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Abstract. We consider a hyperbolic automor-
phismA : T3 → T

3 of the 3-torus whose 2-dimensional
unstable distribution splits into weak and strong
unstable subbundles. We unfold A into two one-
parameter families of Anosov diffeomorphisms —
a conservative family and a dissipative one. For
diffeomorphisms in these families we numerically
calculate the strong unstable manifold of the fixed
point. Our calculations strongly suggest that the
strong unstable manifold is dense in T

3. Further,
we calculate push-forwards of the Lebesgue mea-
sure on a local strong unstable manifold. These
numeric data indicate that the sequence of push-
forwards converges to the SRB measure.

1. Introduction

1.1. The setting. Consider the 3-dimensional torus
T
3 = R

3/Z3 equipped with the standard (x, y, z) coordi-
nates and a hyperbolic automorphism A : T3 → T

3 induced
by the following integral matrix with determinant 1

A =





2 1 0
1 2 1
0 1 1





The eigenvalues of A are real and approximately equal to
0.20, 1.55 and 3.25. We denote the largest eigenvalue by λ,
λ ≈ 3.25, and corresponding eigenvector by v, Av = λv,

v ≈





0.80
1.00
0.45





We will view A as a partially hyperbolic diffeomorphism
whose center distribution is expanding. Further, we unfold
A into two families of partially hyperbolic diffeomorphisms:

a dissipative family

fD,ε(x, y, z) =

(2x+ y + ε sin(2πx), x + 2y + z, y + z) (1.1)

and a conservative family

fC,ε(x, y, z) =

(2x+ y + ε sin(2πx), x + 2y + z + ε sin(2πx), y + z) (1.2)

It is well-known that for small values of ε > 0 the diffeo-
morphisms f∗,ε, (here ∗ = D,C), remain Anosov, and also
partially hyperbolic (with weakly expanding center distri-
bution). Hence diffeomorphisms f∗,ε leave invariant a one-
dimensional strongly expanding foliation Wuu

f whose ex-

pansion rate is close to λ. Note that the point p = (0, 0, 0)
is fixed by all diffeomorphisms in the families.

1.2. Preview of the results and conjectures. We
performed a very accurate (albeit non-rigorous) numer-
ical calculations of the the finite-length strong unstable
manifolds Wuu

∗,ε(p,R) which pass through p, up to length

R ≈ 1.3 · 108. These numerical calculations strongly sup-
port the following conjecture.

Conjecture 1.1. For all analytic diffeomorphisms f
in a sufficiently small neighborhood of A the strong unstable
foliation Wuu

f is transitive, i.e., it has a dense leaf.

We actually expect the foliation Wuu
f to be minimal.

However we did not calculate strong unstable leaves through
non-periodic points because it is a much harder task. Fig-
ures 1.1 and 1.2 give a preview of our numerics in support
of the above conjecture. These panels display first N inter-
section points of the strong unstable manifold Wuu(p) with
the 2-torus given by y = 0. We have calculated 108 inter-
section points. In the figures we only show up to 200, 000
points because of large file size and because past 106 points
one only sees Malevich’s black square.

Remark 1.2. In fact we show roughly N/2 points be-
cause we only display the points of intersection in the “one-
half torus” given by 0 ≤ z ≤ 1/2. We will display all our
data on [0, 1]× [0, 1/2] ⊂ [0, 1]× [0, 1] ≃ T

2 unless specified
otherwise. Note that throughout the paper we maintain
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Figure 1.1. Intersection points of the strong
unstable manifold and T

2 transversal for fC
with ε = 0.04. The snapshots are shown for
the first N = 10, 000, 30, 000 and 100, 000.
The sequence of points appears to be dense
providing support to Conjecture 1.1.

the convention to indicate the total number of points N in
the captions to the figures. Hence, if readers counts the
points on a figure then they would get approximately N/2
points. Displaying half of the torus helps to reduce file size.
Also note that all diffeomorphisms f∗,ε commute with the
involution i : (x, y, z) 7→ (−x,−y,−z). It follows that the
measures which we are interested in are invariant under
i and all conditional measures on the T

2 transversal are
invariant under (x, y) 7→ (−x,−y).

In general, given a partially hyperbolic diffeomorphism
f : M → M , one reason to be interested in minimal sets of
its strong unstable foliation Wuu

f is that minimal invariant
sets support Gibbs u-measures associated to Wuu

f of Pesin

and Sinai [PS83]. Gibbs u-measures are of great interest in

Figure 1.2. Same as Figure 1.1 for fD with
ε = 0.04.

partially hyperbolic dynamics because they govern statis-
tical properties of the dynamical system [Dol01, Dol04a].
Of course, in our setting the dynamical system is a transi-
tive Anosov diffeomorphism which admits a unique SRB-
measure and, hence, statistical properties are very well un-
derstood. However, perturbations of linear partially hy-
perbolic automorphisms are nice model examples where u-
measures are not fully understood. We elaborate on our
motivation to carry out the numerical study at the end of
the introduction.

