d(x) + 8y, 8x− hε,d(x) + 5y), ε ≥ 0, d ∈ Z+.

Here hε,1 : S1 → S1 is a C∞ smooth function that has the following properties:

1. hε,1(−x) = −hε,1(x);
2. ∀x ∈ S1 |h′ε,1(x)| ≤ ε;
3. hε,1(x) = hε,1(x+ 1

2 ) = εx for x ∈ U , where U is a small symmetric neighborhood of 0 ∈ S1;

The existence of such function for sufficiently small U can be seen by standard C∞-gluing technique. To
define hε,d : S1 → S1 consider the d sheeted self cover S1 → S1 given by x 7→ dx and let hε,d be the lifting
of hε,1 that fixes 0. It is clear that hε,d also satisfies properties 1 and 2 and the following variant of 3:

3′. hε,d(x) = hε,d(x + 1
2 ) = εx for x ∈ Ud, where Ud is the connected component of 0 ∈ S1 of the set

{x : dx ∈ U};
Note that BC : T2

C → T2
C embeds into 2-parameter family Bε,d ⊕ Bε,d : T2

C → T2
C. (Recall that we have

identification T4 ∼= T2
C.)

Proposition 10.3. Diffeomorphisms Bε,d⊕Bε,d : T2
C → T2

C induce volume preserving, Bernoulli, diffeomor-
phisms fε,d : X → X for sufficiently small ε ≥ 0 and all d ≥ 1.

Proof. It is easy to see that Bε,d ⊕Bε,d fixes points from E(T2
C) and that the differential at the points from

E(T2
C) are complex linear maps. Also, Bε,d(x, y) = Bε,d(−x,−y), hence, Bε,d⊕Bε,d induces a diffeomorphism

fε,d : X → X. The fact that fε,d is smooth boils down to a calculation in charts in the neighborhood of
E(X). This is a routine calculation which we omit.

By calculating the Jacobian of Bε,d we see that diffeomorphism Bε,d⊕Bε,d preserves volume volT2
C

induced

by the form dz1 ∧ dz2 ∧ dz1 ∧ dz2. Remark 9.2 implies that volX = σ∗volT2
C

is induced by η ∧ η and hence is

indeed a smooth volume. However it is clear from the definition that fε,d preserves volX .
For sufficiently small ε > 0 diffeomorphism Bε,d ⊕ Bε,d is Anosov and, hence, Bernoulli. Because

volX(E(X)) = 0 the dynamical system (f, volX) is a measure theoretic factor of (Bε,d ⊕ Bε,d, volT2
C
) and,

hence, is also Bernoulli by work of Ornstein [Orn70]. �

Proposition 10.4. For any sufficiently small ε > 0 there exist a sufficiently large d ≥ 1 such that the
diffeomorphism fε,d : X → X satisfies the collection of assumptions (∗) from Section 8.

The proof of this proposition requires some lemmas.
Let C : C2 → C2 be an automorphism given by (z1, z2) 7→ (µz1, µ

−1z2), µ > 1, and let

C∗ : C2#CP 2
/ι′′ → C2#CP 2

/ι′′

be the automorphism induced by C on the quotient of the blow up. (Recall that ι′′ is induced by (z1, z2) 7→
(−z1,−z2).) It is easy to see that C∗ leaves the projective line CP 1 ⊂ C2#CP 2

/ι′′ over (0, 0) invariant.

Lemma 10.5. There exists a Riemannian metric k on C2#CP 2
/ι′′ such that for any x ∈ CP 1 and any

u ∈ Tx(C2#CP 2
/ι′′)

µ−2‖u‖k ≤ ‖DxC∗(u)‖k ≤ µ2‖u‖k,

where ‖ · ‖k =
√
k(·, ·).
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Proof. Clearly we need to define k on CP 1 ⊂ C2#CP 2
/ι′′. Then we extend it in an arbitrary way.

Recall that in Section 9 we covered C2#CP 2
/ι′′ by two charts ψ1 and ψ2. Note that in both charts CP 1

is given by w = 0. We use Remark 9.1 to calculate C∗ in charts

C∗,ψ1
: (v, w)

ψ1−→ (v
√
w,
√
w, [v : 1])

C∗−→ (µv
√
w, µ−1

√
w, [µ2v : 1])

ψ−1
1−→ (µ2v, µ−2w)

C∗,ψ2 : (v, w)
ψ2−→ (
√
w, v
√
w, [1 : v])

C∗−→ (µ
√
w, µ−1v

√
w, [1 : µ−2v])

ψ−1
2−→ (µ−2v, µ2w)

Let us define Hermitian metric in the chart ψ1. Given a point (v, 0) define

h(v,0) = Q(v)dvdv +Q(v)−1dwdw, (12)

where

Q(v) =

(
1

1 + |v|2

)2

.

