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Abstract. Given a closed, orientable, negatively curved Riemannian surface (𝑀,𝑔), we show how to con-
struct a perturbation (𝑀,𝑔′) such that each closed geodesic becomes longer, and yet there is no diffeomor-
phism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) which contracts every tangent vector.

1. Introduction

Let𝑀 be a closed, connected manifold, and let 𝑔 be a Riemannian metric on𝑀 with everywhere negative
sectional curvature. It is well known that inside of every non-trivial free homotopy 𝜎 there exists a unique
closed geodesic 𝛾𝜎 [9, Chapter 12]. Denoting the length of a curve 𝛾 with respect to the metric 𝑔 by ℓ𝑔 (𝛾),
the marked length spectrum MLS𝑔 is the function which takes a free homotopy class 𝜎 and returns the
length of the unique closed geodesic 𝛾𝜎 in the free homotopy class.

The marked length spectrum has attracted a lot of attention due to the marked length spectrum rigidity
conjecture, which states that if MLS𝑔 (𝜎) = MLS𝑔′ (𝜎) for all free homotopy classes 𝜎 , then there is a dif-
feomorphism 𝑓 ∶ 𝑀 → 𝑀 such that 𝑓 ∗(𝑔′) = 𝑔 [3, Conjecture 3.1]. The conjecture is known to hold
in dimension two [6, 14], and in dimensions three and higher when the manifold is locally symmetric
[2, 11], when the metrics are sufficiently close in a fine topology [10], or when the metrics are conformally
equivalent [12, Theorem 2]. The conjecture is still open in general.

Variations of the marked length spectrum rigidity conjecture have been considered in recent years. For
example, Butt considered in [5] an “approximate version” of marked length spectrum rigidity, where the
marked length spectra being “approximately equal” implies that the metrics are “approximately isometric.”
Another example can be found in [8], where it is conjectured that the inequality MLS𝑔 ≤ MLS𝑔′ implies
Vol(𝑔) ≤ Vol(𝑔′), with Vol(𝑔) = Vol(𝑔′) holding if and only if 𝑔 is isometric to 𝑔′. Similar to the marked
length spectrum conjecture, this is known to be true if𝑀 is a surface [7, Theorem 1.1], and in dimensions
three and higher if the metrics are sufficiently close in a fine topology [10] or if the metrics are conformally
equivalent [7, Theorem 1.2]. Both of these variations can be seen as loosening the equality assumption in
the marked length spectrum conjecture and asking what geometric information remains.

In the same vein as above, we wish to explore two marked length spectrum “semi-rigidity” type problems,
i.e., problems which relate an inequality on the marked length spectrum of two metrics to the existence of
a diffeomorphism on𝑀 carrying some geometric information. For the first problem, we consider whether
or not an inequality on the marked length spectrum implies the existence of a volume shrinking diffeomor-
phism between𝑔 and𝑔′, i.e., a diffeomorphismwhose Jacobian is bounded above by one. In the cases where
it is known that MLS𝑔 ≤ MLS𝑔′ implies Vol(𝑔) ≤ Vol(𝑔′), it can be deduced using [7, Theorem 1.1] and
Moser’s homotopy trick [13] that if 𝑔 and 𝑔′ are two negatively curved metrics on 𝑀 with MLS𝑔 ≤ MLS𝑔′ ,
then there exists a volume shrinking diffeomorphism 𝑓 ∶ 𝑀 → 𝑀 .

For the second problem, we consider whether or not an inequality on the marked length spectrum implies
the existence of a length shrinking diffeomorphism between 𝑔 and 𝑔′, that is, a diffeomorphism 𝑓 ∶ 𝑀 → 𝑀

such that ∥𝐷𝑥 𝑓 (𝑣)∥ ≤ ∥𝑣 ∥′ for all (𝑥, 𝑣) ∈ 𝑇𝑀. Somewhat surprisingly, our main result shows that the
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answer is “no” in a rather strong sense. To help with notation, we denote a shrinking diffeomorphism by
𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) to help indicate which metric is “shrinking” under the diffeomorphism.

Theorem 1. Let 𝑀 be a closed, connected, orientable surface, and let 𝑔 be a negatively curved metric on
𝑀 . Then 𝑔 admits arbitrarily 𝐶∞-small perturbations 𝑔′ for which there exists 𝜀 > 0 so that we have
MLS𝑔′ > (1 + 𝜀)MLS𝑔 and there does not exist a shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔).

Remark 2. We make two observations regarding Theorem 1.

(1) Although the result is stated for Riemannian metrics, we note that our arguments work in the
setting of Finsler metrics as well. We also note that the result gives higher dimensional examples
by embedding the surface as a totally geodesic submanifold.

(2) We say that a homeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) is length shrinking if

𝑑𝑔 (𝑓 (𝑎), 𝑓 (𝑏)) ≤ 𝑑𝑔′ (𝑎, 𝑏) for all 𝑎, 𝑏 ∈ 𝑀.

Although the results and arguments are stated for the case where 𝑓 is a diffeomorphism, they can
be adapted to show that there does not exist a length shrinking homeomorphism as well.

We provide a brief description of the proof, with the full proof following in Section 3. Fixing a negatively
curved metric 𝑔, let 𝛾 be a 𝑔-geodesic with a single self-intersection so that it forms a “figure eight.” Sup-
pose that we have constructed a metric 𝑔′ in such a way that for every length shrinking diffeomorphism
𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) we have that 𝛾𝑓 ∶= 𝑓 ○ 𝛾 is homotopic to 𝛾 . Indeed, if 𝛾 is the shortest figure eight
𝑔-geodesic and has multiplicity one in the length spectrum of (𝑀,𝑔), then 𝛾𝑓 is homotopic to 𝛾 provided
𝑔′ is sufficiently close to 𝑔. Furthermore, we suppose that 𝑔′ is constructed so that the following three
properties hold: one loop of 𝛾 gets shorter by some amount 𝜉1 while the other gets longer by some amount
𝜉2 > 𝜉1, the marked length spectrum of 𝑔′ is strictly larger than the marked length spectrum of 𝑔, and 𝛾
is a 𝑔′-geodesic after a reparameterization. We also assume that 𝑔′ has been constructed so that 𝜉2 can be
made arbitrarily close to 𝜉1 without affecting the above properties.

