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1. Introduction

In this paper we are concerned with spacelike convex hypersurfaces of positive con-
stant (K-hypersurfaces) or prescribed Gauss curvature in Minkowski space Rn;1 ðnf 2Þ.
Any such hypersurface may be written locally as the graph of a convex function
xnþ1 ¼ uðxÞ, x A Rn satisfying the spacelike condition

jDuj < 1ð1:1Þ

and the Monge-Ampère type equation

det D2u ¼ cðx; uÞð1 � jDuj2Þ
nþ2

2ð1:2Þ

where c is a prescribed positive function (the Gauss curvature). Our main purpose is to
study entire solutions on Rn of (1.1)–(1.2).

For c1 1 a well known entire solution of (1.1)–(1.2) is the hyperboloid

xnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 þ jxj2; x A Rnð1:3Þ

which gives an isometric embedding of the hyperbolic space Hn into Rn;1. Hano and
Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings
of H2 in R2;1 by constructing other (geometrically distinct) entire solutions of (1.1)–(1.2)
for n ¼ 2 (and c1 1) using methods of ordinary di¤erential equations. Using the theory
of Monge-Ampère equations, A.-M. Li [12] studied entire spacelike K-hypersurfaces with
uniformly bounded principal curvatures, while the Dirichlet problem for (1.1)–(1.2) in a
bounded domain WHRn was treated by Delanoë [8] when W is strictly convex, and by
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Guan [9] for general (non-convex) W. In this paper we are interested in entire spacelike
K-hypersurfaces, and more generally hypersurfaces of prescribed Gauss curvature, without
a boundedness assumption on principal curvatures.

Our first goal is to classify all entire spacelike K-hypersurfaces with symmetries,
i.e. those invariant under a subgroup of isometries of Rn;1, extending the results of Hano-
Nomizu [11] to higher dimensions. We will focus on hypersurfaces which are rotationally
symmetric with respect to a spacelike axis, as a rotationally symmetric entire spacelike
K-hypersurface with other types of axes either does not exist (when the axis is lightlike) or
is congruent to a rescaling of the standard hyperboloid (1.3) (when the axis is timelike).
These surfaces will be constructed in Section 2 where we will study their properties and
asymptotic behavior at infinity. As we will see in Section 4, understanding these surfaces
is crucial to our study of the Minkowski type problem described below. One of our main
results in Section 2 states that these symmetric K-hypersurfaces are complete with respect
to the induced metric from Rn;1.

For general entire spacelike K-hypersurfaces it is an important question to under-
stand their asymptotic behavior at infinity. Li [12] proved that an entire spacelike K-
hypersurface given by a convex solution u A CyðRnÞ of (1.1)–(1.2) has uniformly bounded
principal curvatures if and only if DuðRnÞ ¼ B1ð0Þ, the unit ball in Rn. On the other hand,
as we will see in Section 2 there do exist entire K-hypersurfaces with unbounded principal
curvatures. As in the case of hypersurfaces with constant mean curvature which was
treated in [13] and [7], the asymptotic behavior of an entire spacelike K-hypersurface can
be characterized by its tangent cone at infinity. (See Section 3.) Finding entire spacelike
K-hypersurfaces with prescribed tangent cones at infinity is more subtle. A substantial dif-
ficulty is due to the fact that spacelike K-hypersurfaces do not admit a priori interior uni-
form bounds which keep them from becoming null. To overcome this di‰culty we adopt a
variational approach, following an idea from [10], that allows us to introduce an appropri-
ate class of weak solutions, called admissible maximal solutions, to (1.2) which may only
satisfy the weakly spacelike condition

jDuje 1:ð1:4Þ

The details will be discussed in Section 3 where we consider the existence and regularity of
entire weak solutions to (1.2) with prescribed tangent cone at infinity.