Define Hermitian metric in the chart ψ2 by the same formula (12). The fact that these definitions are
consistent can be seen from the following calculation that uses transition formula (10)

(ψ−12 ◦ ψ1)∗h(v,0) = Q(1/v)d(1/v)d(1/v) +Q(1/v)−1dv2wdv2w

= Q(1/v)
1

|v|4
dvdv +Q(1/v)−1|v|4dwdw = h(v,0),

where the second equality follows from

d(v2w) = v2dw + 2vwdv = v2dw

when w = 0; and the last equality follows from the following identity

Q(1/v) = |v|4Q(v).

Therefore, (12) gives a well-defined Hermitian metric h on CP 1 ⊂ C2#CP 2
/ι′′. Define Riemannian metric

k as real part of h

k =
h+ h̄

2
Notice that in charts k is warped product. Thus, we only need to prove the posited inequalities for the real
parts of dual vectors ev and ew. We check the inequality in the chart ψ1. The calculation in the chart ψ2 is
completely analogous.

kC∗,ψ1
(v,0)(DC∗,ψ1

(ev), DC∗,ψ1
(ev))

k(v,0)(ev, ev)
=
k(µ2v,0)(µ

2ev, µ
2ev)

k(v,0)(ev, ev)

=
Q(µ2v)µ4

Q(v)
=

(
µ2 + |µv|2

1 + |µ2v|2

)2

;

kC∗,ψ1
(v,0)(DC∗,ψ1(ew), DC∗,ψ1(ew))

k(v,0)(ew, ew)
=
k(µ2v,0)(µ

−2ew, µ
−2ew)

k(v,0)(ew, ew)

=
Q(µ2v)−1µ−4

Q(v)−1
=

(
µ2 + |µv|2

1 + |µ2v|2

)−2
;
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Finally, the posited inequalities follow from the following elementary estimate

µ−2 ≤ µ2 + |µv|2

1 + |µ2v|2
≤ µ2.

�

Let gT2
C

= Re(dz1dz1 + dz2dz2) be the standard flat metric on T2
C and let

gd,T2
C

= d2gT2
C

for d ≥ 1.

We will write ‖ · ‖d,T2
C

for the induced norms.

The following lemma is immediate from property 2 of hε,d and the definition of Bε,d.

Lemma 10.6. There exist a function λε, ε ≥ 0, such that λε → λ as ε→ 0 and

λ−1ε ‖u‖d,T2
C
≤ ‖D(Bε,d ⊕Bε,d)(u)‖d,T2

C
≤ λε‖u‖d,T2

C

for all d ≥ 1.

For each d ≥ 1 consider the open set

Ud =

(
Ud ∪

(
Ud +

1

2

))4

⊂ T2
C

(Recall that Ud is const/d-neighborhood of 0 in S1 defined in the statement of property 3′ of hε,d.) Clearly
Ud is a neighborhood of E(T2

C) which has 16 connected components. We will write Ud(p) for the connected
component of p ∈ E(T2

C).

Remark 10.7. By definition the neighborhoods (Ud(p), gd,T2
C
) are all pairwise isometric for all p ∈ E(T2

C) and

d ≥ 1.

Let µε > 1 be the larger eigenvalue of the matrix
(
13−ε 8
8−ε 5

)
. We have

µε < λ for ε > 0. (13)

The following lemma is immediate from our definition of Bε,d ⊕Bε,d.

Lemma 10.8. Let d ≥ 1 and let p ∈ E(T2
C). Identify Ud(p) with a neighborhood of (0, 0) in C2 in the obvious

way. Then the restriction Bε,d ⊕Bε,d|Ud(p) is a complex-linear map, which is given by

(z1, z2) 7→ (µεz1, µ
−1
ε z2)

in the basis of eigenvectors.