We view diffeomorphisms given by (1.1) and (1.2) as
partially hyperbolic diffeomorphisms with one-dimensional
strong unstable subbundles. Recall that a Gibbs u-measure
of a partially hyperbolic diffeomorphism f : M → M is
an f -invariant measure µ whose conditional measures on
strong unstable plaques are absolutely continuous with re-
spect to the induced Riemannian volume on strong unsta-
ble plaques. Gibbs u-measures were introduced by Pesin
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and Sinai [PS83]1 who also suggested a way to construct
them as weak∗ partial limits of the sequence of averages

ν̄uuK
def
=

νuu + f∗(ν
uu) + . . .+ fK−1

∗ (νuu)

K
,K ≥ 1, (1.3)

where νuu is a singular measure (on M) given by induced
Riemannian volume on a strong unstable plaque. In our
setting we can take νuu to be the singular measure (on
M) given by the Lebesgue measure on a small plaque of
Wuu(p) with one end point being p. Hence we amend our
calculation of Wuu(p) with a numeric calculation of the
strong unstable Jacobians of f i, i ≤ K, to obtain the aver-
ages numerically (more precisely, we look at the conditional
measures of the averages on the 2-torus given by y = 0).
Even though our evidence is not entirely conclusive we be-
lieve that the averages ν̄uuK converge weakly. Further we
calculate the SRB measure employing the zero-noise limit
description of Young [You86]. The very different numeric
procedures for calculating the u-measure and the SRB mea-
sure produce visually identical results for all values of ε as
indicated on Figure 1.3. Hence we cautiously conjecture
the following.

Conjecture 1.3. For all analytic diffeomorphisms f
in a sufficiently small neighborhood of A there exists a
unique Gibbs u-measure (an f -invariant measure with ab-
solutely continuos conditionals on strong unstable leaves)
which then, of course, coincides with the SRB measure.

This conjecture can be reformulated as follows: for any
analytic diffeomorphisms f in a sufficiently small neighbor-
hood of A any f -invariant measure with absolutely continu-
ous conditional measures on one-dimensional strong unsta-
ble plaques, in fact, has absolutely continuous conditional
measures on two-dimensional unstable plaques.

1.3. Motivation.

1.3.1. Our initial interest in transitivity (or minimal-
ity) question of the strong unstable foliation came from
work on smooth conjugacy of higher dimensional Anosov
diffeomorphisms [Gog08]. Transitivity of invariant expand-
ing one-dimensional foliations (albeit not the strong unsta-
ble ones) played a key role in the arguments of [Gog08].
Families of diffeomorphisms in dimension three which we
consider in this paper is the simplest setting where transi-
tivity (minimality) is not understood.

We remark that minimality of the weak unstable folia-
tion for f∗,ε follows easily from structural stability. Indeed

1Pesin and Sinai used a stronger definition which is equivalent
to the one we give here, see [BDV00, Chapter 11].

Figure 1.3. Conditionals for u and SRB
measure of fD with ε = 0.06.

the conjugacy between A and f sends the weak unstable
foliation Wwu

A to the weak unstable foliation Wwu
f of f . It

is well known (see, e.g., [GG08]) that in general the con-
jugacy does not respect the strong unstable foliation. In
fact, according to [RGZ17], the conjugacy respects strong
unstable foliations if and only if the strong unstable and
stable distributions of f integrate to an invariant foliation.

Note also that here we consider an irreducible auto-
morphism A as a base-point for the families. The situation
is quite different (but also poorly understood) in the case of
reducible automorphisms. Indeed, for a reducible Anosov
automorphism with weak-strong splitting in dimension 4
the closures of strong unstable leaves are 2-tori. And it
is a very interesting question to investigate these closures
and Gibbs u-measures for families which bifurcate into non-
skew-product diffeomorphisms.

1.3.2. Minimality of strong unstable foliations of 3-
dimensional partially hyperbolic diffeomorphisms was stud-
ied by Bonatti-Dı́az-Ures [BDU02]. In particular, results
of [BDU02] yield “large” C1-open sets of partially hyper-
bolic diffeomorphism with minimal strong stable and min-
imal strong unstable foliations. One of the crucial assump-
tions in the setting of [BDU02] is existence of hyperbolic
periodic points of different indices (that is, a index 1 and
index 2). The main technique of [BDU02] is construction
of an invariant Morse-Smale section to the foliation. In our
setting, when the center foliation is weakly expanding, this
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technique is not applicable. Hence our setting can be con-
sidered as a complementary one to the setting of [BDU02].

Recall that homotopy class of A : T3 → T
3 contains

the Mañé’s example. This is a robustly transitive diffeo-
morphism fM : T3 → T

3 which is partially hyperbolic but
not Anosov [Mañ78]. To the best of our knowledge min-
imality of strong unstable foliation of fM is also an open
problem. Thus, understanding strong unstable foliation of
perturbations of A and Mañé’s example is a prerequisite
for the following problem, which is a special case of Prob-
lem 1.6 in [BDU02].

Problem 1.4. Consider the space of robustly transitive
partially hyperbolic diffeomorphisms f : T3 → T

3 which are
homotopic to A, i.e., the induced map f∗ on first homol-
ogy group is given by A. Is strong unstable foliation Wuu

f

minimal? Or at least transitive? If not, then is minimality
(transitivity) of Wuu

f a C1-open and dense property in this
space?

