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Abstract

The existence of exotic differentiable structures on high dimensional spheres
was one of most important discoveries in topology. Another surprising and
deep discovery was the non triviality of the stable pseudoisotopy space P(Sl)
of the circle S*; specifically here the exotic objects are non null-homotopic
maps S¥ — "P(Sl), for certain values of k. In the last few years the authors
have used these exotic objects to obtain results in geometry and dynam-
ics. The results in geometry concern the topology of the space of negatively
curved metrics, and in dynamics the topology of the space of Anosov diffeo-
morphisms. In this paper we survey these results.

1 The space of negatively curved metrics.

Let M be a closed smooth manifold. We will say that a Riemannian metric on M
is hyperbolic if all sectional curvatures are equal to —1. We denote by MET (M)
the space of all smooth Riemannian metrics on M and we consider MET (M) with
the smooth topology. Note that the space MET (M) is contractible. A subspace
of metrics whose sectional curvatures lie in some interval will be denoted by plac-
ing a superscript on MET (M). For example, MET*“<¢(M) denotes the space
all Riemannian metrics on M that have all sectional curvatures less that € and
METH“="1(M) is the space of all hyperbolic metrics on M.

We also denote by DIFF(M) the group of all smooth self-diffeomorphisms of
M and by D(M) the group R™ x DIFF(M). The group D(M) acts on MET (M)
by scaling and pulling-back metrics.

A natural question about a closed negatively curved manifold M is the fol-
lowing: is the space MET *“<°(M) of negatively curved metrics on M path
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connected? This problem had been around for some time and had been posed
several times in the literature. See for instance K. Burns and A. Katok ([BK85],
Question 7.1). For another motivation that comes from an approach to the “topo-
logical” Lawson-Yau question see [F08, p. 167].

For 2-dimensional surfaces uniformization results of Earle and Eells [EEG9)
(as well as Hamilton Ricci flow [H82]) imply that the space of hyperbolic metrics
MET#“="1(M?) is a deformation retract of MET **<%(M?). Also recall that
MET#*==1(M?) fibers over the Teichmiiller space T (M?) 22 R%976 (here g is the
genus of M?), with contractible fiber D = RY x DIFF(M?) [EE69]. Therefore
MET* =1 (M?) and MET **“<°(M?) are contractible.

In [FO10a] Farrell and Ontaneda proved that the space MET **“<%(M™) is
never path-connected for n > 10; in fact, it has infinitely many path-components.
Moreover they showed that the homotopy groups 7o, 4(MET *¢<%(M™)) are
non-trivial for every prime number p € [3,(n + 4)/6]. Furthermore, they also
showed that 71 (MET *“<%(M™)) contains the infinite sum (Z)>® when n >
14. These results about homotopy groups are true for each path component of
MET#<O(M™); i.e., relative to any base point. We state explicitly the main
result in [FO10a] as Theorem 1.1 below.

Note that DIFF(M) leaves invariant all spaces MET I (M), for any I C R.
For any metric g on M we denote by DIFF(M) g the orbit of g by the action of
DIFF(M). Define the map A, : DIFF(M) — MET (M) by Ay(¢) = ¢yg. Then
the image of A, is the orbit DIFF(M) g of g.

Theorem 1.1 ([FO10a]). Let M be a closed smooth n-manifold and let g be a
negatively curved Riemannian metric on M. Then we have that:

i. the map
To(Ay) : mo( DIFF (M) ) — mo( MET *¢<°(M))

s not constant, provided n > 10.
1. the homomorphism
m1(Ay) : m (DIFF(M)) — 7 ( MET *¢<°(M))
18 non-zero, provided n > 14.
1. For k= 2p—4, p prime integer and 1 < k < "T*S, the homomorphism
Ti(Ag) : T ( DIFF(M) ) — m,( MET *°<°(M))
is non-zero. (See Remark 1.4 below.)

Addendum to Theorem 1.1. We have that the image of mo(Ay) is infinite and
in cases (i.), (ii.) mentioned in Theorem 1.1, the image of m(Ay) is not finitely
generated. In fact we have:



Exotic Topology in Geometry and Dynamics 3

i. Forn > 10, mo( DIFF(M) ) contains (Z2)>°, and WO(AQ)\(Z2)OO is one-to-one.

ii. Forn > 14, the image of m(Ag) contains (Z2)>.

iii. For k = 2p — 4, p prime integer and 1 < k < ”T*B, the image of mi(Ay)

contains (Z,)>. See Remark 1.4 below.

A key ingredient in the proof of Theorem 1.1 is the non-triviality (and struc-
ture) of certain homotopy groups ka(Sl) of the stable pseudoisotopy space of the
circle S*.

For any a,b, a < b < 0, the map A, factors through the inclusion map
MET ==Y (M) — MET*“<°(M) provided that g € MET *=*“="(M).
Therefore the above results hold also if the decoration “sec < 0” is replaced by
“a < sec < b7, that is, they hold for the space MET *=5°¢=P(M™). This is
stated in the next corollary.

Corollary 1.2. Let M be a closed smooth n-manifold, n > 10. Let a < b <
0 and assume that MET *S*°<(M) is not empty. Then the inclusion map
MET @S5S (M) s MET*“<O(M) is not null-homotopic. Indeed, the induced
maps, at the k-homotopy level, are not constant for k = 0, and non-zero for the
cases (ii.), (i1i.) of Theorem 1.1. Furthermore, the image of these maps satisfy a
statement analogous to the one in the Addendum to Theorem 1.1.

When a = b = —1 we obtain

Corollary 1.3. Let M be a closed hyperbolic n-manifold, n > 10. Then the
inclusion map MET*="Y (M) — MET*<%(M) is not null-homotopic. Indeed,
the induced maps, at the k-homotopy level, are not constant for k = 0, and non-
zero for the cases (ii.), (iii.) of Theorem 1.1. Furthermore, the image of these
maps satisfy a statement analogous to the one in the Addendum to Theorem 1.1.