Proof of Proposition 10.4. Start by fixing a sufficiently small ε > 0 such that µε ∈ (1, λ) and

λε < λ2, (14)

where λε comes from Lemma 10.6. Consider diffeomorphism Bε,d ⊕ Bε,d and open sets Ud and Ud(p) as
described above. By Remark 10.7 each (Ud(p), gd,T2

C
) is isometric to (U , g), where U is a neighborhood of

(0, 0) is C2 and g = Re(dz1dz1 + dz2dz2). Using Lemma 10.8 and the fact that the basis of eigenvectors for
Bε,d⊕Bε,d|Ud(p) is orthogonal, we can precompose with a rotation and obtain another isometric identification
Ud(p) = U under which Bε,d ⊕Bε,d|Ud(p) becomes

C : (z1, z2) 7→ (µεz1, µ
−1
ε z2);
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that is, the following diagram commutes

Ud(p)
Bε,d⊕Bε,d−−−−−−−→ Ud(p)∥∥∥ ∥∥∥

U C−−−−→ U
This diagram induces the commutative diagram

U ′′d (p)
fε,d−−−−→ U ′′d (p)∥∥∥ ∥∥∥

U ′′ C∗−−−−→ U ′′

(15)

where U ′′ is the quotient of the blow up (9) and U ′′d (p) are corresponding neighborhoods of 16 copies of CP 1

in X. (Note that the identification U ′′d (p) = U ′′ is not isometric yet.)
Applying Lemma 10.5 to C∗ yields a Riemannian metric k on a neighborhood of CP 1 ⊂ U ′′. Extend k

to U ′′ in an arbitrary way. By (13) we can pick a number µ̄ε ∈ (µε, λ). Then, by continuity, Lemma 10.5
implies that for a sufficiently small neighborhood V1 ⊂ U ′′ of CP 1 we have

(µ̄ε)
−2‖u‖k ≤ ‖DxC∗(u)‖k ≤ µ̄2

ε‖u‖k (16)

for x ∈ V1 and u ∈ Tx(U ′′).
Next choose a neighborhood V2 ⊃ V1 such that the collar V2\V1 has the following properties:

1. any orbit of C∗ visits the collar V2\V1 at most twice;
2. any orbit of C∗ that visits V1 also visit the collar V2\V1 exactly twice — once when entering and

once when leaving V1; in particular, for any x ∈ U ′′ (x, f(x)) /∈ (V1 × U ′′\V2) ∪ (U ′′\V2 × V1).

Such choice of V2 is possible due to hyperbolicity of C. Also choose a smooth function ρ : U ′′ → [0, 1] such
that ρ|V1 = 1 and ρ|U ′′\V2 = 0. Define Riemannian metric g̃ on U ′′ by

g̃ = ρk + (1− ρ)(σU )∗g.

Here σU : U\(0, 0)→ U ′′ is (z1, z2) 7→ (z1, z2, `(z1, z2)).
Finally, for each d ≥ 1 decompose X as the union of 16 neighborhoods U ′′d (p) and the complement X\U ′′d

and define the sequence of Riemannian metrics

gd,X =

{
g̃ on U ′′d (p)

σ∗gd on X\U ′′d
In this definition we used the identifications U ′′d (p) = U ′′ and the push-forward σ∗gd by σ (8) is well defined
on the complement because the involution ι is an isometry of (T2

C, gd,T2
C
). Because g̃ = (σU )∗g near the

boundary of U ′′ this definition, indeed, gives a smooth Riemannian metric on X.
Denote by Vd the union of 16 copies of V1 in (X, gd,X), denote by Bd the union of 16 copies of the collar

V2\V1 in (X, gd,X) and let Gd = X\(Vd ∪ Bd).
We write ‖ · ‖ε,d the norm induced by gd,X . The have the following estimates:

1. if {x, fε,d(x)} ⊂ Gd then

λ−1ε ‖u‖d,X ≤ ‖Dxfε,d(u)‖d,X ≤ λε‖u‖d,X ;

2. if {x, fε,d(x)} ⊂ Vd then

µ̄−2ε ‖u‖d,X ≤ ‖Dxfε,d(u)‖d,X ≤ µ̄2
ε‖u‖d,X ;

3. otherwise
K−1‖u‖d,X ≤ ‖Dxfε,d(u)‖d,X ≤ K‖u‖d,X ;
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where K is a constant which is independent of d. Property 1 follows from Lemma 10.6. Property 2 follows
from (16). Property 3 is due to the fact that in the collars both the dynamics (C∗) and the metric (g̃) do
not depend on d. Properties 1 and 2 together with our choice of µ̄ε and (14) imply that