Related to this problem, Potrie asked whether transi-
tivity (or chain-recurrence) follows from partial hyperbol-
icity of f : T3 → T

3 in the homotopy class of A [Pot14].
Further, Potrie proved that there exists a unique qausi-
attractor for each such f . Note that the attractor must
be saturated by leaves of Wuu

f . Hence, minimality of Wuu
f

would imply that the attractor is whole T
3.2

We also remark that robust minimality of strong un-
stable foliation was established in [PS83] under so called
SH-condition. This condition does not hold in our setting.
Finally, minimal sets of strong unstable foliation can be
analyzed better in C1 generic setting, see [CP15, Section
5.3].

1.3.3. It is interesting to understand the space of Gibbs
u-measure Gibbsu(f), its dependence on the diffeomorphism
and what bifurcations can occur. Note that it is known
that Gibbsu(f) depends continuously on f in C1 topol-
ogy [Yan16] (see also [BDV00, Chapter 9]). Generalizing
our numeric observation of uniqueness of the u measure we
ask the following question.

Problem 1.5. Let f : M → M be a partially hyperbolic
diffeomorphism of a 3-manifold M . Assume that f admits
two distinct ergodic u-measures µ1 and µ2. Is it true that

2The first author believes that non-trivial trapping regions exist
for some point-wise partially hyperbolic f : T3 → T

3 in the homotopy
class of A. If so, it would be interesting to investigate the structure
of Wuu

f
and how the bifurcation happens.

supp(µ1) 6= supp(µ2)? That is, do they necessarily have
distinct supports? 3

1.4. Further discussion.

1.4.1. Our numerical evidence actually suggests that
the push-forward measures fn

∗ ν
uu converge to the SRB

measure as n → ∞. This was easier to detect than conver-
gence of averages (1.3), which clearly converge slower. Note
that convergence of fn

∗ ν
uu to the unique Gibbs u-measure

is a key assumption in the study of statistical properties
of partially hyperbolic diffeomorphisms [Dol04a]. This as-
sumption is difficult to verify theoretically when dynamics
along the center subbundle is non-linear.4

1.4.2. Another observation is that our numerical exper-
iments suggest that the u-measure coming from the strong
unstable leaf through p agrees with the SRB measure well
beyond the range of small ε. (The splitting at p sur-
vives for all ε > 0.) This is indicated on Figure 1.4. At
ε = 1

2π ≈ 0.159 bifurcation from diffeomorphisms to non-
invertible maps occurs and the “folding” which happens
beyond this parameter value is clearly visible on Figure 1.4.
Note that pictures of u and SRB measures do not give any
indication if the bifurcation from partially hyperbolic (or
Anosov) world happens. Indeed, it is actually very plausi-
ble that prior to the critical value 1

2π no such bifurcations
happen; that is, fD,ε stays Anosov with weak-strong un-
stable splitting for ε < 1

2π .
To provide some support we numerically calculate points

of period 3 and corresponding eigenvalues using the follow-
ing procedure. We consider a dense 2, 000× 2, 000× 2, 000
mesh of points (xi, yj , zk) and apply dynamics 3 times to
obtain the final point f3(xi, yj , zk). If for some (i, j, k) the
starting and final points end up within D = D(xi, yj , zk) <
0.02 we adjust the coordinates (xi, yj, zk) coordinates to
minimize the Euclidean distance with a gradient descent
method. The partial derivatives (∂D∂x ,

∂D
∂y ,

∂D
∂z ) at (xi, yj , zk)

are calculated numerically. Once D < 10−5, we find the cu-
bic roots of eigenvalues of Df3(xi, yj , zk).

This numerics gives 16 district eigenvalue graphs. And
this is consistent with the Lefschetz formula which yields
91 points fixed by f3

∗,ε. One of these points is the fixed

3It was suggested to us by Dmitry Dolgopyat that this question
also makes sense in higher dimensions if one additionally assumes that
f is accessible (or considers u-measures supported on an accessibility
class).

4However, for transitive Anosov diffeomorphisms mixing implies
that fn

∗
νu converges to the SRB measure, where νu is Lebesgue mea-

sure on an unstable plaque. This was explained to us by F. Rodriguez
Hertz.
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Figure 1.4. Conditionals of the u-measure
on T

2 in the dissipative family fD.

point p. The rest give 30 orbits of period 3 none of which
is fixed by the involution i. Hence the involution breaks
up these orbits into 15 pairs with identical eigenvalue data.
Figure 1.5 displays dependence of the eigenvalue data on
ε. We observe clear separation of the spectrum into three
bands for both conservative and dissipative (ε < 1

2π ) fami-
lies.

1.4.3. Ruelle provided a formula for the derivative of
the SRBmeasure with respect to the diffeomorphism (Anosov,
or more generally on a hyperbolic attractor) [Rue97], see
also [Rue98, Jia12]. If we denote by µε the SRB measure
of fD,ε and expand with respect to ε

µε = µ0 + εδµ+ h.o.t.