Hence, taking & = 0 in Corollary 1.3, we get that for any closed hyperbolic
manifold (M™,g), n > 10, there is a hyperbolic metric ¢’ on M such that g and
g’ cannot be joined by a path of negatively curved metrics.

Also, by taking b = —1 and a = —1 — ¢ (¢ > 0) in Corollary 1.2 we obtain
that the space MET ~17¢=5¢=~1(\[n) of e-pinched negatively curved Rieman-
nian metrics on M has infinitely many path components, provided it is not empty
and n > 10. The higher homotopy groups 7 (MET ~17¢=*¢<"1(}[)), are non-
zero for the cases (ii.), (iii.) of Theorem 1.1.

Remark 1.4. The restriction onn = dim M given in Theorem 1.1, its addendum
and its corollaries are certainly not optimal. In particular, in (iii.) it can be

improved to 1 < k < "_210 by using Iqusa’s “Surjective Stability Theorem” ([I88],

p. 7).
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Let M™ be a closed smooth manifold of dimension dim M = n. It follows
Theorem 1.1 that 7, MET **“<Y(M™) is non-trivial for certain pairs (n, k), pro-
vided MET #¢<Y(M) is not the empty set, that is, M admits a negatively curved
metric. Let MET *“<%(M) be the subspace of MET (M) of all non-positively
curved Riemannian metrics on M. In [FO09b] Farrell and Ontaneda generalized
to MET **<°(M) the main result in [FO10a] (stated as Theorem 1.1 here), pro-
vided w1 M is (word) hyperbolic:

Theorem 1.5 ([FO09b]). Let M™ be a closed smooth manifold with hyperbolic
fundamental group m M. If the space MET *“=O(M) is non-empty, then (i.),
(i.), (iii.) in the statement of Theorem 1.1 (and its Addendum) hold when we
replace MET **“<°(M) by MET *<°(M).

Remark 1.6. If M™ is smooth and closed and MET *“<°(M) is non-empty, it
follows from the Theorem above and its proof, that the inclusion map

MSTsec<O(M) < MgTseCSO(M)
18 “very non-trivial” at the my-level, for certain n and k.

This result is quite surprising because non-positive curvature is a “non-stable”
property, while negative curvature is stable (it is an open set in MET(M)). Tt
is not even known whether MET **“=9(M1) is locally contractible or even locally
connected. Moreover, in our specific case, there are two additional obstacles to
pass from negative curvature to non-positive curvature. First, since in the non-
positively curved case there can exist parallel geodesic rays emanating perpen-
dicularly from a closed geodesic, the obstructions in the negatively curved case
defined in [FO10a] (that lie in the pseudoisotopy space of S' x §"7?) may not
be homeomorphisms at infinity. Farrell and Ontaneda show in [FO09b] that the
obstructions for the non-positively curved case now lie in CELL(S" x S"~% x [0, 1]),
where CELL(L) is the space of cellular self maps of L.

The second problem is that there may now exist a whole family of closed
geodesics freely homotopic to a given one. Farrell and Ontaneda’s earlier papers
([FO09a], [FO10a], [FO10b], [FO10c]) strongly relied on the fact there is a unique
such closed geodesic. Moreover, they strongly used the fact that such unique closed
geodesics depend smoothly on the metric. This does not happen in non-positive
curvature. Even worse: there are examples of smooth families g;, t € [0,1], of
non-positively curved metrics such that there is no continuous path of closed g;-
geodesics joining a closed g1-geodesic to a closed go-geodesic (all closed geodesics
in the same free homotopy class). See for instance the “swinging neck” in Ap-
pendix A of [FO09b]. Farrell and Ontaneda dealt with this by incorporating the
closed geodesics into the system, but there is a price for this: instead of dealing
with discs (to prove that an element is zero in a homotopy group) they had to deal
with more complicated spaces which they called “cellular discs”. Because of this
the use of shape theory ([DS78], [MS82]) became necessary.
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2 The Teichmiiller and the moduli spaces of neg-
atively curved metrics.

The quotient space M(M) = MET(M)/D(M) is called the moduli space of met-
rics on M. Denote by « the quotient map

MET(M) 5 M(M).

We say that a property of Riemannian metrics is geometric if it is invariant un-
der isometries, that is, by the action of DIFF(M) on MET (M) (recall that if
¢ € DIFF(M) and g € MET (M) then ¢ : (M, ¢*g) — (M,g) is an isometry).
Hence if two Riemannian metrics represent the same element in M (M) then they
possess the same geometric properties. Clearly, the study of the moduli space of
metrics is of fundamental importance not just in geometry but in other areas of
mathematics as well. (See, for instance, [Bess87] Ch. 4)

Asin the case of MET (M), it is also interesting to consider subspaces of M (M)
that represent some geometric property. One obvious choice is to consider metrics
with constant curvature. For instance, let M, be an orientable two-dimensional
manifold of genus ¢ > 1. Consider the moduli space of all hyperbolic metrics
on My, that is, the subspace of M(M,) formed by elements that are represented
by Riemannian metrics of constant sectional curvature equal to -1. The moduli
space of all hyperbolic metrics is the quotient of another well known space: the
Teichmiiller space of M. This space is a subspace of the quotient of MET (M)
by the subgroup of DIFF (M) formed by all smooth self-diffeomorphisms of M,
which are homotopic to the identity; namely, it is the subspace represented by hy-
perbolic metrics. Then the moduli space is the quotient of the Teichmiiller space
by the action of Out (m1(M,)), the group of outer automorphisms of the funda-
mental group of M,.

We want to generalize the definition of the Teichmiiller space to higher dimen-
sions. The obvious choice for a definition would be the quotient of the space of all
hyperbolic metrics by the action of the group of all smooth self-diffeomorphisms
which are homotopic to the identity. But Mostow’s Rigidity Theorem implies that,
in dimensions > 3, this space contains (at most) one point.