With the above setup, we have the ingredients necessary to prove the result. Suppose for contradiction
there is a shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔), and let 𝑝 be the point of self-intersection for 𝛾 .
Using the shrinking property of 𝑓 , we have

ℓ𝑔 (𝛾) ≤ ℓ𝑔 (𝛾𝑓 ) ≤ ℓ𝑔′ (𝛾) = ℓ𝑔 (𝛾) + 𝜉2 − 𝜉1.

In particular, this implies that |ℓ𝑔 (𝛾𝑓 ) − ℓ𝑔 (𝛾) | ≤ 𝜉2 − 𝜉1. If 𝜉2 is sufficiently close to 𝜉1, then the fact that
closed geodesics which are close in length must be𝐶0-close implies that 𝛾𝑓 is𝐶0-close to 𝛾 (see Lemma 4).
The contradiction now follows from the fact that we can use the (very short) 𝑔-geodesic connecting 𝑓 (𝑝)
to 𝑝 along with 𝛾𝑓 to construct a curve in the same homotopy class as 𝛾 which has 𝑔-length shorter than
𝛾 . Namely, letting 𝜈 be the 𝑔-geodesic connecting 𝑓 (𝑝) to 𝑝 and letting 𝛾𝑖

𝑓
be the 𝑖th loop with 𝑖 = 1, 2, we

have that the concatenated curve 𝛾2𝜈𝛾1
𝑓
𝜈−1 has 𝑔-length less than ℓ𝑔 (𝛾).

The challenge in this proof lies in constructing a metric 𝑔′ satisfying the properties above. While it is
not particularly difficult to construct 𝑔′ such that for each figure eight, we have that one loop contracts,
another loop expands, and the curve is a 𝑔′-geodesic after a reparameterization, it is difficult to ensure
that the marked length spectrum of the new metric is longer than the marked length spectrum of the old
metric. Moreover, even after showing that the marked length spectrum is larger, it is difficult to ensure that
this bound is multiplicative as opposed to additive. By carefully adjusting the shrinking and expanding
parameters and controlling howmuch the metric expands outside a small neighborhood around the figure-
eight, we show in Section 3.2 that all of the desired properties hold for this new metric 𝑔′.
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The organization of the paper is as follows. In Section 2, we recall some basic facts needed throughout. In
Section 3.1, we give a more detailed outline of the proof. In Section 3.2, we construct the metrics satisfying
all of the properties outlined above.

Acknowledgements. We would like to acknowledge the anonymous referee for many useful comments,
as well as for pointing out a gap in the proof of Theorem 1.

2. Preliminaries

Throughout, let 𝑀 be a closed, connected, orientable surface, let 𝑔 be a negatively curved Riemannian
metric on 𝑀 , and let 𝑝 ∶ 𝑇𝑀 → 𝑀 be the footprint map. All geodesics are parameterized with respect to
arclength unless otherwise stated. The connection map is given by

𝐾 ∶ 𝑇𝑆𝑀 → 𝑇𝑀, 𝐾(𝑥,𝑣) (𝜉) ∶=
𝐷𝑝○𝑉𝑉

𝑑𝑡
(0),

where𝑉 is a curve on 𝑆𝑀 satisfying𝑉 (0) = (𝑥, 𝑣) and ¤𝑉 (0) = 𝜉 . One can decompose the tangent space of
the tangent bundle at (𝑥, 𝑣) ∈ 𝑆𝑀 using the connection and footprint maps:

𝑇(𝑥,𝑣)𝑆𝑀 = ker(𝐾(𝑥,𝑣) ) ⊕ ker(𝐷 (𝑥,𝑣)𝑝) .

The Sasaki metric 𝑔𝑆𝑀 is the metric on 𝑇𝑇𝑀 induced by 𝑔 which makes these spaces orthogonal:

(𝑔𝑆𝑀 ) (𝑥,𝑣) (𝜉, 𝜉 ′) ∶= 𝑔𝑥 (𝐷 (𝑥,𝑣)𝑝 (𝜉), 𝐷 (𝑥,𝑣)𝑝 (𝜉 ′)) + 𝑔𝑥 (𝐾(𝑥,𝑣) (𝜉), 𝐾(𝑥,𝑣) (𝜉 ′)) .

Let 𝛾, 𝜂 be two smooth 𝑔-geodesics on𝑀 . The𝐶1-distance between them is given by 𝑑𝐶1 (𝛾, 𝜂) ∶= 𝑑𝑆𝑀
𝐶0 (𝛾, 𝜂),

where 𝑑𝑆𝑀 is the metric induced by the Sasaki metric and 𝛾 (𝑡) ∶= (𝛾 (𝑡), ¤𝛾 (𝑡)).

The following three lemmas are standard, and will be used throughout. The first lemma is a standard result
in the study of geodesics in tubular neighborhoods. We sketch a proof of it for convenience.

Lemma 3. Let (𝑀,𝑔) be as above and let 𝛾 ∶ [0,𝑇 ] → 𝑀 be a closed 𝑔-geodesic. For every 𝜀 > 0, there
is an open set neighborhood 𝑈𝜀 ⊇ Im(𝛾) such that if 𝜂 | [0,𝑇 ] is a 𝑔-geodesic segment with Im(𝜂) ⊆ 𝑈𝜀 , then
𝑑𝐶1 (𝛾, 𝜂 | [0,𝑇 ]) < 𝜀.