Then, according to Ruelle’s formula,

δµ(Φ) =
∑

n≥0

∫

〈∇(Φ ◦An, X)〉dµ

0.0 0.1 0.2
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Figure 1.5. Spectrum at the fixed point and
15 orbits of period 3. Note that it is dis-
joint with horizontal line 1 and is confined
to three disjoint bands, suggesting that dif-
feomorphisms fC (left panel) and fD (right
panel) stay Anosov with weak-strong unsta-
ble splitting.

where Φ ∈ C∞(M,R) andX is the vector field ∂fD,ε/∂ε|ε=0.
Similar formula for u-measure of a partially hyperbolic dif-
feomorphism (more specifically, an element of an Anosov
action) was established by Dolgopyat [Dol04b]. Remark-
ably, the formula of Dolgopyat holds for families fε even
when the uniqueness of u-measure is not known for ε > 0.
That is, all families of u-measures which start at µ0 have
the same derivative. Thus, even though results of Dolgo-
pyat are not directly applicable in our setting, we are less
confident about Conjecture 1.3. One should exercise cau-
tion when perusing our numeric evidence for Conjecture 1.3
as it might be missing some higher order phenomena.

2. Background

In this section we briefly summarize the needed back-
ground. For in depth discussions of partial hyperbolicity,
SRB measures and Gibbs u-measures we refer the reader
to [Pes04, BDV00, You02, PS83, Dol01].

2.1. Anosov and partially hyperbolic diffeomor-

phisms. Recall that a self-diffeomorphism f : M → M of
a compact Riemannian manifold is called Anosov if the tan-
gent space TxM at every x ∈ M is split into Df -invariant
subbundles, TxM = Es(x)⊕Eu(x), andDf |Es is uniformly
expanding while Df |Eu is uniformly contracting.
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An important generalization is the concept of partially
hyperbolic diffeomorphism f : M → M which assumes exis-
tence of a Df -invariant splitting TxM = Ess(x)⊕Ec(x)⊕
Euu(x), where Df |Ess is uniformly expanding, Df |Euu is
uniformly contracting and Df |Ec has intermediate growth,
that is,

‖Df |Ec‖ · ‖(Df |Euu)−1‖ < 1,

and

‖Df |Ess‖ · ‖(Df |Ec)−1‖ < 1

It is well-known that Ess and Euu integrate to foliations
which we denote by W ss and Wuu, respectively.

For sufficiently small ε > 0 the diffeomorphisms f∗,ε
given by (1.1) and (1.2) are Anosov with 2-dimensional un-
stable distributions. However, because A has real spectrum
λ1 < 1 < λ2 < λ3, the unstable distribution admits a finer
invariant splitting Ec ⊕ Euu and, hence, f∗,ε can also be
viewed as a partially hyperbolic diffeomorphism.

2.2. SRBmeasures. Informally speaking, SRB5 mea-
sures are invariant measures which are most compatible
with volume when volume itself is not invariant. More pre-
cisely, consider a self-diffeomorphism f : M → M , then an
invariant measure µ is called an SRB measure (or a physi-
cal measure) if its basin of attraction has positive volume;
that is, the set of points x ∈ M such that

∀ϕ ∈ C0(M) lim
n→∞

1

n

n−1
∑

i=0

ϕ(f ix) =

∫

M

ϕdµ

has positive volume. For transitive Anosov diffeomorphisms
the SRB measure µ is unique and is well-understood by
work of Sinai, Ruelle and Bowen. It can be characterized
by the following equivalent conditions.

(C1) µ has absolutely continuous conditionals on unsta-
ble plaques;

(C2) µ is the zero-noise limit of small random perturba-
tions of f .

Our numeric calculations of the SRB measure for f∗,ε will
rely on the second characterization which is due to L.-S.
Young [You86]. We will elaborate on it later in Section 3.2.

2.3. Gibbs u-measures. The definition of Gibbs u-
measures for partially hyperbolic diffeomorphisms comes
from postulating characterization (C1) above. Given a par-
tially hyperbolic diffeomorphism f : M → M , an invariant
measure µ is called a Gibbs u-measure if it has absolutely

5Sinai-Ruelle-Bowen.

continuous conditionals on unstable plaques. Then the den-
sity of the conditional measure on a plaque Wuu

f (x,R) is
given by

ρuux (y) =
∏

i≥0

Jac(f−1|Euu(f−i(y)))

Jac(f−1|Euu(f−i(x)))
, y ∈ Wuu

f (x,R) (2.4)

Note that in our setting the SRB measure is automat-
ically a u-measure. In general, of course, the converse does
not hold. Still, under additional assumptions this could be
the case. For example, Bonatti and Viana showed that if Ec

is mostly contracting then there are finitely many ergodic
Gibbs u-measures which are the SRB measures [BV00].

Dolgopyat, assuming uniqueness of the u-measure and
that push-forwards fn

∗ ν
uu, n ≥ 0, converge to the u-measure,

established various limit theorems previously known in the
Anosov setting [Dol04a].

2.4. Numerics. We have chosen the C language to
implement the numerical aglorithms for computing orbits,
u-measures, and SRB-measures in this study. Due to the
high precision requirements in the calculation of u- and
SRB-measures, we employed quadmath library available in
gcc 4.4.6. The quadruple precision float128 type provides
machine epsilon 2−112 ≈ 10−34. We relied on the Box-
Muller transformation [BM58] of random numbers pro-
duced with a linear congruential generator [PM88] to in-
troduce Gaussian noise in the SRB calculations. Genera-
tion of u-measures proved to be the most expensive part of
this numerical study but the computational cost was fairly
low, at about 1,000 CPU hours per 108 points.