Another interesting approach to finding entire spacelike hypersurfaces with prescribed
Gauss curvature and tangent cone at infinity is to consider the Minkowski type problem of
prescribing the Gauss curvature as a function (defined on a domain W in Hn, the unit
sphere in Rn;1) of the unit normal vector of the prospective hypersurface. This was indeed
the approach employed by Li [12] who considered the case when the function is defined on
the whole space Hn (or equivalently B1ð0ÞHRn via the Legendre transformation), coupled
with a smoothness requirement on the asymptotic behavior at infinity of the prospective
solution graphðuÞ (in terms of x � DuðxÞ � uðxÞ). With the aid of the K-hypersurfaces con-
structed in Section 2, we will extend Li’s result to allow Lipschitz boundary data for n ¼ 2,
which geometrically seems to be a more natural assumption. Another challenging problem
is to study more general cases where the function is prescribed on only part of Hn. In this
paper we are able to treat the case W ¼ Hn

þ :¼ Hn X fx1 > 0g. This part of the work is in-
cluded in Section 4. We hope to come back to the problem in future work.
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The corresponding questions for spacelike hypersurfaces of constant mean curvature
have received considerably more intensive investigation. In their remarkable work on the
Bernstein theorem for maximal hypersurfaces which extends earlier results of Calabi [5] to
higher dimensions, Cheng-Yau [6] proved that entire spacelike hypersurfaces of constant
mean curvature in Rn;1 are complete (with respect to the induced metric) and have uni-
formly bounded principal curvatures. Subsequently, Treibergs [13] and Choi-Treibergs [7]
studied the asymptotic behavior at infinity of entire spacelike graphs of constant mean cur-
vature and treated the existence of such hypersurfaces with prescribed tangent cone at infin-
ity. In [1] Bartnik-Simon dealt with the Dirichlet problem for the equation of prescribed
mean curvature. While our results indicate that there are significant di¤erences between en-
tire spacelike hypersurfaces of constant Gauss curvature and those of constant mean curva-
ture, it seems to be an interesting open question whether an entire spacelike K-hypersurface
must be complete.

Acknowledgments. Part of this work was done while the second author was visiting
the Department of Mathematics at University of Tennessee and he wishes to thank them
for their hospitality.

2. Entire spacelike K-hypersurfaces with SO(nC1, 1) symmetries

In this section we will classify all entire spacelike K-hypersurfaces which possess a
rotational symmetry with respect to a spacelike axis. Up to rescaling any such hypersurface
is congruent in Rn;1 to the graph of a convex solution of (1.1)–(1.2) with c1 1 of the form

uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
f ðx1Þ2 þ jxj2; x ¼ ðx2; . . . ; xnÞ; x ¼ ðx1; xÞ A Rn;ð2:1Þ

where f is a positive function defined on R. Geometrically the K-hypersurface
M :¼ graphðuÞHRn;1 is invariant under the isometries

cosh y sinh y

Fn�1

sinh y cosh y

0
B@

1
CA; y A R; Fn�1 A SOðn � 1Þ:ð2:2Þ

We first recall some basic local formulas for the geometric quantities of spacelike hy-
persurfaces in the Minkowski space Rn;1 which is Rnþ1 endowed with the Lorentzian metric

ds2 ¼
Pn
i¼1

dx2
i � dx2

nþ1:ð2:3Þ

A spacelike hypersurface M in Rn;1 is a codimension-one submanifold whose induced met-
ric is Riemannian. Locally M can be written as a graph xnþ1 ¼ uðxÞ, x A Rn, satisfying the
spacelike condition (1.1). The induced metric and second fundamental form of M are given
by

gij ¼ dij � uxi
uxj

ð2:4Þ

and, respectively,
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hij ¼
uxixjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

1 � jDuj2
;ð2:5Þ

while the timelike unit normal vector field to M is

n ¼ ðDu; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDuj2

;ð2:6Þ

where Du ¼ ðux1
; . . . ; uxn

Þ and D2u ¼ fuxixj
g denote the ordinary gradient and Hessian of u,

respectively. We will use ‘u to denote the gradient of u on M. Note that the norm of ‘u