Proof. Fix a point 𝑡 ∈ [0,𝑇 ] and consider Fermi coordinates around 𝛾 (𝑡). In particular, we can take a
neighborhood 𝑈𝑡,𝜀 around 𝛾 (𝑡) to be a box centered along 𝛾 in these Fermi coordinates. Assume that this
box is sufficiently small so that it satisfies the bipoint uniqueness condition, in the sense that for any two
points 𝑝, 𝑞 ∈ 𝑈𝜀 which are sufficiently close, we have that there is a unique minimal geodesic segment
joining 𝑝 and 𝑞 contained in𝑈𝜀 . Note that shrinking the width of this box does not change this property.

By shrinking the width of this box, we see that any 𝑔-geodesic segment which crosses the length has
endpoints 𝐶0-close to 𝛾 . Using the lemma in [1, Section 4], there is a width of the box satisfying the
property that any 𝑔-geodesic segment which crosses the length must be 𝐶1-close to 𝛾 in this box. Using
compactness of the interval, we can cover Im(𝛾) by finitely many 𝑈𝑡,𝜀 , and taking the union gives us our
neighborhood𝑈𝜀 . Moreover, shrinking the widths of these boxes further if needed, we may assume that if
𝜂 crosses the lengths of one of the boxes, then the entirety of 𝜂 is𝐶1-close to 𝛾 . Finally, if 𝜂 is a 𝑔-geodesic
satisfying Im(𝜂 | [0,𝑇 ]) ⊆ 𝑈𝜀 , then by construction it is 𝐶1-close to 𝛾 . □

The next lemma is a standard result which allows us to relate lengths and the 𝐶0-metric. For details, we
point the reader to the proof of Theorem 2 in [9, Chapter 2].

Lemma 4. Let (𝑀,𝑔) be as above, let 𝑔 be a metric on𝑀 , and let 𝛾 be a closed 𝑔-geodesic. For all 𝜀 > 0, there
is a 𝛿 > 0 such that if 𝜂 is a closed curve homotopic to 𝛾 satisfying |ℓ𝑔 (𝜂) − ℓ𝑔 (𝛾) | < 𝛿 , then 𝑑𝐶0 (𝜂,𝛾) < 𝜀.
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Finally, given a 𝑔-geodesic 𝛾 , we are able to smoothly perturb the metric 𝑔 to get a new metric 𝑔𝑠 , where a
reparameterization of 𝛾 is still a 𝑔𝑠-geodesic.

Lemma 5. Let 𝑀 be a closed, connected, oriented surface, let 𝑔 be a negatively curved metric on 𝑀 , let 𝛾 be
a 𝑔-geodesic on 𝑀 , and let 𝑝 ∈ 𝛾 . There exists an open neighborhood 𝑈 of 𝑝 such that for every 𝑠 with |𝑠 | < 1,
every open neighborhood 𝑉 of 𝑝 with 𝑉 ⊆ 𝑈 , and every closed neighborhood 𝐴 of 𝑝 with 𝐴 ⊆ 𝑉 , we can find
a smooth bump function 𝜅𝑠 ∶ 𝑀 → R satisfying

● (𝜅𝑠) |𝐴 ≡ (1 + 𝑠)2,

● (𝜅𝑠) |𝑉 𝑐 ≡ 1, where 𝑉 𝑐 is the complement of 𝑉 ,

● 𝑔𝑠 ∶= 𝜅𝑠𝑔 defines a newmetric with the property that𝛾 defines a𝑔𝑠-geodesic after a reparameterization.

We omit the proof, as it is an easy calculation in Fermi coordinates.

Remark 6. As we vary 𝑠 and 𝑉 in the last lemma, we get smooth perturbations of 𝑔. Negative curvature
is an open condition, so if we fix the neighborhood𝑈 coming from the claim, then there is an 𝑠0 so that if
|𝑠 | ≤ 𝑠0, then 𝑔𝑠 is also a negatively curved metric. Thus, there is an 𝑠0 > 0 so that if |𝑠 | ≤ 𝑠0 and 𝑉 ⊆ 𝑈 ,
then 𝑔𝑠 is a negatively curved metric.

3. Proof of Theorem 1

Throughout, let 𝑀 be a closed, connected, oriented surface and let 𝑔 be a negatively curved metric on
𝑀 . For notational convenience, let MLS(𝑔) ∶= MLS𝑔. As noted in [4, Theorem 4.2.4], there is at least one
shortest 𝑔-geodesic with a self-intersection, and such a 𝑔-geodesic will have exactly one self-intersection.
Let F denote the collection of shortest 𝑔-geodesics with a single self-intersection. Notice that there are
finitely many of them, and they all have the same length. For each 𝛾 ∈ F , denote the shorter loop by 𝛾1
and the longer loop by 𝛾2, so ℓ𝑔 (𝛾1) ≤ ℓ𝑔 (𝛾2). Let 𝛾short ∈ F be such that ℓ𝑔 (𝛾1short) ≤ ℓ𝑔 (𝛾

1) for all 𝛾 ∈ F . In
other words, 𝛾short has the shortest first loop.

3.1. Outline of the Proof. The goal is to perturb our metric 𝑔 so that we get a new metric 𝑔′ which is
𝐶∞-close to 𝑔 and such that the following holds:

(1) for every shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) and 𝛾 ∈ F , we have that there is an 𝜂 ∈ F
so that 𝑓 ○ 𝛾 is homotopic to 𝜂,

(2) each 𝛾 ∈ F is a 𝑔′-geodesic after reparameterization,

(3) there are constants 0 < 𝜉1 < 𝜉2 so that for every 𝛾 ∈ F we have

ℓ𝑔′ (𝛾1) = ℓ𝑔 (𝛾1) − 𝜉1 and ℓ𝑔′ (𝛾2) = ℓ𝑔 (𝛾2) + 𝜉2,

(4) MLS(𝑔′) > (1 + 𝜀)MLS(𝑔).

Our method of constructing these metrics will also ensure that we are able to further perturb 𝑔 so that 𝜉2
is arbitrarily close to 𝜉1 and the above properties hold.