λ−2‖u‖d,X < ‖Dxfε,d(u)‖d,X < λ2‖u‖d,X ;

holds whenever {x, fε,d(x)} ⊂ Vd ∪ Gd.
Hence, the only region without effective control on Dfε,d is Bd, i.e., when a point enters a collar or leaves

a collar. However, by our construction the neighborhoods U ′′d of 16 copies of CP 1 in X are nested, moreover,⋂
d≥1

U ′′d (p) = CP 1(p),

where CP 1(p) is the projective line above p ∈ E(T2
C). It follows that for large d neighborhood U ′′d is

(topologically) small and it takes a lot of time for an orbit of fd,X to travel from a neighborhood U ′′d (p1) to
another neighborhood U ′′d (p2). When an orbit travels through a neighborhood U ′′d (p) it meets Bd at most
twice and the rest of the time it spends in Vd ∪ Gd. Hence, when an orbit travels through a neighborhood
U ′′d (p) we may have only up to four iterates when the differential is pinched between K−1 and K. These
observations together with the standard adapted metric construction (see e.g., [Math68]) imply that there

exists d = d(K) and an adapted metric gadaptedd,X such that

λ−2‖u‖ < ‖Dxfd,X(u)‖ < λ2‖u‖, (17)

for all x ∈ X and u ∈ TxX, where ‖ · ‖ is the norm induced by gadaptedd,X .

We can check now that (X, ‖·‖) and fd,X satisfy assumption (∗) of Section 8. Indeed, π2(X) ∼= H2(X;Z) ∼=
Z22 verifying (∗8.1). By Proposition 10.1, π2(fd,X) = π2(fB) = (B2, IdZ20) verifying (∗8.2) with k ≥ 2.
Finally, inequalities of (∗8.3) also hold true because B2 has eigenvalues λ−2, λ2 and we have verified (17). �

11. Proof of the Main Theorem 1.1

Let X be the Kummer surface and let B = ( 13 8
8 5 ) . Then by Propositions 10.1, 10.3 and 10.4 there exists

a volume preserving, Bernoulli diffeomorphism f : X → X which verifies the collection of assumptions (∗) of
Section 8. Moreover, because π2(f) = (B2, idZ20) by Proposition 10.1, we can take any k in [2, 20] and the
splitting Z22 = Zk ⊕ Z22−k will verify (∗8.2) and (∗8.3). The matrix A ∈ SL(k,Z) from (∗8.3) is given by

A = diag(B2, idZk−2).

By Lemma 5.8 there exist a map h : X → BTk such that π2(h) : Zk ⊕ Zm−k → Zk is the projection onto
the first summand Zk. Let πh : Eh → X be the pullback bundle h∗ETk. By Proposition 7.2 the total space
Eh is simply connected. Also consider the diagram

X
f
//

h
��

X

h
��

BTk
ρA // BTk

Recall that, by Proposition 5.1, π2(ρA) = A. Together with (∗8.2), this implies that the above diagram
commutes on the level of π2, and hence homotopy commutes by Proposition 6.3. Then Theorem 6.2 applies
and yields an A-map F : Eh → Eh. By Theorem 8.2 diffeomorphism F is partially hyperbolic. Because
F is an A-map over a volume preserving diffeomorphism, Fubini’s Theorem implies that F is also volume
preserving.

To establish ergodicity start by removing the 3-skeleton of X and all its iterates under f . We obtain a
subset X̄ ⊂ X of full volume. Over X̄ the bundle trivializes and the A-map F takes the form

F (x, y1, y2) = (f(x), B2(y1) + α(x), y2 + β(x)),
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where (y1, y2) ∈ T2 × Tk−2 = Tk. After making the coordinate change (x, y1, y2) 7→ (x, y1 + u(x), y2), where
u(x) = (Id−B2)−1α(x), F takes the form

F (x, y1, y2) = (f(x), B2(y1), y2 + β(x))

Recall that f is Bernoulli, B2 : T2 → T2 is Anosov and, hence, is also Bernoulli. Because the product of two
Bernoulli automorphisms is also Bernoulli we can write

F (z, y2) = (T (z), y2 + β(z)),

where z = (x, y1), β(z) = β(x) and T is Bernoulli. Note that this already solves the case k = 2. Now
consider an F -invariant L2 function and use Fourier decomposition with respect to y2-coordinate to see that
F is ergodic (i.e., the invariant function must be constant) if and only if the cohomological equation

ξ(Tz)− ξ(z) = β(z)

has a non-trivial solution ξ. Thus F is ergodic if
∫
β(z)dvol 6= 0.