(with respect to the induced metric on M from Rn;1) is

j‘uj1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
gijuxi

uxj
¼ jDujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

1 � jDuj2
ð2:7Þ

where

gij ¼ dij þ
uxi

uxj

1 � jDuj2
ð2:8Þ

is the inverse matrix of fgijg. The Gauss-Kronecker curvature, which is the product of the
principal curvatures (i.e. the eigenvalues of the second fundamental form with respect to
the metric of M), and the mean curvature of M are given by

KM ¼ det D2u

ð1 � jDuj2Þ
nþ2

2

ð2:9Þ

and, respectively

HM ¼ 1

n
div

Duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDuj2

 !
:ð2:10Þ

Thus equation (1.2) locally describes hypersurfaces with prescribed Gauss-Kronecker cur-
vature c.

Now assume that u is of the form (2.1). One calculates

ux1
¼ ff 0

u
; uxi

¼ xi

u
; 2e ie n;ð2:11Þ

and

1 � jDuj2 ¼ f 2ð1 � f 02Þ
u2

:ð2:12Þ

Thus u is spacelike if and only if
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j f 0j < 1 on R:ð2:13Þ

By (2.7) and (2.12) we have

j‘uj
u

e
1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDuj2

¼ 1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 02

p :ð2:14Þ

Next,

ux1x1
¼ ff 00 þ f 02

u
� f 2f 02

u3
¼ ff 00 þ f 02 � 1

u
þ g11

u
;

ux1xj
¼ � ff 0xj

u3
¼ g1j

u
; 2e j e n;

uxixj
¼ 1

u
dij �

xixj

u2

� �
¼ gij

u
; 2e i; j e n

ð2:15Þ

and therefore,

det D2u ¼ f 3f 00

unþ2
:

The Gauss curvature of the spacelike hypersurface M in Rn;1 is thus given by

KM ¼ f 00

f n�1ð1 � f 02Þ
nþ2

2

ð2:16Þ

while, by (2.12) and (2.15), the principal curvatures are

k1 ¼ f 00

ð1 � f 02Þ
3
2

; k2 ¼ � � � ¼ kn ¼ 1

f ð1 � f 02Þ
1
2

:ð2:17Þ

Consequently, if KM 1 1 then

f 00 ¼ f n�1ð1 � f 02Þ
nþ2

2 :ð2:18Þ

Integrating (2.18) we obtain

ð1 � f 02Þ�n=2 � f n ¼ ð1 � b2Þ�n=2 � an 1 cð2:19Þ

where

a ¼ f ð0Þ; b ¼ f 0ð0Þ:ð2:20Þ

We summarize some of our observations in the following.

Lemma 2.1. Let a > 0, jbj < 1 and c ¼ ð1 � b2Þ�n=2 � an. The following results hold:
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(a) The (unique) solution f to (2.18) and (2.20) exists on the entire R and satisfies

(2.13).

(b) If bf 0 then

lim
t!þy

f 0ðtÞ ¼ 1 and lim
t!þy

f ðtÞ2�1 � f 0ðtÞ2� ¼ 1:ð2:21Þ

(c) If ce 1 then f > 0 and f 00 > 0 on R.

(d) If c > 1 then f changes signs on R.

(e) Suppose g is another solution of (2.19) satisfying gð0Þ > 0 and jg 0ð0Þj < 1. Then

either g1 ð1 � cÞ1=n, which is possible only when c < 1, or there exists t0 A R such that

gðtÞ ¼ f ðat þ t0Þ where a ¼ 1 or �1.

Proof. Suppose f 0ðt0Þ ¼ 1 for some t0 A R. We may assume t0 > 0 and 0e f 0 < 1
in ½0; t0Þ. Then

f ðtÞ ¼ f ð0Þ þ
Ðt
0

f 0ðtÞ dt < a þ t0; E0e t < t0:

However, by (2.19),

lim
t!t�

0

f ðtÞ ¼ þy:

This contradiction shows that j f 0j < 1 wherever the solution exists. By the theory of ordi-
nary di¤erential equations we see the solution extends to the entire R. This proves (a).