Given a shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔), we can use property (1) to find an 𝜂 ∈ F such that
𝛾𝑓 ∶= 𝑓 ○ 𝛾short is homotopic to 𝜂. Notice that we have

ℓ𝑔 (𝜂) = ℓ𝑔 (𝛾short) ≤ ℓ𝑔 (𝛾𝑓 ) ≤ ℓ𝑔′ (𝛾short) = ℓ𝑔 (𝜂) + 𝜉2 − 𝜉1.

Using Lemma 4, wemay assume that 𝜉2 is close enough to 𝜉1 so that if𝑞 is the point of self-intersection for𝜂
and 𝑝 is the point of self-intersection for𝛾𝑓 , then for any shrinking diffeomorphismwe have𝑑𝑔 (𝑞, 𝑝) < 𝜉1/2.
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Assuming we can construct a metric 𝑔′ close to 𝑔 with the above properties, then we have all of the in-
gredients to show that there cannot be a shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔), as described in
Section 1.

Proof of Theorem 1. Assume for contradiction that 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) is shrinking. Let 𝛾𝑓 , 𝜂, 𝑝 and 𝑞 be
as above. Since 𝛾𝑓 is homotopic to 𝜂, we must have that 𝛾1

𝑓
is homotopic to either 𝜂1 or 𝜂2. Without loss of

generality, assume it is homotopic to 𝜂1. Let 𝜈 be the unique 𝑔-geodesic connecting 𝑝 and 𝑞. By the above
discussion, we have ℓ𝑔 (𝜈) < 𝜉1/2. Concatenating 𝛾1𝑓 with 𝜈 , 𝜈−1, and 𝜂2, we get a new figure eight curve
in the same free homotopy class as 𝜂. Using the length shrinking property, notice that the first loop has
length

ℓ𝑔 (𝜈−1𝛾1𝑓 𝜈) < 𝜉1 + ℓ𝑔 (𝛾
1
𝑓
) ≤ 𝜉1 + ℓ𝑔′ (𝛾1short) = ℓ𝑔 (𝛾

1
short) ≤ ℓ𝑔 (𝜂

1) .
Thus the curve 𝜂2𝜈−1𝛾1

𝑓
𝜈 has 𝑔-length smaller than 𝜂, which contradicts the fact that 𝜂 is the curve with

the shortest length in its free homotopy class. □

Themain difficulty is constructing the perturbation of𝑔 so that the above properties hold. We now describe
the intuition behind the construction. Given a curve with one intersection 𝛾 ∈ F , we can use Lemma 5
to construct a new metric which is 𝐶∞-close to the original metric and which makes one loop shorter
and the other loop longer. We refer to the neighborhood which shrinks a loop of 𝛾 as the “shrinking
neighborhood” of 𝛾 , and the neighborhood which expands a loop of 𝛾 as the “expanding neighborhood” of
𝛾 . We also construct the metric in such a way that, outside of a small neighborhood𝑊 of 𝛾 , we have that
the new metric expands the lengths of curves uniformly compared to the original metric. In this setup, it
is clear that any curve which stays outside of𝑊 must get longer, so we have an inequality on the marked
length spectrum as long as the geodesic does not cross the shrinking neighborhood.

The only problem now is if a geodesic intersects the shrinking neighborhood for 𝛾 , so that a portion of
it gets shorter. By making𝑊 smaller and using Lemma 3, we can ensure that either this geodesic has
to leave the neighborhood 𝑊 , and thus get longer by some amount, or it has to cross the expanding
neighborhood for 𝛾 . In either case, after carefully adjusting parameters to ensure that every geodesic gets
uniformly longer, we have an inequality on the marked length spectrum and we have the constants 𝜉1 and
𝜉2 described above. We will see in Claims 10 and 11 that more care has to be taken for the multiplicative
bound, but this idea is sufficient for getting an additive bound (see Claim 8).

By further adjusting the parameters, we can guarantee that the perturbed metric 𝑔′ is 𝐶∞-close to 𝑔, and
𝜉2 is as close to 𝜉1 as we wish. We will show in Claim 7 that as long as 𝑔′ and 𝑔 are sufficiently close, then
given any shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) and any 𝛾 ∈ F , we have that 𝑓 ○ 𝛾 is homotopic
to some 𝜂 ∈ F . As long as there is only one curve in F , we will see that we can adjust the parameters so
that this metric can be used to prove Theorem 1.

Finally, we will observe that if F has more than one curve, then we only need to somewhat modify the
above construction. This modification, along with the above argument, completes the proof of Theorem 1.

3.2. Construction of the Metrics. We start by finding a family of metrics which satisfy property (1)
from above.

Claim 7. There exists a 𝐶∞ neighborhood 𝑈 of 𝑔 so that if 𝑔′ ∈ 𝑈 , then for every shrinking diffeomorphism
𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) and every 𝛾 ∈ F we have that 𝑓 ○ 𝛾 is homotopic to some 𝜂 ∈ F .

Proof. For 𝑇 ∈ R, let
𝑃𝑔 (𝑇 ) = {𝜂 | 𝜂 is a 𝑔-geodesic and ℓ𝑔 (𝜂) ≤ 𝑇 }.

We break this up into a series of steps.
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Step 1: Let𝜂0 be a𝑔-geodesic of shortest length and let𝑇0 = ℓ𝑔 (𝜂0). We claim that as long as𝑔′ is sufficiently
𝐶∞-close to 𝑔, then 𝑓 preserves 𝑃𝑔 (𝑇0) up to permutation. In other words, if 𝜂 ∈ 𝑃𝑔 (𝑇0) and 𝑓 ○𝜂 is
homotopic to 𝜂′, then 𝜂′ ∈ 𝑃𝑔 (𝑇0).