3. The results

3.1. Numerics for the strong unstable manifold.

Let f : T3 → T
3 be a partially hyperbolic diffeomorphism

which belongs to the family (1.1) or the family (1.2) for
small ε > 0. Here we explain numerics for the strong un-
stable manifoldWuu

f (p) and present the numerical evidence
supporting Conjecture 1.1 using Figures 3.2 and 3.3.

Consider the universal cover R3 ≃ {(x, y, z)}. Denote

by f̃ : R3 → R
3 the lift of f that fixes point (0, 0, 0), which

we still denote by p. Also denote by W̃uu
f (p) the connected

component of the lift of Wuu
f (p) which contains p. Then

the strong unstable manifold W̃uu
f (p) can be viewed as a

graph of a function ϕuu defined on the y-axis

ϕuu : R → R
2, y 7→ (xy, zy)

def
= ϕuu(y)

as shown on Figure 3.1. For each integer y0 the point
(xy0

, zy0
) is the intersection point of the plane R

2 ≃ {y =
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x, z

(x1, z1)
(x2, z2)

(x3, z3)

W̃uu
f (p)

Figure 3.1. The lift of the strong unsta-
ble manifold and the sequence of points
{(xy0

, zy0
); y0 ≥ 1}.

y0} and W̃uu
f (p) and the point

(xy0
, zy0

) mod Z
2

is an intersection point of the 2-torus T
2 ≃ {y = 0} and

Wuu
f (p).

To calculate (xy0
, zy0

) we carry out the following pro-

cedure. Denote by vp the vector tangent to W̃uu
f (p) at p

(which is an eigenvector of Dpf̃). And let cvp be a vector
proportional to vp whose y-coordinate equals to y0. Also let

λp be the corresponding eigenvalue, Dpf̃vp = λpvp. Then

to calculate the point q = (xy0
, y0, zy0

) ∈ W̃uu
f (p) we em-

ploy the following iterative algorithm. First we let q1−50 be
the end point of scaled eigenvector c

λ50
p
vp. We calculate the

first approximation by using the dynamics

q1 = f̃50(q1−50).

Then we look at the y-coordinate of q1, compare it
to y0, use a linear mixing scheme with parameter 0.1 to
adjust the initial point q1−50 along vp to a new initial point
q2−50, and repeat the procedure n = 1, 000− 2, 000 times to

achieve convergence of qn to the desired q ∈ W̃uu
f (p) within

10−24y0 from the plane {y = y0}.
By repeating this iterative calculation we obtain the

sequence of intersection points ofWuu
f (p) and T

2 ≃ {y = 0}

{(xy0
, zy0

); y0 ≥ 1}

We calculate up to 108 points in this sequence. The im-
ages we obtain clearly indicate that points cluster more for
larger values of ε. Still the sequence does not seem to leave
any gaps in T

2. This supports our density conjecture as
shown on Figures 3.2 and 3.3 where as we “zoom in” at

Figure 3.2. Support for Conjecture 1.1. The
intersection points are plotted for fD with
ε = 0.1. Two lower panels are ×3 and ×9
zoom-ins. The number of points is increased
proportionally to the area of the domain.

point p. Zooming in does not reveal any regions free of in-
tersection points. For the conservative family, points tend
to cluster much less and distribute more evenly. We in-
clude the figures for the dissipative family only since they
are more interesting.

3.1.1. Reliability of numerics. The numerical data for
the sequence of points {(xy0

, zy0
); y0 ≥ 1} is the key data

providing support to our conjectures. Thus we briefly elab-
orate on the reliability of our calculations.

The iterative calculation of points q = (xy0
, y0, zy0

) has
two sources of numerical errors. The first one is algorith-
mic and is associated with the deviation of q−K (K = 50)

from the strong unstable manifold W̃uu
f (p) and can be es-

timated as follows. Recall that q is obtained as f̃K(q−K),
where q−K is first guessed as λ−K

p vp. Figure 3.4 shows
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Figure 3.3. Support for Conjecture 1.1.
Same as in Figure 3.2 but for ε = 0.25.

that, once converged, q−K = cvp remains within a factor of
10 from the original guess for all 1 ≤ y0 ≤ 108. The value
of c does not exceed 10−17 for the considered λp ≥ 3.25
corresponding to ε = 0.1. Since the strong unstable man-
ifold and the line spanned by vp have quadratic tangency
at small values of c, the transverse distance from q−K to

W̃uu
f (p) is of the order c2. Over the K steps, the error in

the determination of the intersection of the strong unsta-
ble manifold and T

2 transversal is amplified by a factor of
λK
⊥ . According to Figure 1.5, λ⊥ along the weak unstable

direction is below 2 for ε ≤ 0.1. Hence, the resulting error
does not exceed 10−34 × 250 < 10−18.