If bf 0 then from (2.18) we see f 00ðtÞ > 0 and f 0ðtÞ > 0 on t > 0. It follows that

lim
t!þy

f ðtÞ ¼ þy:

By (2.19) this implies (2.21) and (b) is proved.

From (2.18) we see f 00 > 0 if f > 0 while f n f 1 � c by (2.19). Now suppose c ¼ 1
and f ðt0Þ ¼ 0 for some t0 A R. Then f 0ðt0Þ ¼ 0 and therefore f 1 0 by the uniqueness of
solution. This contradicts the fact that f ð0Þ ¼ a > 0, proving (c).

Suppose that c > 1 and f f 0 on R. Then j f 0jf ð1 � c�2=nÞ1=2 1 ~cc > 0 on R by
(2.19). Without loss of generality, let us assume f 0f ~cc on R. Then

f ðtÞ ¼ f ð0Þ þ
Ðt
0

f 0ðtÞ dte a þ ~cct; Ete 0:

Letting t ! �y we reach a contradiction, which implies (d).

Finally, to prove (e) we observe that if g is not constant then it also satisfies (2.18).
From the proof of (b) we see that g is unbounded above on R. There exist therefore
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t1; t2 A R such that f ðt1Þ ¼ gðt2Þ and hence j f 0ðt1Þj ¼ jg 0ðt2Þj by (2.19). The function
~ff ðtÞ ¼ f

�
aðt � t2Þ þ t1

�
where

a ¼ 1; if f 0ðt1Þ ¼ g 0ðt2Þ;
�1; if f 0ðt1Þ ¼ �g 0ðt2Þ3 0;

�

then satisfies (2.18) and

~ff ðt2Þ ¼ gðt2Þ; ~ff 0ðt2Þ ¼ g 0ðt2Þ:

By the uniqueness of solutions we have ~ff ¼ g. The proof is complete. r

By Lemma 2.1 when c > 1 the corresponding function u given by (2.1) fails to be
smooth in Rn while when ce 1 the resulting hypersurface is a smooth spacelike strictly
convex entire graph. Our next lemma enables us to classify these surfaces.

Lemma 2.2. Suppose a > 0, 0e b < 1, c1 ð1 � b2Þ�n=2 � an e 1 and let f be the so-

lution of (2.18) and (2.20) on R.

(a) If c ¼ 1 then f 0 > 0 on R and

lim
t!�y

f ðtÞ ¼ 0 and lim
t!�y

f 0ðtÞ ¼ 0:ð2:22Þ

(b) If c < 1 then there exists t A R such that ~ff ðtÞ1 f ðt þ tÞ is an even function. In

particular, if c ¼ 0 then ~ff ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
.

Proof. We first consider the case c ¼ 1. Suppose f 0ðt0Þ ¼ 0 for some t0 A R. Then
f ðt0Þ ¼ 0 by (2.19) and therefore f 1 0 by the uniqueness of solution, which is a contradic-
tion. Thus f 0 > 0 on the entire R. Since f is convex and bounded below from zero, we have
f 0ðtÞ ! 0 and hence f ðtÞ ! 0 by (2.19) as t approaches negative infinity. This proves (a).

Now suppose c < 1 and let h be the unique solution of (2.18) satisfying h 0ð0Þ ¼ 0
and hð0Þ ¼ ð1 � cÞ1=n > 0. Then h is an even function as hð�tÞ is also a solution of (2.18)
satisfying the same initial conditions. By Lemma 2.1 (e) we have hðtÞ1 f ðt þ tÞ for some
t A R. r

It follows from Lemma 2.1 that for each constant ce 1, up to a translation and reflec-
tion there exists a unique positive solution fc of (2.13) and (2.18) which satisfies (2.19) on R.
According to Lemma 2.2 we will assume throughout the paper fc is even for c < 1, and that
f1 is chosen so that f1ð0Þ ¼ 1 and f 0

1 ðtÞ > 0 for all t A R. Note that f0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
. Let Hc

denote the graph of

ucðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
fcðx1Þ2 þ jxj2; x A Rn:ð2:23Þ

We see that Hc is a spacelike entire graph of constant Gauss curvature one in Rn;1. Our
main result of this section is the following characterization of Hc.