Since 𝑓 is a shrinking diffeomorphism, we have

ℓ𝑔 (𝜂′) ≤ ℓ𝑔 (𝑓 ○ 𝜂) ≤ ℓ𝑔′ (𝜂) .
Let 𝛿 > 0 be such that 𝑃𝑔 (𝑇0) ⊊ 𝑃𝑔 (𝑇0 + 𝛿). Notice there are finitely many geodesics in 𝑃𝑔 (𝑇0 + 𝛿),
so if we let

Λ ∶= min{ℓ𝑔 (𝜂′) | 𝜂′ ∈ 𝑃𝑔 (𝑇0 + 𝛿) ∖ 𝑃𝑔 (𝑇0)},
then by taking 𝑔′ sufficiently 𝐶∞-close to 𝑔 we can guarantee that for every shrinking diffeomor-
phism we have

ℓ𝑔 (𝜂′) ≤ ℓ𝑔 (𝑓 ○ 𝜂) ≤ ℓ𝑔′ (𝜂) < Λ.
Thus we have that ℓ𝑔 (𝜂′) = 𝑇0 and so 𝑓 preserves 𝑃𝑔 (𝑇0) up to permutation.

Step 2: Let 𝜂1 be a 𝑔-geodesic of second shortest length and let𝑇1 = ℓ𝑔 (𝜂1). Repeating the argument above,
by ensuring that𝑔′ is sufficiently close to𝑔we have that every shrinking diffeomorphism preserves
𝑃𝑔 (𝑇1) up to permutation. In particular, intersecting the neighborhood from this step and the last
step, we see that every shrinking diffeomorphismmust preserve 𝑃𝑔 (𝑇1)∖𝑃𝑔 (𝑇0) up to permutation.

Step 3: Repeating step 2 until we reach ℓ𝑔 (𝛾) for 𝛾 ∈ F , we have that for all sufficiently close 𝑔′ if
𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) is a shrinking diffeomorphism and 𝜂 is homotopic to 𝑓 ○𝛾 , then ℓ𝑔 (𝜂) = ℓ𝑔 (𝛾).
Next, notice that for every shrinking diffeomorphism 𝑓 ∶ (𝑀,𝑔′) → (𝑀,𝑔) we have

ℓ𝑔 (𝛾) = ℓ𝑔 (𝜂) ≤ ℓ𝑔 (𝑓 ○ 𝛾) ≤ ℓ𝑔′ (𝛾) .
By making 𝑔′ closer to 𝑔 if needed, we can ensure that |ℓ𝑔 (𝑓 ○𝛾)− ℓ𝑔 (𝜂) | is small for every shrinking
diffeomorphism. Using Lemma 4, this forces 𝑓 ○ 𝛾 to be 𝐶0 close to 𝜂. Noting that 𝑓 ○ 𝛾 has one
self-intersection, we are able to ensure that 𝜂 has a self-intersection by making 𝑔′ even closer to 𝑔
if needed, thus 𝜂 ∈ F . □

We now describe the procedure for modifying the metric in the case where F has only one curve, say 𝛾 .
Taking two points 𝑝1 ∈ 𝛾1 and 𝑝2 ∈ 𝛾2, let𝑈1 and𝑈2 be open neighborhoods of 𝑝1 and 𝑝2 such that Lemma 5
applies. Let𝑊 i and𝑊 o be open neighborhoods of 𝛾 with 𝜁 ∶= 𝑑 (𝜕𝑊 i, 𝜕𝑊 o) > 0, and let 𝐴 be a closed set
satisfying Im(𝛾) ⊊ 𝐴 ⊊𝑊 i ⊊𝑊 o. Consider the following functions.

● For 𝜀1 > 0 and 𝜌1 > 0 such that 𝐵𝜌1 (𝑝1) ⊆ 𝑈1, let 𝜅−𝜀1 be the bump function coming from Lemma 5.
Here,𝑈1 corresponds to𝑈 in the lemma, and 𝐵𝜌1 (𝑝1) corresponds to 𝑉 in the lemma, and we take
some closed box in Fermi coordinates for the neighborhood 𝐴 in the lemma.

● For 𝜀2 > 0 and 𝜌2 > 0 such that 𝐵𝜌2 (𝑝2) ⊆ 𝑈2, let 𝜅𝜀2 be the bump function coming from Lemma 5.
As above, 𝑈2 corresponds to 𝑈 in the lemma, and 𝐵𝜌2 (𝑝2) corresponds to 𝑉 in the lemma, and we
take some closed box in Fermi coordinates for the neighborhood 𝐴 in the lemma.

● For 𝜀3 > 0, let 𝜅𝜀3 be a bump function on𝑀 , where

(𝜅𝜀3) | (𝑊 i )𝑐 ≡ (1 + 𝜀3)2 and (𝜅𝜀3) |𝐴 ≡ 1.

We define a family of metrics by setting

𝑔𝑊 i,𝑊 o,𝐴,𝜌1,𝜌2,𝜀1,𝜀2,𝜀3 ∶= 𝜅𝜀3𝜅𝜀2𝜅−𝜀1𝑔.

Notice that 𝑔 does not really depend on𝑊 o beyond the fact that𝑊 i ⊆ 𝑊 o and 𝑑 (𝜕𝑊 i, 𝜕𝑊 o) > 0, but we
include it for convenience, as this will become a parameter that we will vary in the future. Furthermore,
we note that we will only consider those𝑊 o which come from shrinking the widths of the boxes given
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in Lemma 3, and thus we may assume that𝑊 o satisfies the bipoint uniqueness condition. This gives us
a smooth family of metrics parameterized by𝑊 i,𝑊 o, 𝐴, 𝜌𝑖 , and 𝜀 𝑗 which all satisfy property 2. At this
point, it is easy to adjust the constants to get property 3, but a more careful analysis is needed to guarantee
property 4. We explore this now.

We start by fixing some𝑊 i ⊊𝑊 o open and some 𝐴 closed satisfying the above criteria, along with some
𝜌1, 𝜌2 > 0. As noted in Remark 6, there exists uniform upper bounds 𝑡1 > 0 so that for all 𝜀 𝑗 satisfying 𝜀 𝑗 < 𝑡1
we have that the metrics 𝑔𝑊 i,𝑊 o,𝐴,𝜌1,𝜌2,𝜀1,𝜀2,𝜀3 are negatively curved. We can also choose 𝑡1 sufficiently small
so that we can apply Claim 7 with all metrics satisfying this condition. Note that we are free to shrink the
parameters𝑊 i,𝑊 o 𝐴, and 𝜌𝑖 as we wish, and this property will still hold. From now on, we only consider
𝜀 𝑗 satisfying 𝜀 𝑗 < 𝑡1.