The second source of error is the accumulation of round-
ing errors due to machine precision. The resulting accuracy
depends on the particular set of performed operations and
is not easy to evaluate. In order to examine the sensitivity
of our results to machine precision, we compare the errors

-50 -40 -30 -20 -10 0
-30

-25

-20

-15

-10

-5

0

5

10
y0 = 108

y0 = 104

y0 = 1

lo
g 1

0(
 y

i )

step number, i

Figure 3.4. Converged sequences of yi
(−K ≤ i ≤ 0, K = 50) for several target y0
values in the dissipative family with ε = 0.1.
Points with yi ≪ 1 are essentially scaled along
the vp eigenvector by λp.

in determining q for the full range of y0 using single, dou-
ble, and quadruple precisions. The machine epsilons cor-
responding to the float, double, and float128 data types
are 2−23 ≈ 10−7, 2−52 ≈ 10−16, and 2−112 ≈ 10−34, respec-
tively. Figure 3.5(a) shows how far q points calculated with
single or double precisions deviate from those calculated
with the quadruple precision. One can see that the use of
double instead of float reduces the error for all considered
y0 by about 10−9 which is consistent with the difference in
the machine epsilons for the two data types. Based on this
observation, we expect that the use of float128 instead of
double reduces the error by an additional factor of about
10−18 and the rounding error should not exceed 10−25 for
y0 up to 108.

The relative magnitude of the two errors can be con-
trolled by the choice of K: the algorithmic error decreases
with K roughly as (λmin

p )−2K × (λmax
⊥ )K and the round-

ing error grows with K. Our final test results plotted in
Figure 3.5(b) illustrate that the chosen value of K = 50 en-
sures sufficient numerical accuracy to achieve iterative con-
vergence of the q point positions in the intersecting plane
within 10−24y0. Indeed, the distance between q calculated
for K = 50 and those calculated at smaller K values drops
below 10−22 by K = 35 for all considered y0 values.
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Figure 3.5. Analysis of numerical errors in
the determination of q for the dissipative fam-
ily and ε = 0.1. (a) The effect of machine pre-
cision on the accumulation of rounding errors
for K = 50. ∆qprec is the Eucledian distance
between q points calculated with quadruple
precision and with either double or single pre-
cision. (b) Convergence of q points as a func-
tion of the number of steps K. ∆qK is the Eu-
cledian distance between q points calculated
at K = 50 and lower K values.

We conclude that both sources of numeric error are
negligible (10−18 and 10−25) than compared to our stop-
ping criterion 10−24y0 ≤ 10−16. Note that even though
10−24y0 is deviation from the intersecting plane it also gives
an error of the same magnitude within the plane because
the strong unstable manifold intersects the plane with an
angle, hence, the error projects to the plane. Therefore,
the settings used in this computational study allow us to
resolve the point positions better than 10−16 for y0 up to
108 and the procedure can be used (by further lowering the
iteration stopping parameter below 10−24y0) to generate
points with much larger y0 values.

3.2. Numerics for SRB measures. We recall the
description of SRB measure as zero-noise limit by L.-S.
Young [You86]. The idea is to approximate a diffeomor-
phism f : M → M by randomMarkov chains. To define the
Markov chain consider Borel probability measures p(·|x) for
all x ∈ M . Given a Borel set A ⊂ M one can think about

p(A|x) as the probability of sending x to the set A. A
measure µ on M is stationary if

µ(A) =

∫

M

p(A|x)dµ(x)

for every Borel set A.
A small random perturbation of f : M → M is a one pa-

rameter family of Markov chains given by transition prob-
abilities pσ(·|x), x ∈ M , which satisfy pσ(·|x) → δf(x) as
σ → 0 uniformly in x ∈ M . (We will think of σ as a
discrete parameter.) The following properties were estab-
lished in [You86].

1. If x 7→ p(·|x) is continuous then a stationary mea-
sure exists;

2. If p(·|x) are absolutely continuous with respect to
volume for all x ∈ M then the stationary measure
is also absolutely continuous;

3. If {pσ(·|x)} is a small random perturbation of a
diffeomorphism f , then all limit points of a se-
quence of stationary measures {µσ}, as σ → 0,
are f -invariant.

Given a measure ν on a set of diffeomorphisms Ω ⊂
Diff(M) one can define the transition probabilities by

p(A|x) = ν{g : g(x) ∈ A}. (3.5)

Now, if νσ → δf as σ → 0 then corresponding Markov
chains {pσ(·|x)} yield a small random perturbation of f .

Theoretical support for our computations of SRB mea-
sures which we are about to describe comes from the follow-
ing theorem (which is a particular case of a more general
result in [You86]).

Theorem 3.1 ([You86]). Let f : M → M be a transi-
tive Anosov diffeomorphism. There exists a C1 small and
C2-bounded neighborhood Ω ∋ f such that if {νσ} are Borel
probability measures on Ω with νσ → δf , σ → 0, and cor-
responding transition probabilities {pσ(·|x)} given by (3.5)
are absolutely continuous then (every) sequence of station-
ary measures µσ converges to the SRB measure.

Hence this theorem gives a lot of credibility to numeri-
cal calculations where one applies dynamics and small ran-
dom noise at each step to obtain an approximation for the
SRB measure. More precisely we consider a sequence of
symmetric Gaussians ξσ on R

3 with zero mean and stan-
dard deviation σ. Then ξ → δ(0,0,0) as σ → 0. We define

νσ = f + (ξσ mod Z
3)

that is, we post-compose our dynamics with a small random
translation on T

3. Then, clearly, νσ → δf as σ → 0 and one
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Figure 3.6. Approximations of the SRB
measure of fD with ε = 0.1 as σ → 0.

easily sees that the transition probabilities are absolutely
continuous. Hence the theorem above applies. (Techni-
cally, we also need to truncate Gaussians to ensure C1-
smallness of the perturbation, but practically this makes
no difference as we are interested in very small σ.)