Let us go back to dimension two for a moment. Hamilton’s Ricci flow [H82]
shows that every negatively curved metric on My, g > 1, can be canonically
deformed (through negatively curved metrics) to a hyperbolic metric. This defor-
mation commutes with the action of DIFF (M), therefore the Teichmiiller space
of M, is canonically a deformation retract of the space which is the quotient of
all negatively curved Riemannian metrics on M, by the action of the group of all
smooth self-diffeomorphisms which are homotopic to the identity. Also, instead of
considering the space of all negatively curved metrics we can consider the space
of all pinched negatively curved metrics, or for that matter, the space of all Rie-
mannian metrics. These are the concepts that we will generalize. Next, we give
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detailed definitions and introduce some notation.

Denote by DIFFy(M) the subgroup of DIFF(M) of all smooth diffeomorphisms
of M which are homotopic to the identity idy;. Also, denote by Do(M) the group
R* x DIFFo(M). We call the quotient space T(M) = MET(M)/Do(M) the
Teichmaller space of metrics on M. Therefore we have the following diagram of
quotient spaces:

MET(M) - T(M) - M(M)
where the first arrow is the quotient map induced by the action of Dy(M) on

MET (M) and the second arrow is the quotient map induced by the action of
DIFF(M)/DIFFo(M) on T(M). And we have k = ¢€.

Introduce the following abbreviated notation
MgTe(M) _ MET—l—sfsecg—l(M)

The quotient space M(M) = MET(M)/D(M) is called the moduli space of
e-pinched negatively curved metrics on M.

Remark 2.1. The space MET(M) is not D(M) invariant (the problem is the
scaling). So, by MET(M)/D(M) we mean that two elements in MET (M) are
identified if they are related by an element in D(M). For an alternative “invariant”
(but a bit longer) definition see [FO09a).

Also T¢(M) = MET(M)/Dy(M) is called the Teichmiiller space of e-pinched
negatively curved metrics on M. In particular, T°¢¢<0(M) = T°°(M) is the Te-
ichmiiller space of all negatively curved metrics on M, and T*¢“=~1(M) = T°(M)
is the Teichmiiller space of all hyperbolic metrics (in this case T5¢=~1(M) =
MET#“==1(M)/DIFFo(M), see remark 2.1). And similarly for the moduli space
M. Of particular interest are the spaces:

o MET **¢<9(M), the space of negatively curved metrics on M
o T 5¢<O0(M), the Teichmiiller space of negatively curved metrics on M and

o M¢¢<O0(M), the moduli space of negatively curved metrics on M.

Note that the inclusions MET (M) — MET (M) induce inclusions T¢(M) —
T (M). Also note that, for § > e, these inclusions factor as follows: MET (M) —
MET® (M) — MET(M) and T¢(M) = T*(M) = T(M).

Remark 2.2. If M, is an orientable two-dimensional manifold of genus g > 1,
then the original Teichmiiller space of M is (in our notation) T*==1(M,), and
Tee==1(M,) is homeomorphic to R%~° (see [EL81]). Hence T**==1(M,) is
contractible. By the uniformization techniques mentioned above ([EEG9], [H82]),
it follows that T¢(M,), T*“<%(M,), T(M,) are all contractible. (This is also true
for non-orientable surfaces of Fuler characterisitc < 0.)
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Remark 2.3. Let M be a closed hyperbolic manifold. If dim M > 3, Mostow’s
Rigidity Theorem [Mo67] implies that T*¢==1(M) = x; i.e., T***="1(M) con-
tains exactly one point. Therefore MET**“=~Y(M) = DIFFo(M). It also follows
that T5¢“==1(M) is contractible when dim M > 2.

In dimensions two and three it is known that Do(M) (and hence MET**="1(M))
is contractible. (This is due to Farle and Eells [EE69] in dimension two and to
Gabai [G01] in dimension three.) This is certainly false in dimensions > 11, be-
cause wo(Do(M)) is not finitely generated (see [FI89b], Corollary 10.16 and 10.28),
and it is reasonable to conjecture that Do(M) is also not contractible for dimension
n, b <n <10.

Remark 2.4. Let M be a hyperbolic manifold. Then the action of Do(M) on
MET (M) is free (see Lemma 1.1 of [FO09a]). Since MET (M) is contractible
by Ebin’s Slice Theorem [E68] we have that Do(M) — MET (M) — T(M) is a
principal Do(M)-bundle and T (M) is the classifying space BDo(M) of Do(M).

Let M is a closed hyperbolic manifold. Then MET (M) interpolates between
METY (M) = MET**==Y(M) (which is equal to Do(M)) and MET (M) (which
is contractible). Likewise 7¢(M) interpolates between T (M) (which is equal to
BDo(M)) and T*¢¢=~1(M) (which is contractible). We have the following com-
mutative diagram:

METS(:‘C:*l(M) N M(C/”TC(M) (3N METOO(M) — MET(M)

Il | ' :
Tseczfl(M) s TE(M) — TOO(M) — T(M)

All vertical arrows represent quotient maps by the action of the group Dy(M).

In [FO09a] Farrell and Ontaneda proved that the last two horizontal arrows
of the lower row of the diagram above are not in general homotopic to a con-
stant map. In particular 7¢, 0 < € < o0, in general, is not contractible. More
specifically, they proved that under certain conditions on the dimension n of the
hyperbolic manifold M, the manifold M has a finite cover N (which depends on

€) such that g, (T%N)) — T (T(N)) is non-zero. In particular, 7¢(N) is not
contractible. The requirements on the dimension n are implied by one of the fol-
lowing conditions: n is larger than some constant or n is larger than 5 but in this

last case we need that 0,41 # 0, where O, denotes the group of homotopy spheres
of dimension ¢. Here is a more detailed statement of this result:

Theorem 2.5 ([FO09a]). For every integer ko > 1 there is an integer ng = no(ko)
such that the following holds. Given € > 0 and a closed real hyperbolic n-manifold
M with n > ng, there is a finite-sheeted cover N of M such that, for every 1 <
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k < ko with n+ k = 3 mod 4, the map my (’TE(N)) — T (T(N)), induced by

the inclusion T¢(N) — T(N), is non-zero. Consequently (Te(N)) #0. In

particular, T°(N) is not contractible, for every § such that € < § < oo (provided
ko > 4).