Recall that Tk acts on Eh on the right by translation on the fiber. It is easy to see that ρ ◦ F , ρ ∈ Tk is
still and A-map and hence is volume preserving and partially hyperbolic. If

∫
β(z)dvol 6= 0 then consider

F ′ = ρ ◦ F,
where ρ = (0, ω) ∈ T2 × Tk−2, ω 6= 0. In (z, y2)-coordinates F ′ takes the form

F ′(z, y2) = (T (z), y2 + β(z) + ω).

Because
∫

(β(z) + ω)dvol = ω 6= 0 diffeomorphism F ′ is ergodic.
We have constructed partially hyperbolic diffeomorphisms on simply connected manifolds of dimension 6

to 26. To obtain higher dimensional examples one can couple these examples or couple them with sufficiently
slow ergodic diffeomorphisms of spheres.

12. Final remarks

12.1. The six dimensional example. Note that our 6 dimensional example is in fact Bernoulli. It is also
easy to see that it is stably non dynamically coherent. Indeed, a center leaf would cover X, hence, would be
a trivial one-to-one cover and give a section of the bundle, but the bundle Eh is non-trivial and, hence, does
not admit sections.

12.2. Real analytic version. We believe that our examples can be made real analytic by modifying the
base diffeomorphism. More specifically one only need to change the definition of Bε,d in the following way

Bε,d(x, y) = (13x− ε sin(4dπx) + 8y, 8x− ε sin(4dπx) + 5y), ε ≥ 0, d ∈ Z+.

One then has to work out a version of Lemma 10.5. Note that calculations become tedious; in particular,
because the cubic term of Bε,d at (0, 0) effects dynamics on CP 1.

12.3. Bunching. By a more careful construction of the base diffeomorphism f : X → X one can obtain
similar examples F that are also (2− ε)-bunched; that is, for any ε > 0 there exist a Riemannian metric ‖ · ‖
and λ > 1 such that for any unit vectors, vs, vc, vu respectively in Es, Ec, Eu we have that

‖DF (vs)‖ ≤ λ−2

λ1+ε‖DF (vs)‖ < ‖DF (vc)‖ < λ−1−ε‖DF (vu)‖

λ2 ≤ ‖DF (vu)‖

12.4. 2-connected example. It is easy to see from long exact sequence of the fiber bundle that, when
k = 22, our construction yields a partially diffeomorphism F : Eh → Eh of a simply connected, 2-connected,
26-dimensional manifold, i.e., π1(Eh) = π2(Eh) = 0.
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12.5. Irreducibility. A partially hyperbolic diffeomorphism F : N → N is called irreducible if it verifies
the following conditions:

1. diffeomorphism F does not fiber over a (topologically) partially hyperbolic (or Anosov) diffeomor-

phism F̂ : N̂ → N̂ of a lower dimensional manifold N̂ ; that is, one cannot find a fiber bundle
p : N → N̂ and a (topologically) partially hyperbolic (or Anosov) diffeomorphism F̂ : N̂ → N̂ such

that p ◦ F = F̂ ◦ p;
2. if F ′ is homotopic to F then F ′ also verifies 1;
3. if F̃ is a finite cover of F then F̃ also verifies 1 and 2.

Conjecture 12.1. Our 6-dimensional example is irreducible.

12.6. A partially hyperbolic branched self-covering of S3. Our construction can be applied to the
Hopf bundle S1 → S3 → S2. Namely, consider the Lattès map of S2 induced by multiplication by n on
T2, n ≥ 2. This is a rational map of degree n2, which is self-covering outside of the ramification locus
that consists of 4 points (see [M99, §7] for a detailed description). Then, by working through the A-map
machinery, one obtains a self map of S3 that covers the Lattès map and which is given by multiplication by
n2 in the S1 fibers. Further, by slowing down the Lattès map at the ramification points, one can obtain a
partially hyperbolic branched self-covering of S3 of degree n4. In fact, we can use a rational (non-Lattès)
map of the base coming from Theorem 1 of [BE14]. This map does not require further perturbation.
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