𝑝1 𝑝2

Figure 1. The orange dotted lines represent the boundary of the neighborhood𝑊 o, the
blue dotted lines represent the boundary of the neighborhood𝑊 i, the red lines represent
the boundary of the closed neighborhood𝐴, and the green disks represent the sets 𝐵𝜌𝑖 (𝑝𝑖).

Since we no longer need to adjust 𝜌1, 𝜌2, and 𝜀3, we fix them once and for all. All modifications to𝑊 i and𝐴
will be done relative to𝑊 o, and so we omit these for notational convenience. Thus, we will now consider
the family of metrics 𝑔𝑊 o,𝜀1,𝜀2 where the parameters satisfy the properties above.

The goal is to now study how to modify the parameters so that we have MLS(𝑔𝑊 o,𝜀1,𝜀2) > (1 + 𝜀)MLS(𝑔)
for some 𝜀 > 0. To start, let 𝑂̃𝜀1 ∶= supp(𝜅−𝜀1 − 1), 𝑂̃𝜀2 ∶= supp(𝜅𝜀2 − 1),

𝜉1 ∶=
∫
𝛾−1 (𝑂̃𝜀1 )

∥ ¤𝛾 (𝑡)∥𝑑𝑡 −
∫
𝛾−1 (𝑂̃𝜀1 )

∥ ¤𝛾 (𝑡)∥𝑊 o,𝜀1,𝜀2,𝜀3𝑑𝑡,

and
𝜉2 ∶=

∫
𝛾−1 (𝑂̃𝜀2 )

∥ ¤𝛾 (𝑡)∥𝑊 o,𝜀1,𝜀2,𝜀3𝑑𝑡 −
∫
𝛾−1 (𝑂̃𝜀2 )

∥ ¤𝛾 (𝑡)∥𝑑𝑡 .

The quantities 𝜉1 and 𝜉2 will be used to measure the expansion and contraction of a geodesic segment
relative to 𝛾 . Observe that since𝑊 o must contain the curve 𝛾 , the quantities 𝜉1 and 𝜉2 are not influenced
by𝑊 o. Finally, let 𝐿 ∶= ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝛾).

Observe that if we assume that 𝜀1 is sufficiently small relative to 𝜀3, then the only way a curve can possibly
get shorter in the 𝑔𝑊 o,𝜀1,𝜀2-metric compared to the 𝑔metric is if it intersects the neighborhood 𝐵𝜌1 (𝑝1)∩𝑊 i.
We now refer to this open set as the “shrinking neighborhood.” Let 𝑡2 be such that for 𝜀1 < 𝑡2 the above
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holds, and let 𝜇 = 𝜀3 − 𝜀1. Notice that if a curve 𝜂 intersects𝑊 i and leaves𝑊 o, then it must cross𝑊 o ∖𝑊 i

and hence get longer by at least 𝜁 𝜇, where again 𝜁 = 𝑑𝑔 (𝜕𝑊 i, 𝜕𝑊 o). This leads us to our first observation,
which is an additive bound on the marked length spectrum.

Claim 8. Assume that 𝜀1, 𝜀2 < 𝑡2. There is 𝑡3 > 0 and an open set𝑊1 ⊇ Im(𝛾) such that if𝑊 o ⊆𝑊1, 𝜀1 < 𝑡3,
and 𝜉1 +𝑠 < 𝜉2 for some 𝑠 depending on𝑊 o, then there is a uniform 𝜆 > 0 so that MLS(𝑔𝑊 o,𝜀1,𝜀2) > MLS(𝑔) +𝜆.

Proof. Let 𝜂 be a closed 𝑔𝑊 o,𝜀1,𝜀2-geodesic. If 𝜂 does not intersect𝑊 i, then it is clear that it gets longer by
some factor related to its length and 𝜇. Taking the minimum over the lengths of all closed geodesics gives
us a uniform lower bound 𝜆1 so that

(1) ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) > ℓ𝑔 (𝜂) + 𝜆1.

Next, suppose that Im(𝜂) intersects𝑊 i. If the curve is not entirely contained within𝑊 o, then it must get
longer by at least 2𝜁 𝜇, as it has to leave and re-enter𝑊 o. If it does not intersect the shrinking neighborhood,
then this gives us the lower bound

(2) ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) > ℓ𝑔 (𝜂) + 2𝜁 𝜇.

Finally, suppose that Im(𝜂) intersects the shrinking neighborhood 𝐵𝜌1 (𝑝1) ∩𝑊 o. Notice that if 𝜂 intersects
the shrinking neighborhood, then we have that the curve must get shorter by at least 𝜉1 + 𝛿1, where 𝛿1 is
some uniform constant depending on𝑊 o that tends to zero as𝑊 o gets smaller. The parameter 𝛿1 arises
from the fact that we do not have any estimates on how long 𝜂 spends in the shrinking neighborhood – it
could possibly spend more time than 𝛾 , and hence shrink more than 𝛾 does. By compactness of the unit
tangent bundle, there is a curve that spends the most amount of time in this neighborhood, and so this 𝛿1 is
realized through this curve. Furthermore, the amount of time that it spends in the shrinking neighborhood
is clearly controlled by𝑊 o, and hence making𝑊 o smaller will make 𝛿1 smaller.