Here (and in the corollary below) we consider the given hyperbolic metric as
the basepoint for 7(N), T¢(N).

For ko = 1 we can take ng(1) = 6 and drop the condition n + k = 3 mod 4.
Hence we obtain the following corollary to (the proof of) Theorem 2.5.

Corollary 2.6. Let M be a closed hyperbolic manifold of dimension n, n > 6.
Assume that ©,11 # 0. Then for every € > 0 there is a finite-sheeted cover N of

M such that m (T%N)) # 0. Therefore T¢(N) is not contractible.

Recall that an n-dimensional 7 manifold is a manifold that embeds in R?"+?2

with trivial normal bundle. Every real hyperbolic manifold has a finite-sheeted
cover that is a 7 manifold (see [Su79], p.553). We have the following addition to
the statements of Theorem 2.5 and the Corollary 2.6.

Addendum to Theorem 2.5 and the Corollary 2.6 . We can choose N = M
in the statements of Theorem 2.5 and the Corollary 2.6, provided M is a m-
manifold and the radius of injectivity of M at some point is sufficiently large (how
large depending only on the dimension of M ).

A key ingredient in the proof of Theorem 2.5 is the existence of (exotic) non-
trivial elements in the group ©,, of homotopy n-spheres. These elements are used
to construct non-nullhomotopic maps ¢ : S¥ — DIFFo(M), such that the map
u +— ¢(u)*g is nullhomotopic (here g is a fixed hyperbolic metric).

We now make some comments on Theorem 2.5 and the diagram above.

1. Since MET (M) is contractible, Theorem 2.5 implies that, for a general hy-
perbolic manifold M, the map m (Mé'Te(M)) — T (TE(M)), induced by the

second vertical arrow of the diagram, is not onto for some k.

2. By Remark 2.2, the lower row of the diagram above is homotopically trivial
in dimension 2. In dimension 3 one could ask the same: is the lower row of the
diagram above homotopically trivial in dimension 37 In view of a result of Gabai
(see [GO1]), this is equivalent to asking: is 7°¢°<0(M?) contractible?

3. Let M be a hyperbolic manifold. Consider the upper row of the diagram.
It follows from a result of Ye on the Ricci flow (see [Ye93]) that, provided the
dimension of M is even, there is an ¢y = €o(M) > 0 such that for all € < ¢
the inclusion map MET(M) — MET*<°(M) is Dy(M)-equivariantly homo-
topic to a retraction MET (M) — MET*=1 (M) ¢ MET**“<°(M). This
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has the following consequences. First the retraction above descends to a retrac-
tion T¢(M) — T*=~1(M), hence the inclusion map T¢(M) — T*c<9(M)
is homotopic to a constant map (provided e < €(M)), and thus induces the
zero homomorphism 7y (TG(M )) — Tk (T(M )) for all k. Second, the inclu-
sion map Do(M) = MET*= Y M) — MET (M) induces monomorphisms
T (DO(M)) = m (MeTS“:*l(M)) . (MeTe(M)), provided € < e(M).
Theorem 2.5 then shows that in many cases eg(M) < oo.

4. Let M be a hyperbolic manifold. Since DIFF(M)/DIFF(M) = Out (7r1 (M))
we have that M(M) = T(M)/Out (7r1 (M)) or, in general,

ME(M) = T<(M)/Out (m(M)).
Note that Out(m(M)) is a finite group, provided dim M > 3.

5. Let M be a hyperbolic manifold. We can consider the quotients of MET (M)
and MET(M) by DIFF’(M), the connected component of the identity 1, in
DIFF (M), instead of by the larger group DIFFy(M). Since the quotient group
DIFF(M)/DIFFY(M) is discrete, it can be easily checked from the proofs of re-
sults of Farrell and Ontaneda that the statement of Theorem 2.5 also holds for the
inclusion of the quotients: MET(M)/DIFF®(M) — MET (M)/DIFF® (M), with
the strengthened restriction “2 < k < k¢” and proviso “(provided ko > 5)”.

Now, recall that we have a diagram of quotient spaces:
MET(M) =5 T(M) = M(M)
We make remarks about Theorems 1.1 and 2.5, and this diagram:

Remark 2.7. The non-trivial elements in T, MET **“<°(M) mentioned in The-
orem 1.1 and constructed in [FO10a] have trivial image by the map induced the
quotient map by

é— . MgTsec<O(M) N Tsec<0(M).

Remark 2.8. The nonzero classes in 7, T *<°(M) given in Theorem 2.4 and
constructed in [FO09a] are not in the image of the map induced by

5 . M5T560<O(M) N TSEC<O(M).
In [FO10b] Farrell and Ontaneda proved that the quotient map
§ . MgTsec<O(M) N Tsec<O(M)

is not trivial at some homotopy levels, provided the hyperbolic manifold M sat-
isfies certain conditions. Hence there are elements in certain homotopy groups
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TReMET *¢<%(M) that survive in 7, T *¢¢<°(M). Moreover the results in [FO10b]
hold for k = 0, a case not covered by Theorem 2.5 and [FO09a.