Theorem 2.3. (a) For all ce 1, Hc is a complete Riemannian manifold with respect to

the induced metric from Rn;1.
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(b) The principal curvatures of Hc are uniformly bounded for c < 1, while H1 has un-

bounded principal curvatures.

(c) DucðRnÞ ¼ B1ð0Þ for all c < 1 and Du1ðRnÞ ¼ Bþ
1 ð0Þ :¼ B1ð0ÞX fx1 > 0g.

Proof. Note that the principal curvatures are given by (2.17). Part (b) therefore fol-
lows from Lemma 2.2 and Lemma 2.1 (b), as does part (c) in view of (2.11).

To prove part (a) we write f ¼ fc and u ¼ uc. Let aðsÞ ¼
�
xðsÞ; uðsÞ

�
, s A ½0;LÞ be a

geodesic ray on Hc parametrized by arc length such that jxðsÞj ! y as s ! L. By (2.14) we
have

log uðsÞ � log uð0Þe
Ðs
0

j‘uj
u

dse
Ðs
0

ds

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 02

p ; E0e s < L:

If c < 1 we see from f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 02

p
f

ffiffiffiffiffiffiffiffiffiffiffi
1 � c

p
that

log uðsÞ � log uð0Þe sffiffiffiffiffiffiffiffiffiffiffi
1 � c

p ; Es < L:

It follows that L ¼ y since u is a proper function on Rn in this case.

We now consider case c ¼ 1 and assume f 0 > 0. Suppose there exists some constant
N > 0 such that x1ðsÞf�N for all 0e s < L. We then have L ¼ y as in the previous case
(c < 1) since, by Lemma 2.2 (a), f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � f 02

p
f c0 > 0 for all 0e s < L where c0 is a con-

stant.

Now assume that

lim inf
s!L

x1ðsÞ ¼ �y:

Let gij be the metric of H1. We claim that

gijxixj f
�
1 � ð f 0Þ2�x2

1 ; Ex ¼ ðx1; xÞ A Rn:ð2:24Þ

This follows from the following calculations

g11x
2
1 ¼

�
1 � ð f 0Þ2�x2

1 þ
ð f 0Þ2jxj2x2

1

u2
;

2
P
if2

g1ix1xi ¼ � 2ff 0x1

u2

P
if2

xixi f�ð f 0Þ2jxj2x2
1

u2
� f 2jxj2

u2

and

P
i; jf2

gijxixj ¼ jxj2 � ðx � xÞ2

u2
f

f 2jxj2

u2
:
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Using (2.24) we obtain

s ¼
Ðs
0

gij

dxi

ds

dxj

ds

� �1
2

ds

f
Ðs
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � ð f 0Þ2 dx1

ds

����
���� ds

f�
Ðx1ðsÞ

x1ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � ð f 0Þ2

dx1

f�
Ðx1ðsÞ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � ð f 0Þ2

dx1

f
�x1ðsÞ þ a

2
; E0e s < L;

where the constant ae x1ð0Þ is chosen to satisfy f 0ðtÞe 1ffiffiffi
2

p for te a. Letting s ! L we
obtain L ¼ y. r

Remark 2.4. When c < 1 part (a) of Theorem 2.3 also follows from a result of Li
[12] as the principal curvatures of Hc are bounded.

Remark 2.5. Up to rescaling any entire spacelike K-hypersurface M in Rn;1 which is
rotationally symmetric about a spacelike line is congruent to Hc for some c < 1 if the prin-
cipal curvatures of M are uniformly bounded, and to H1 otherwise.