The numeric scheme is as follows. We begin with a
random point q0 on T

3 and generate a σ-approximation
of the SRB measure by consecutive application of f and
addition of Gaussian noise ξσ. That is,

qi+1 = f(qi) + ξσ

Note that we only work in the parameter range σ ≫ 10−32

so that the numeric error in calculation of f is much smaller
than the (small) random noise. Therefore, exponential ac-
cumulation of the numeric error is not of any concern. On
Figure 3.6 we display several approximations for different
values of σ. For all further SRB measures numerics, which

we need for comparisons with u-measures numerics, we use
σ = 10−29.

3.3. Comparing Gibbs u and SRB measures. Con-
sider the averaged Dirac measures

Σu =
1

N

N
∑

y0=1

δ(xy0
,zy0)

(3.6)

corresponding to the u-measure, and

ΣSRB =
1

N

∑

qi∈S

δqi (3.7)

corresponding to the SRB measure, where S is the slice
{(x, y, z ∈ T

3 : −0.005 ≤ y ≤ 0.005} which contains
N points. For the dissipative family point distributions
Σu and ΣSRB visually coincide for all parameters in our
range ε ∈ [0, 0.25] (see Figure 1.3). On the other hand, for
the conservative family, the SRB measure is the uniform
Lebesgue measure as it supposed to be, while the u-measure
appears to be an absolutely continuous measure with a non-
constant density, as one can see on the top panel of Fig-
ure 3.7. The “non-uniformity” increases as we increase ε.
The explanation for this discrepancy is that (3.7) gives the
(approximation of) true conditional measure on T

2 of the
SRB measure, while (3.6) does not give (an approximation
of) the conditional of fn

∗ ν
uu. Hence we proceed with the

numeric calculation of the true conditional of fn
∗ ν

uu on T
2

and present the numeric evidence that the measures indeed
coincide.

Remark 3.2. Note however that the conditional of
fn
∗ ν

uu on T
2 is absolutely continuous with respect to (3.6).

Hence, if Σu converges to an absolutely continuous mea-
sure (which we numerically verified by using histograms)
then fn

∗ ν
uu converges to an absolutely continuous measure

on T
3 as n → ∞. And, since this measure is invariant,

it must be the volume. In view of this remark our fur-
ther numeric verification of convergence of fn

∗ ν
uu to vol-

ume becomes somewhat redundant. However we still find
it important to have direct numeric evidence.

Remark 3.3. By analyzing distribution functions of
the Dirac averages (3.6) and (3.7) in the dissipative family
we can also very clearly conclude that Σu and ΣSRB do not
converge to the same measure on T

2. Hence, as to be ex-
pected, the above discussion also applies to the dissipative
family. However visually the point distributions Σu and
ΣSRB are identical in this case. This happens because for
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singular measures, when looking at the pictures of approx-
imating point distributions we can only see the measure
class rather than the measure itself.

3.4. The conditional measure on T
2 ≃ {y = 0}

for Gibbs u-measure. Now we explain precisely our nu-
merics for the conditional of the Gibbs u-measure. Let
r ∈ W̃uu

f (p) be a point very close to p. Consider the

Lebesgue measure on W̃uu
f (p) induced by the canonical flat

Riemannian metric on R
3. And denote by νuu the normal-

ized Lebesgue measure supported on the strong unstable
plaque [p, r]uu ⊂ W̃uu

f (p). Then, by using calculus, the
density of fn

∗ ν
uu with respect to the Lebesgue measure on

W̃uu
f (p) is given by

ρ(q) = Jac(f−n|Euu(q)), q ∈ [p, fn(r)]uu

This Jacobian density can be easily evaluated numerically
because, as we explained in Section 3.1, we can accurately
calculate points q on W̃uu

f (p) together with their preimages

under f−n, n ≤ 50. Hence to find ρ(q) approximately we

look at points q−∆q, q+∆q on W̃uu
f (p) and their preimages;

and then evaluate the Jacobian numerically by taking the
ratio.6

Recall that we need to further take the conditional
measure of fn

∗ ν
uu on T

2 ≃ {y = 0}. Then, one can easily
see (for example, by taking the limit as the width of the T2-
slice goes to zero) that the expression for the conditional
measure at the intersection point (xy0

, y0, zy0
), y0 ∈ Z+, de-

pends on the angle between W̃uu
f (p) and T

2 at (xy0
, y0, zy0

).
Namely, one has the following formula for the conditional
of fn

∗ ν
uu on T

2 ≃ {y = 0}

Σu
ρa =

1

W (N)

N
∑

y0=1

ρ(xy0
, y0, zy0

)a(xy0
, zy0

)δ(xy0
,zy0)

,

where ρ was defined above,

W (N) =
N
∑

y0=1

ρ(xy0
, zy0

)a(xy0
, y0, zy0

);

and the “angle weight” is defined by

a(xy0
, zy0

) =
1

〈v⊥, vuu〉
,

where v⊥ is unit vector at (xy0
, y0, zy0

) perpendicular to
T
2 and vuu is the unit vector at (xy0

, y0, zy0
) tangent to

6We use ‖∆q‖ = 10−7. With such step size, tests similar to
ones in subsection 3.1.1 give an upper bound of 10−6 on the precision
for weight values.