To state the results in [FO10b] consider the following relation between non-
negative integers k and n

1. k
S

0 and n > 10
1 and n > 12
2p—4, p> 2 prime, and n > 3k+8

Theorem 2.9 ([FO10b]). For every closed hyperbolic n-manifold M there is a
finite-sheeted cover N of M such that the maps

Wk(MgTsec< O(N)) — ’/Tk(Tsec< O(N))
are nonzero, provided (n, k) satisfy (x).

A similar result was also proven for homology.

Theorem 2.10 ([FO10b]). For every closed hyperbolic n-manifold M there is a
finite-sheeted cover N of M such that the maps

Hk(MgTsec< O(N)) — Hk(Tsec< O(N))
are nonzero, provided (n, k) satisfy ().

Addendum to Theorems 2.9 and 2.10. The statements of Theorems 2.9
and 2.10 remain true if we replace the decoration “sec < 07 on both MET **“<°(M)
and T ¢ <%(M) by “1-¢ < sec <-17.

The non-trivial classes in 7 7 *¢¢<%(M) given in Theorem 2.9 besides coming
from MET *“<°(M) have a different nature and genesis: the classes given by
Theorem 2.5 and [FO09a] come from the existence of exotic spheres, while the
classes given in Theorem 2.9 arise from the non-triviality and structure of certain
homotopy groups of the space of pseudoisotopies of the circle S'. The strength of
the techniques used to prove Theorem 2.9 allowed Farrell and Ontaneda to prove
also a homology version of Theorem 2.9, which is given in Theorem 2.10.

By taking & = 0 in Theorem 2.9 we have:

Corollary 2.11. Let M be a closed hyperbolic n-manifold, n > 9. Then M admits
a finite-sheeted cover N such that T $°¢<O(N) is disconnected.

Remark 2.12. As mentioned before, the case k = 0 stated in Corollary 2.11 above
was not covered by Theorem 2.5.

Remark 2.13. The Addendum to Theorem 2.9 implies that Corollary 2.11 re-
mains true if we replace the decoration “sec < 0 7 by “1-€ < sec <-1”. In this
case N depends not just on n but also on € > 0.
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So far we have studied the space of negatively curved metrics MET % <%(M),
the Teichmiiller space of negatively curved metrics 7 *¢¢<%(M) and the quotient
map & : MET *“<O(M) — T*<O(M). In general, it is very hard to get infor-
mation on the quotient map

METSQC<O(M) i> Msec<0(M) _ TSEC<O(M)/Out7T1(M),

from the knowledge obtained about the map MET *¢<O(M) L Tec<O(M),
because the action of Outm(M) on T *¢<9(M) could be quite general. But
in [FO10c] Farrell and Ontaneda proved that the map mp MET **“<%(M) —
T M*¢¢<O(M), induced by the quotient map x : MET **“<0(M) — Msec<O0(M),
is not trivial provided the hyperbolic manifold M satisfies certain conditions. It
is not known whether every closed hyperbolic manifold admits a finite cover that
satisfies these conditions but it is proved in [FO10c] that this is true if M is non-
arithmetic.

Theorem 2.14 ([FO10c)]). Let M be a closed non-arithmetic hyperbolic manifold
and k a non-negative integer, with (k,dim M) satisfying (*). Then M has a finite-
sheeted cover N such that the maps

™ (MgTsec<0(N)) Wk_(”)) ™ (M sec<0(N))

Hk (MgTsec<0(N)) %) ch (M sec<0(N>)
are mon-zero. In particular m(M*<%(N)) and Hp(M?**<%(N)) are non-
trivial.
The statements of Theorem 2.14 hold also for e-pinched negatively curved met-

rics:

Addendum to Theorem 2.14. The statement of Theorem 2.14 remains true if
we:

i. replace the decoration “sec < 07 on MET *“<%(M) in Theorem 2.1} by
“1-e < sec <-17.

ii. replace the decoration “sec < 07 on both MET *“<°%(M) and M*<°(M)
in Theorem 2.14 by “1-e < sec <-17.

3 Bundles with Negatively Curved Fibers

Let M be a closed smooth manifold. By a smooth bundle over X, with fiber
M, we mean a locally trivial bundle for which the change of coordinates be-
tween two local sections over, say, U,,Ug C X is given by a continuous map
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Us,NUg — DIFF(M). A smooth bundle map between two such bundles over X is
a bundle map such that, when expressed in a local chart as U x M — U x M, the
induced map U — DIFF(M) is continuous. In this case we say that the bundles
are smoothly equivalent. Smooth bundles over a space X, with fiber M, mod-

ulo smooth equivalence, are classified by [X , B (DIFF(M ))} , the set of homotopy

classes of continuous maps from X to the classifying space B (DIFF(M ))

Remark 3.1. In what follows we will be considering everything pointed: X comes
with a base point xg, the bundles come with smooth identifications between the
fibers over xog and M, and the bundle maps preserve these identifications. Also,
classifying maps are base point preserving maps.

From now on we assume that X is simply connected. Then we obtain a re-
duction in the structural group of these bundles: smooth bundles over a simply
connected space X, with fiber M, modulo smooth equivalence, are classified by
[X7 B(DIFFO(M)H, where DIFF((M) is the space of all self diffeomorphisms of
M that are homotopic to the identity idy;. In what follows we assume X to be
simply connected. If we assume in addition that M is aspherical with 71 (M) cen-
terless (e.g. admits a negatively curved metric) then old results of Borel [Bor83],
Conner-Raymond [CR77] say that DIFFo(M) acts freely on MET (M). More-
over, Ebin’s Slice Theorem [E68] assures us that DIFFo(M) — MET (M) —

(MgT(M)/DIFFO(M)) is a locally trivial bundle. Hence, since MET (M) is con-
tractible, we can write B(DIFFO(M)) — MET(M)/DIFF,. Recall that T(M) =

MET (M) / (R+ x DIFFo(M )) is the Teichmiiller Space of Riemannian Metrics
on M. Since T (M) is homotopy equivalent to MET (M)/DIFFy(M) we can also
write B(DIFFO(M )) = T(M). Therefore smooth bundles over a simply con-
nected space X, with aspherical fiber M and 71 (M) centerless, modulo smooth

equivalence, are classified by [X ST (M )}

Let S be a complete collection of local sections of the bundle MET (M) —
T(M). Using S and a given map f : X — T (M) we can explicitly construct a
smooth bundle F over X, with fiber M. Yet, with these data we seem to get a
little more: we get a Riemannian metric on each fiber F, of the bundle E. This
collection of Riemannian metrics does depend on S, but it is uniquely defined (i.e.
independent of the choice of §) up to smooth equivalence.