These K-hypersurfaces will be used to construct barrier functions in our study of the
Minkowski type problem in Section 4. For this purpose we need to know more accurate
asymptotic behavior at infinity of these hypersurfaces. The rest of this section is devoted
to this topic. Our main tool is the following comparison result for solutions of (2.18). For
a solution f of (2.13), (2.18) we denote Cf 1 ð1 � f 02Þ�n=2 � f n e 1.

Lemma 2.6. Let f and g be positive solutions of (2.13), (2.18) with Cf < Cg e 1.

Then

(a) j f 0ðtÞj < jg 0ðtÞj wherever f ðtÞ < gðtÞ; and

(b) if f 0ðt0Þ ¼ g 0ðt0Þ for some t0 A R then f ðtÞ � gðtÞf f ðt0Þ � gðt0Þ > 0 for all t A R.

Moreover, f 0ðtÞ > g 0ðtÞ for all t > t0 and f 0ðtÞ < g 0ðtÞ for all t < t0.

Proof. Clearly (a) follows from equation (2.19). To prove (b) let h ¼ f � g. Since
Cf < Cg we have h > 0 by (2.19) and, therefore, h 00 > 0 by (2.18) whenever h 0 ¼ 0. Con-
sequently, h attains a positive local minimum at any critical point. This implies that h can
have at most one critical point; (b) is thus proved. r

Corollary 2.7. (a) If c < 0 or c ¼ 1 then
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ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
< fcðtÞ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 þ ðt þ tcÞ2; Et > 0

where tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip�

fcð0Þ
�2 � 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
ð1 � cÞ2=n � 1 for c < 0, and t1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=n � 1

p
. (Recall that

f0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
.)

(b) 0 < c < 1 then

fcðtÞ <
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
< fcðt þ tcÞ; Et > 0

where tc > 0 satisfies fcðtcÞ ¼ f0ð0Þ ¼ 1.

Proof. These are consequences of Lemma 2.6 (b) (applied to fc and f0; recall that
f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
) and the uniqueness of solutions to the boundary value problems of equation

(2.18). r

By Lemma 2.6 and Corollary 2.7, f0ðtÞ � fcðtÞ is monotone and bounded for t > 0.
Consequently, the limit

lc 1 lim
t!þy

�
f0ðtÞ � fcðtÞ

�
exists for all ce 1. Note that lc < f0ð0Þ � fcð0Þ < 0 for c < 0, lc > f0ð0Þ � fcð0Þ > 0 for
0 < c < 1, and l1 < 0.

Theorem 2.8. For any ce 1

lim
t!þy

�
tf 0

c ðtÞ � fcðtÞ
�
¼ lc;ð2:25Þ

while

lim
t!�y

�
tf 0

1 ðtÞ � f1ðtÞ
�
¼ 0:ð2:26Þ

Proof. Let FcðtÞ ¼ tf 0
c ðtÞ � fcðtÞ. By the convexity of fc, F 0

cðtÞ ¼ tf 00
c ðtÞ > 0 for t > 0

and F 0
cðtÞ ¼ tf 00

c ðtÞ < 0 for t < 0.

Let us first prove

A1 lim
t!�y

F1ðtÞ ¼ 0:ð2:27Þ

The limit exists since F1ðtÞ < 0 and F 0
1ðtÞ < 0 for t < 0. Suppose A < 0. Since F1ðtÞ < A for

t < 0 and f1ðtÞ ! 0 as t ! �y, there exists T < 0 such that

tf 0
1 ðtÞ < A þ f1ðtÞ < 0; EteT :

Thus

f 0
1 ðtÞ

A þ f1ðtÞ
e

1

t
; EteT

and
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lnj f1ðTÞ þ Aj � lnj f1ðtÞ þ Aje lnjT j � lnjtj; EteT :

Letting t ! �y we obtain a contradiction

lnj f1ðTÞ þ Aj � lnjAj ¼ �y:

This proves (2.26).