After adjusting𝑊 o and using Lemma 3, we see that once 𝜂 intersects the shrinking neighborhood, there
are two options: either 𝜂 must stay𝐶1-close to𝛾 until it crosses 𝐵𝜌2 (𝑝2)∩𝑊 o, and hence 𝜂 will get longer by
at least 𝜉2 −𝛿2, where 𝛿2 depends on𝑊 o and tends to zero as𝑊 o gets smaller, or 𝜂 must leave and re-enter
𝑊 o, and hence 𝜂 will get longer by at least 2𝜁 𝜇. In either case, if 𝜂 crosses the shrinking neighborhood𝑚
times with𝑚 ≥ 1, then setting 𝑠 ∶= 𝛿1 + 𝛿2 we have the bound

(3) ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) > ℓ𝑔 (𝜂) +𝑚 ⋅min{(𝜉2 − 𝜉1 − 𝑠), 2𝜁 𝜇 − (𝜉1 + 𝛿1)}.

Note that this bound also accounts for the case where 𝜂 is entirely contained within𝑊 i, and this exhausts
the last possibility for 𝜂. Ensuring 𝜀1 and𝑊 o are small enough, we have that the bounds in (1), (2), and (3)
are all positive. Letting 𝜆 be the minimum of these bounds yields the desired result. □

Remark 9. If we replace the multiplicative bound in Theorem 1 with an additive bound, then we now
have the ingredients to prove this modified version of the theorem via the argument outlined in Section
3.1.

The previous argument suggests that a multiplicative bound is possible, and we make this rigorous with
the following.

Claim 10. Assume that 𝜀1, 𝜀2 < 𝑡3 and𝑊 o ⊆𝑊1. There is a 𝑡4 > 0 and an open set𝑊2 with𝑊1 ⊇𝑊2 ⊇ Im(𝛾)
such that if𝑊 o ⊆𝑊2, 𝜀1 < 𝑡4, and 𝜉1 + 𝑠′′ < 𝜉2 for some 𝑠 depending on𝑊 o, then the following hold.

(a) There is a uniform 𝜀′′ > 0 so that if 𝜂 is a closed 𝑔𝑊 o,𝜀1,𝜀2-geodesic with ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) ≥ 𝑁𝐿 and 𝑁 ≥ 1, then

ℓ𝑔𝑊 o,𝜀1,𝜀2

(
𝜂 | [0,𝑁𝐿]

)
> ℓ𝑔

(
𝜂 | [0,𝑁𝐿]

)
+ 𝑁𝜀′′.

8



(b) There is a uniform 𝜀′ > 0 and an 𝑁0 > 0 so that for 𝑁 ≥ 𝑁0, if 𝜂 is a closed 𝑔𝑊 o,𝜀1,𝜀2-geodesic satisfying

𝑁𝐿 ≤ ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) < (𝑁 + 1)𝐿,

then
ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂) > ℓ𝑔 (𝜂) + 𝑁𝜀′.

Proof. We first prove the case 𝑁 = 1 for (a). Note that the argument is similar to that of Claim 8. Indeed,
replacing𝜂 with𝜂 | [0,𝐿] and 𝜆1 with 𝜇𝐿, the bounds in (1) and (2) follow. We note that, after adjusting𝑊 o and
using Lemma 3, we only need to consider what happens 𝜂 | [0,𝐿] intersects a shrinking neighborhood. Some
care needs to be taken here as opposed to Claim 8, since 𝜂 | [0,𝐿] can intersect the shrinking neighborhood
an additional time in this scenario. However, as we will see, additional intersections of the shrinking
neighborhood can only occur if the curve 𝜂 | [0,𝐿] leaves𝑊 o inbetween, and this allows for us to let 𝜉2 be as
close to 𝜉1 as we wish.

We break up the argument into cases assuming that 𝜂 | [0,𝐿] intersects the shrinking neighborhood.

Case 1: If 𝜂 | [0,𝐿] does not start nor end in the shrinking neighborhood, then either it is completely con-
tained in𝑊 o or it leaves𝑊 o. We consider these separately.

Subcase 1: If 𝜂 | [0,𝐿] stays entirely in𝑊 o, then, after appropriately adjusting𝑊 o, it must be 𝐶1-
close to 𝛾 , and hence it must cross𝑊 o ∩ 𝐵𝜌2 (𝑝2). In this case, we see that the bound in
(3) applies with𝑚 = 1.

Subcase 2: If𝜂 | [0,𝐿] does not stay entirely in𝑊 o, then it is possible that𝜂 | [0,𝐿] intersects the shrink-
ing neighborhood more than once. In particular, we see that it must leave𝑊 o inbe-
tween each intersection of the shrinking neighborhood, as𝜂 | [0,𝐿] is not allowed to “turn
around” inside of𝑊 o due to the bipoint uniqueness condition. We also note that 𝜂 | [0,𝐿]
could intersect the shrinking neighborhood one last time before reaching its endpoint.
Assuming that it intersects the shrinking neighborhood𝑚 times, with𝑚 ≥ 1, we over-
compensate for this additional intersection and consider the lower bound

(4) ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂 | [0,𝐿]) > ℓ𝑔 (𝜂 | [0,𝐿]) +𝑚 ⋅ [2𝜁 𝜇 − (𝜉1 + 𝛿1)] − (𝜉1 + 𝛿1).

Finally, it is also possible that, after intersecting the shrinking neighborhood𝑚 times,
𝜂 | [0,𝐿] leaves𝑊 o and does not return. This yields the lower bound

(5) ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂 | [0,𝐿]) > ℓ𝑔 (𝜂 | [0,𝐿]) + (𝑚 − 1) ⋅ [2𝜁 𝜇 − (𝜉1 + 𝛿1)] + 𝜁 𝜇 − (𝜉1 + 𝛿1) .

Note that this bound also accounts for 𝜂 | [0,𝐿] starting outside of𝑊 o and entering the
set in order to intersect with the shrinking neighborhood.

Case 2: If 𝜂 | [0,𝐿] either starts or ends in the shrinking neighborhood (but not both), then the same sort of
arguments as in the previous case apply, and we omit them.

Case 3: If 𝜂 | [0,𝐿] starts and ends in the shrinking neighborhood, then we see that either 𝜂 [0,𝐿] stays entirely
in𝑊 o or it leaves. We list these subcases separately.