Of course, any bundle with fiber M admits such a fiberwise collection of Rie-
mannian metrics because MET (M) is contractible, so we seem to have gained
nothing. On the other hand, in the presence of a geometric condition we do get a
meaningful notion. We explain this next.

If we are given a map X — 7T *“<%(M), we get a smooth bundle E with fiber
M, and in addition, as mentioned before, we get a collection of Riemannian met-



Exotic Topology in Geometry and Dynamics 13

rics, one on each fiber E,, x € X. And, since now the target space is T 5¢¢<9(M),
these Riemannian metrics are all negatively curved. We call such a bundle a bun-
dle with negatively curved fibers. Still, to get a bona fide bundle theory we have
to introduce the following concept. We say that two bundles Ey, E; over X,
with negatively curved fibers, are negatively curved equivalent if there is a bundle
E over X x [0,1], with negatively curved fibers, such that E|y; is smoothly
equivalent to F;, i = 0,1, via bundle maps that are isometries between fibers.
Then, bundles with negatively curved fibers over a (simply connected) space X,

modulo negatively curved equivalence, are classified by |X, 7T ¢<%(M)|. And

the inclusion map F : T *¢¢<0(M) — T (M) gives a relationship between the two
bundle theories:

X, Toee< O(M)] Fx, [X, T(M)]

and the map F'x is the “forget the negatively curved structure” map. The “kernel”
Kx of this map between the two bundle theories is given by bundles over X,
with negatively curved fibers, that are smoothly trivial. Every bundle in Kx can
be represented by the choice of a negatively curved metric on each fiber of the
trivial bundle X x M, that is, by a map X — MET ***<%(M). Note that this
representation is not unique, because smoothly equivalent representations give rise
to the same bundle with negatively curved fibers. In any case, Kx is the image

of [X,MST“KO(M)] by the map [X7MST“C<O(M)} — [X,TS@KO(M)],
induced by the quotient map MET **“<°(M) — T *¢<°(M). Note that we can
think of [X  MET %<0 (M )} as a bundle theory: the “bundles” here are choices

of negatively curved metrics, one for each fiber of the trivial bundle X x M, modulo
the following weak version of negatively curved equivalence. Two “bundles” Ej,
E;, here are equivalent if there is a “bundle” E over X x I such that E)| xx{i} = Ei,
1 =0,1. Summarizing, we get the following exact sequence of bundle theories:

(%) X, MET e <0(an)| 2% [X, Toee<0an)| 55 | X, T(M)|

where the map Ry is the “representation map”, which assigns the set R)_(1 (E) of
representations of E of the form X — MET **“<%(M) to each smoothly trivial
bundle with negatively curved fibers F € Kx.

It is natural to inquire about the characteristics of these maps. For instance:

are they non-constant? are they one-to-one? are they onto? If, in (**), we specify
X = Sk, k > 1 (recall we are using basepoint preserving maps), we obtain

(%% %) T (MET =0 (M) = mi(T > <O(M)) — (T (M)



14 F. T. Farrell, A. Gogolev and P. Ontaneda

Some information about these maps between homotopy groups was given in
Theorems 1.1, 2.5, 2.9 and 2.10 above. We explain next what is the relationship
between Theorems 1.1, 2.5, 2.9 and 2.10 and the sequences (#%) and (* * *).

1. Recall that Theorem 1.1 says that mo(MET **“<°(M)) is never trivial, pro-
vided MET *“<%M) # 0 and dim M > 13. But the non-zero elements
in o (MET 5¢“<Y(M)), constructed in [FO10a], are mapped to zero by the
map o (MET % <O(M)) — mo(T *¢<°(M)). Hence the first arrow in (x#x*)
is not one-to-one when k = 2. Therefore the representation map Rg2 in (%)

is never one-to-one, provided MET *“<°(M) # () and dim M > 13.

2. The case k = 1 in Theorem 1.1 proves that the forget structure map Fge

is not onto. To see this just glue two copies of D* x M along S' using
a non-trivial element in 7 (MET **“<°(M)). Thus, there are (nontrivial)
smooth bundles E over S? which do not admit a collection of negatively
curved Riemannian metrics on the fibers of E. Applying the same argument
for other values of k in Theorem 1.1 we can conclude that the same is true
forSk, k=2p—3,p>2

3. Theorem 2.5 asserts that there are examples of closed hyperbolic manifolds
for which 7 (7 %¢¢<%(M)) is non-zero. Here M depends on k and always
k > 0. However no conclusion was reached on the case k = 0 (i.e. about
the connectedness of 7 5¢¢<%(M)). Also, the images of these elements by
the inclusion map 7 %¢¢<9(M) — T (M) are non-zero. Hence the forget
structure map FSk is, in general, non-trivial. This means that there are
bundles with negatively curved fibers that are not smoothly trivial, i.e. the
representation map RSk is not onto in these cases.

4. Theorem 2.9 implies that the forget structure map FSk is, in general, not
one-to-one, for k = 2p — 4, p prime.

Remark 3.2. In all above discussion we can replace “negatively curved metrics”
by “e-pinched negatively curved metrics”.

We expect that bundles with negatively curved fibers are, in fact, topologically
rigid. That is, that the forget structure map Fx is constant (we assume X is
simply connected).