W̃uu
f (p). Again, coefficient a is easy to calculate since we

can numerically calculate the tangent vectors vuu.
The density weights ρ and a have different genesis.

Hence, for the purpose of analyzing Σu
ρa we also introduce

the “component” Dirac averages

Σu
ρ =

1

W

N
∑

y0=1

ρ(xy0
, y0, zy0

)δ(xy0
,zy0 )

,

and

Σu
a =

1

W

N
∑

y0=1

a(xy0
, zy0

)δ(xy0
,zy0 )

,

which are normalized by the corresponding total weight W .

3.5. Comparing Gibbs u and SRB measures nu-

merically. Our calculations of ρ, a and point distributions
Σu, Σu

ρ , Σ
u
a and Σu

ρa are summarized on Figures 3.7, 3.8
and 3.9.

On Figure 3.7 the values of weights are coded in color.
The average value is normalized to equal 1. By the defi-
nition the “angle weight” a = a(xy0

, zy0
) is a continuous

function on T
2. Notice that a (middle panel) varies only

slightly, within 2% of the average. On the other hand, on
the bottom panel shows that ρ varies a lot. Further, the
graph of ρ = ρ(xy0

, y0, zy0
) = ρ(y0) given on Figure 3.8

shows that ρ is unbounded (that is, if normalize ρ so that
ρ(0) = 1 then ρ is unbounded function of y0) and have
certain “self-similar” structure.

By examining Figure 3.7 one can see that ρ smoothes
out the point distribution Σu, that is, it makes Σu

ρ more
uniform than Σu. Curiously, and we have no good explana-
tion for this, the “angle weight” a makes point distribution
less uniform, but, as we remarked before, a has a very small
effect on the distribution.

In order to quantify these observations coming from
Figure 3.7 we use a 200 × 200 square grid to partition T

2

into 40, 000 bins. For each bin B we calculate its total
weight

wu(B) = #{y0 ≤ N : (xy0
, zy0

) ∈ B}

as well as the weight adjusted by ρ

wu
ρ (B) =

N
∑

y0=1,
(xy0

,zy0 )∈B

ρ(y0).

And weights wSRB(B), wu
a (B) and wu

ρ (B) are defined anal-
ogously. Further we calculate relative standard deviation
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Figure 3.7. Dirac averages Σu, Σu
a and Σu

ρ , N =
200, 000. The weights in lower panels are needed
for proper scaling of the distribution in the top panel
in order to obtain (the approximation of) the con-
ditional measure on the transversal. Note that, for
example, in right lower corner point Σu takes large
values, a is above average, and ρ takes small values.

in order to have a single number which measures closeness
to the uniform distribution

RSDu =
1

w̄u

(

1

40, 000

∑

B
(wu(B)− w̄u)2

)
1

2

,

where w̄u is the average of the weights. Analogously we
have relative standard deviations RSDSRB, RSDu

ρ , RSDu
a

and RSDu
ρa. The dependence of relative standard devia-

tions on the number of points in the range N = 106, . . . 108

is shown on Figure 3.9. Indeed, we see that RSDSRB,
RSDu

ρ and RSDu
ρa decay to zero roughly proportionally to

1√
N
. Unfortunately we cannot differentiate between RSDu

ρ

and RSDu
ρa.
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e
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Figure 3.8. Dependence of ρ/ρave on y0 for u-measure
of fC,ε=0.1. Values of ρave is calculated over the full
range of N = 108 points. The minimum 0.1245 is
achieved at 1. The height of the shaded area increases
with y0 whenever ρ/ρave achieves a new maximum value.

If we denote by Fu
∗ : [0, 1]2 → [0, 1] the distribution

function of Σu
∗ , ∗ = ρ, ρa, given by

Fu
∗ (c, d) = Σu

∗([0, c]× [0, d])

then weak∗ convergence of Σu
∗ to the Lebesgue measure is

equivalent to convergence of Fu
∗ (c, d) to cd for all (c, d) ∈

[0, 1]2 as N → ∞. We remark that convergence of RSDu
∗

to 0 is equivalent to

Fu
∗ (c, d) → cd, (c, d) =

(

i

200
,

j

200

)

, i, j = 0, . . . 200.

Such convergence of distribution functions is known in sta-
tistics as Kolmogorov-Smirnov test [Smi39].

Finally let us mention that we have also performed
similar numerics, such as the Kolmogorov-Smirnov test, for
the dissipative family and the results are similar. It is more
difficult to compare ΣSRB and Σu

ρa in this case because the
SRB measure is not Lebesgue. The difficulty comes from
the fact that ΣSRB is defined by (3.7) using the slice S of
thickness ∆y = 10−2. In conservative case the value of ∆y
is irrelevant, but in the dissipative case the restriction of the
SRB measure to the slice is no longer a product measure.
Hence we also need to let ∆y → 0 in order to approximate
the conditional measure on T

2. The additional parameter
∆y makes numerics even more involved and we did not fully
pursue it.
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Figure 3.9. Relative standard deviations for fC,ε=0.1

point distributions calculated for N between 5 to 100
million. The zoom-in on the right shows that both SRB
measure and u measure (when properly weighted) con-
verge to uniform distributions approximately as N−1/2.
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