Subcase 1: If 𝜂 | [0,𝐿] stays entirely in𝑊 o, then Lemma 3, implies that we have 𝜂 | [0,𝐿] is𝐶1-close to
𝛾 , hence it must cross the expanding neighborhood as well. Using compactness of the
unit tangent bundle again, we see that there is an 𝑠′ depending on𝑊 o so that

(6) ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂 | [0,𝐿]) > ℓ𝑔 (𝜂 | [0,𝐿]) + (𝜉2 − 𝜉1 − 𝑠′).

Note that this 𝑠′ does not necessarily agree with the 𝑠 from Claim 8, as it arises from
considering the two intersections with the shrinking neighborhood. Still, this 𝑠′ de-
pends on𝑊 o, and it tends to zero as𝑊 o gets smaller.
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Subcase 2: If 𝜂 | [0,𝐿] does not stay entirely in𝑊 o, then the same argument in Subcase 2 of Case 1
applies, and thus we have the same bounds.

Adjusting 𝜀1 and𝑊 o appropriately, we have that the bounds in (1), (2), (3), (4), (5), and (6) are all positive.
We set 𝜀′′ to be the minimum of the quantities on the right, and we set 𝑠′′ to be the maximum between 𝑠
and 𝑠′. For 𝑁 > 1, we can apply the argument above on each segment 𝜂 | [ (𝑁−1)𝐿,𝑁𝐿] , here using the fact
that the constants 𝜀′′ and 𝑠′′ are independent from the choice of geodesic. This finishes the proof of (a).

We now prove (b). Suppose that 𝑁𝐿 ≤ ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) < (𝑁 + 1)𝐿 for some 𝑁 ≥ 1. Let 𝑆 ∶= ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂). By (a),
we have that ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂 | [0,𝑁𝐿]) > ℓ𝑔 (𝜂 | [0,𝑁𝐿])+𝑁𝜀′′. Notice that, at worst, we have that 𝜂 | [𝑁𝐿,𝑆 ] remains en-
tirely in the shrinking neighborhood, so there is some𝜃 = 𝜃 (𝐿, 𝜀1,𝑊 o) so that ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂) > ℓ𝑔 (𝜂) + 𝑁𝜀′′ − 𝜃 .
Note that 𝜃 tends to 0 as 𝜀1 tends to zero and is independent of 𝑁 , so in particular we can take a uniform
lower bound 𝑁𝜀′′ − 𝜃0 which applies for all 𝜀1 < 𝑡4 and all𝑊 o ⊆𝑊2. Since 𝜀′′ and 𝜃0 are now fixed, take
𝑁0 > 𝜃0/𝜀′′ and let 𝜀′ ∶= 1 − 𝑁0𝜀

′′/(𝑁0 + 1). Since 𝑁𝜀′ ≤ (𝑁 − 𝑁0)𝜀′′ by construction, we have that

ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) > ℓ𝑔 (𝜂) + 𝑁𝜀′′ − 𝜃0 > ℓ𝑔 (𝜂) + (𝑁 − 𝑁0)𝜀′′ + 𝑁0𝜀

′′ − 𝜃0
> ℓ𝑔 (𝜂) + 𝑁𝜀′,

as desired. □

We now have the ingredients to prove the multiplicative bound on the marked length spectrum.

Claim 11. Assume that 𝜀1, 𝜀2 < 𝑡4 and𝑊 o ⊆𝑊4. If 𝜉2 > 𝜉1 + 𝑠 for some 𝑠 depending on𝑊 o, then there is an
𝜀 > 0 so that

MLS(𝑔𝑊 o,𝜀1,𝜀2) > (1 + 𝜀)MLS(𝑔).

Proof. Let 𝜀′, 𝜆 𝑁0,and 𝐿 be from Claims 8 and 10 (b). Let 𝜀 > 0 be such that 𝜀′ > 2𝐿𝜀 and 𝜆 > 𝑁0𝐿𝜀. Let 𝜂
be a closed 𝑔𝑊 o,𝜀1,𝜀2-geodesic. If ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂) ∈ [𝑁𝐿, (𝑁 + 1)𝐿) for some 𝑁 ≥ 𝑁0, then we have

ℓ𝑔𝑊 o,𝜀1,𝜀2
(𝜂) > 𝑁𝜀′ + ℓ𝑔 (𝜂) > 𝑁𝐿

(
𝑁 + 1
𝑁

)
𝜀 + ℓ𝑔 (𝜂)

> (1 + 𝜀)ℓ𝑔 (𝜂).
Next, notice that the argument in Claim 8 implies that 𝑁0𝐿 ≥ ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂) > ℓ𝑔 (𝜂) + 𝜆. Thus, if we have
ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂) ≤ 𝑁0𝐿, then
ℓ𝑔𝑊 o,𝜀1,𝜀2

(𝜂)
ℓ𝑔 (𝜂)

> 1 + 𝜆

ℓ𝑔 (𝜂)
> 1 + 𝜆

𝑁0𝐿
> 1 + 𝜀.

The result follows. □

Remark 12. Fixing 𝜀1 above, we can let 𝜉2 be arbitrarily close to 𝜉1 by adjusting𝑊 o. Recall that this is
necessary for the proof outlined in Sections 1 and 3.1.

As described in Section 3.1, this gives us the ingredients to prove the theorem provided there is only one
curve in F . If there is more than one curve in F , then we apply the same construction in a neighborhood
of each 𝛾 ∈ F . If the curves do not intersect, the results and arguments are almost the same provided we
choose the parameters for the curves so that 𝜉1 and 𝜉2 are uniform among all curves. Note that 𝜀3 will
be chosen uniformly for all curves, and the neighborhoods 𝐴,𝑊 i and𝑊 o will be the union of all of the
corresponding neighborhoods for each curve. The only adjustment that needs to be made in the case of
intersecting curves is that the shrinking and expanding neighborhoods must be chosen so that they do not
overlap with any shrinking and expanding neighborhood, and are away from the points of intersection.
These adjustments, along with the argument in Section 3.1, prove Theorem 1.
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