Conjecture 3.3. Let M — E — X be a fiber bundle whose base X is simply
connected and whose fibers can be equipped with continuously varying metrics of
negative curvature. Then the bundle is topologically equivalent to a product M x X,
i.e., there exists a fiber preserving homeomorphism E — X x M.

In [FG13b], using classical dynamical systems techniques, Farrell and Gogolev
established a related result.

Theorem 3.4. Let X be a closed simply connected manifold and p: E — X be a
bundle with negatively curved fibers. Then its (fiberwise) associated sphere bundle
S(p): SE — X is topologically trivial.
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Here the associated sphere bundle is the bundle of all unit tangent vectors to
the fibers of the original bundle.

4 Exotic topology and hyperbolic dynamical sys-
tems

Recall that given a compact smooth Riemannian manifold M an Anosov diffeomor-
phism f is a diffeomorphism that preserves a continuous splitting TM = E* & E*,
uniformly contracts the stable subbundle E° and uniformly expands the unstable
subbundle E*. The number min{dim F*, dim E"} is called the codimension of the
Anosov diffeomorphism f. An Anosov diffeomorphism is called conformal if the
stable quasi-conformal distortion

max{[|Df" ()| : v € E*, |v]| = 1}
min{||Df™(v)[| : v € B, [v]| = 1}

K°(z,n) =

and analogously defined unstable distortion K*(xz,n) are uniformly bounded in
x € M and n € Z.

Also recall that a self-covering f: M — M is called an expanding map if the
tangent map D f expands all non-zero tangent vectors.

Smale provided a general construction of Anosov automorphisms of many (but
not all) compact nilmanifolds [Sm67]. (Smale himself credits A. Borel.) This
construction generalizes to give affine Anosov diffeomorphisms of infranilmanifolds.
All currently known examples of manifolds that support Anosov diffeomorphisms
are homeomorphic to infranilmanifolds.

Question 4.1. Given an Anosov diffeomorphism f: M — M, is it true that f is
conjugate to an affine hyperbolic map L of an infranilmanifold N ?

Note that a positive answer would imply that M is homeomorphic to an in-
franilmanifold. This question goes back to Anosov and Smale [An69, Sm67] and
is an outstanding open problem in smooth dynamics.

For expanding maps the analogous question was resolved positively. Shub [Sh69]
proved that an expanding endomorphism of a closed manifold M is topologically
conjugate to an affine expanding endomorphism of an infranilmanifold if and only
if the fundamental group 71 (M) contains a nilpotent subgroup of finite index.
Franks [Fr70] showed that if M admits an expanding endomorphism then 7 (M)
has polynomial growth. Finally, in 1981, Gromov [Gr81] completed the classifica-
tion by showing that any finitely generated group of polynomial growth contains
a nilpotent subgroup of finite index. Hence any expanding map is topologically
conjugate to an affine expanding endomorphism of an infranilmanifold. In partic-
ular, any manifold that supports an expanding endomorphism is homeomorphic
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to an infranilmanifold.

4.1 The Dictionary

We suggest the following illuminating albeit somewhat vague dictionary.

Geometry

Dynamics

Hyperbolic metric on M

Conformal Anosov diffeomorphism
of N

Negatively curved metric g on M

Anosov diffeomorphism f of N

The space MET*<0(M)

The space Xy of Anosov diffeomor-
phism homotopic to f

Pullback of a negatively curved met-
ric g by a diffeomorphism h: M —
M

Conjugation of Anosov diffeomor-
phism f by a diffeomorphism
h: N—- N

The similarity is confirmed by various results and conjectures. For example,
the analogue of Mostow rigidity is the following result of Kalinin and Sadovskaya,
which is based on work of Benoist and Labourie.

Theorem 4.2 ([KS03]). Let f be a transitive Anosov diffeomorphism of a compact
manifold N which is conformal on the stable and unstable distributions. Suppose
that both distributions have dimension at least three. Then f is smoothly conjugate
to an affine Anosov automorphism of a flat Riemannian manifold.

Corollary 4.3. Let f,g: N — N be homotopic conformal Anosov diffeomor-
phisms whose stable and unstable distributions are at least 3-dimensional. Then f
and g are smoothly conjugate.

4.2 Anosov diffeomorphism and expanding maps on exotic
infranilmanifolds

Farrell and Jones showed that certain hyperbolic manifolds admit exotic smooth
structures that are compatible with negative curvature. Namely, they proved the
following result.

Theorem 4.4 ( [FJ89a]). If M is a hyperbolic manifold and % is an exotic sphere,
then M has a finite covering M such that the connected sum M+ is not diffeo-
morphic to M and admits a Riemannian metric of negative curvature.

This result refutes the original Lawson-Yau conjecture (see [FJOO07, FOO04] for
a discussion).

The parallel development in the Anosov world actually precedes this result
by 10 years. Indeed, in 1978 Farrell and Jones [FJ78b] constructed Anosov dif-
feomorphisms on exotic tori T"#X. A different construction was carried out by
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Farrell and Gogolev [FG12a] to give Anosov diffeomorphisms on many other ex-
otic infranilmanifolds N#3. This newer construction was done for a larger class
of exotic infranilmanifolds. Another advantage of the construction in [FG12a] is
that it yields higher-codimension Anosov diffeomorphisms meanwhile the original
Farrell-Jones construction only gives codimension-one diffeomorphisms.

Remark 4.5. Of course, one can multiply the Anosov diffeomorphism of Farrell
and Jones on T"#X by an Anosov automorphism of an infranilmanifold N to
obtain higher-codimension Anosov diffeomorphism on T"#X x N, which is still
exotic. The construction in [FG12a] gives Anosov diffeomorphisms on manifolds
with irreducible smooth structure; i.e., on manifolds that are not diffeomorphic to
a smooth Cartesian product of two lower dimensional closed smooth manifolds.

Remark 4.6. In the above discussion we (probably unjustly) ignored the expanding
maps on exotic infranilmanifolds. In fact, expanding maps on exotic tori T"#X
were constructed first [FJ78aj. Recently Farrell and Gogolev also constructed ex-
panding maps on PL-exotic tori [FG13a].

Remark 4.7. Recall that in order to equip a hyperbolic manifold with an ex-
otic smooth structure and a megatively curved metric one has to pass to a suffi-
ciently large finite cover first. (This is needed to employ Farrell-Jones warping
trick [FJ89a).) Similarly, in order to construct an Anosov diffeomorphism on an
exotic infranilmanifold N# one has to pass to a sufficiently large self-cover of N

first.

We conclude this subsection by posing some open problems.
Problem 4.8. Prove that all exotic tori admit expanding maps.
Problem 4.9. Construct Anosov diffeomorphisms on PL-exotic tori.

Problem 4.10. Show that the choice of smooth structure can obstruct existence
of Anosov diffeomorphism. More specifically, construct an Anosov automorphism
L: M — M and endow the nilmanifold M with a smooth structure w such that
(M,w) does not admit Anosov diffeomorphisms homotopic to (homeomorphism) L.
Then show that certain exotic nilmanifolds do mot admit Anosov diffeomorphisms
despite the fact that the underlying standard nilmanifolds do admit hyperbolic au-
tomorphisms.

4.3 The space of Anosov diffeomorphisms

In [FG12b] we undertook the study of the space of Anosov diffeomorphisms which
turned out to be analogous to the study of the space of negatively curved metrics
from Section 1. We proceed to describe the results.

Fix a hyperbolic automorphism L: T — ’JTd, d > 2. Denote by Xy, the space
of C> Anosov diffeomorphisms of T? which are homotopic to L. In other words,

an Anosov diffeomorphism f belongs to X, if and only if there exists a continuous
path of maps f;: T% — T such that fo = L and f; = f.
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Theorem 4.11. Let L: T?> — T? be a hyperbolic automorphism of the 2-torus.
Then X1, is homotopy equivalent to T?.

To prove this result we realize T2 as the collection of affine Anosov diffeo-
morphisms of the form z +— L(z) + v, v € T?. We use standard Gibbs states
theory (see, e.g., [KH95, Chapter 20]) to show that any k-loop S¥ — X, can be
homotoped to a k-loop with values in T? C X. Then, by J. H. C. Whitehead’s
Theorem, we conclude that X, is homotopy equivalent to T2.

In higher dimensions the situation is completely different.

Theorem 4.12. If d > 10 and L: T¢ = T is a hyperbolic automorphism then
X1, has infinitely many connected components.

Remark 4.13. In [FG12b] we consider a more general case when L is infranil-
manifold automorphism. We also show that Xy, is rich in higher homotopy groups.

In the proof of the above theorem we rely on the following result. Below
TOP((T) (DIFF(T%)) stands for the group of homeomorphism (diffeomorphisms)
of T that are homotopic to identity.

Proposition 4.14 ([Hat78]). If d > 10 then
mo(DIFF(TY)) ~ (Z/2Z)* @ G,

where G is a finite abelian group. Moreover, (Z/27)>° maps monomorphically into
70(TOPo(T?)) via the map induced by inclusion of DIFF(TY) into the space of
homeomorphism TOPo(T?).

Now we explain how to use this proposition to obtain Theorem 4.12 in the
special case when L has only one fixed point. Equip DIFF (Td) and Xy, with the
C° topology and TOPO(']I‘d) with the C° topology. By global structural stability
of Franks and Manning [Fr70, M74], for each f € X, there exists hy € TOPy(T)
such that f = hfo Lo h;l. Moreover, since the automorphism L has only one

fixed point, it should have trivial centralizer in TOPo(T¢). Hence h ¢ is uniquely
determined by f. Moreover, by (local) structural stability, h; depends continu-
ously on f.

Consider h € DIFFy(T%) such that [h] € (Z/2Z)> C mo(DIFF(T?)) is non-
trivial. Let f = hoLoh™!. If f is isotopic to L then, by global structural stability,
we obtain a CY path connecting hy = h and hy, = idpa. Therefore f and L belong
to different connected components of Xy. The same argument shows that the
map h — ho Loh™! induces a monomorphism on (Z/27)>° C mo(DIFFy(T%))
and, hence, proves the theorem.

Remark 4.15. By Moser’s homotopy trick (see, e.g., [KH95, Chapter 5]), the
space DIFFSOI(']I‘d) of all volume-preserving diffeomorphisms homotopic to idya is

a deformation retraction of DIFFO(']I‘d). Hence we have the same result for the
space of volume-preserving Anosov diffeomorphisms.
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We conclude this subsection by posing some open questions.

Question 4.16. For which h € DIFFO(']I‘d) does the connected component of ho L
in DIFF(TY) contain an Anosov diffeomorphism?

It would be natural to proceed a study of Teichmiiller and Moduli spaces of
Anosov diffeomorphism which us analogous to the study surveyed in Section 2. In-
deed, by using the Dictionary we obtain the following definition of the Teichmuller
space. The Teichmiiller space of Anosov diffeomorphisms Ty, is the quotient of X,
by the action of DIFFy), i.e., it is the space of smooth conjugacy classes of Anosov
diffeomorphisms. It is natural to equip 7; with the quotient C”, r > 1, topology.

Recall that

Do(M) — MET **<OM) — T *<(M)

is a locally trivial principal fiber bundle by the work of Ebin [E68]. In the setting
of Anosov diffeomorphism an analogous result is not available. Even the answer
to the following question is not known.

Question 4.17. Is T;, a Hausdorff space?

If L is an Anosov automorphism of the 2-torus T? then the answer is “yes”, as
implied by work of de la Llave, Marco and Moriyén [LMMS7].
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