We next prove (2.25) for c < 0; the proof for 0 < ce 1 is similar and will be omitted.
In the rest of this proof let c < 0 be fixed. For any fixed N f 0 there is unique SN > 0 and
TN > 0 such that f 0

c ðNÞ ¼ f 0
0 ðN þ SNÞ and fcðNÞ ¼ f0ðN þ TNÞ. We have

f0ðt þ SNÞ þ fcðNÞ � f0ðN þ SNÞ < fcðtÞ < f0ðt þ TNÞ; Et > Nð2:28Þ

and

f 0
0 ðtÞ < f 0

c ðtÞ < f 0
0 ðt þ TNÞ; Et > N;ð2:29Þ

by Lemma 2.6. ((a) for the second inequality in (2.29) and (b) for the first ones in (2.28) and
(2.29). Note that f 0

c ð0Þ ¼ f 0
0 ð0Þ.) Consequently,

FcðtÞ < tf 0
0 ðt þ TNÞ �

�
f0ðt þ SNÞ þ fcðNÞ � f0ðN þ SNÞ

�
< F0ðt þ TNÞ þ f0ðt þ TNÞ � TNf 0

0 ðt þ TNÞ

� f0ðt þ SNÞ þ f0ðN þ SNÞ � fcðNÞ

< F0ðt þ TNÞ þ f0ðtÞ � f0ðt þ SNÞ þ f0ðN þ SNÞ � fcðNÞ; Et > N

since f0ðt þ TNÞ � TNf 0
0 ðt þ TNÞ < f0ðtÞ by the convexity of f0. Thus lim FcðtÞ exists as

t ! þy and

lim
t!þy

FcðtÞe f0ðN þ SNÞ � fcðNÞ � SNð2:30Þ

as

lim
t!þy

F0ðtÞ ¼ 0

and

lim
t!þy

�
f0ðt þ SNÞ � f0ðtÞ

�
¼ SN :

On the other hand, from (2.28) and (2.29) we have

FcðtÞ > tf 0
0 ðtÞ � f0ðt þ TNÞ ¼ F0ðtÞ þ f0ðtÞ � f0ðt þ TNÞ; Et > N:

It follows that

lim
t!þy

FcðtÞf lim
t!þy

�
f0ðtÞ � f0ðt þ TNÞ

�
¼ �TN :ð2:31Þ
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Note that

lim
N!þy

�
f0ðN þ SNÞ � f0ðNÞ � SN

�
¼ 0

and

lim
N!þy

TN ¼ lim
N!þy

�
f0ðN þ TNÞ � f0ðNÞ

�
¼ lim

N!þy

�
fcðNÞ � f0ðNÞ

�
¼ �lc:

Letting N approach infinity, from (2.30) and (2.31) we obtain (2.25). r

Corollary 2.9. Let ~ff1ðtÞ ¼ f1ðt þ l1Þ. Then

lim
jtj!y

�
t~ff 0

1ðtÞ � ~ff1ðtÞ
�
¼ 0:

Corollary 2.10. Let u�
c be the Legendre transform of u defined by

u�
c ðyÞ ¼ supfx � y � uðxÞ : x A Rng; y A DucðRnÞ:

Then

u�
c ðyÞ ¼

lcjy1j; for y ¼ ðy1; yÞ A qB1ð0Þ; if c < 1;

lc y1; for y ¼ ðy1; yÞ A qBþ
1 ð0Þ; if c ¼ 1;

�
ð2:32Þ

where B1ð0Þ is the unit ball in Rn, and Bþ
1 ð0Þ ¼ B1ð0ÞX fy1 > 0g.

Proof. For any y A Wc 1DucðRnÞ, by (2.11)

u�
c ðyÞ ¼ x � DucðxÞ � ucðxÞ ¼

fcðx1Þ
�
x1 f 0

c ðx1Þ � fcðx1Þ
�

ucðxÞ
;

where x ¼ ðx1; xÞ A Rn is uniquely given by DucðxÞ ¼ y. Letting y approach an arbitrarily
fixed point on qWc we obtain (2.32) from Theorem 2.8 and (2.11). r

This proves to be useful in Section 4 where we will also need the following lemma.

Lemma 2.11. lc ! �y as c ! �y and lc ! þy as c ! 1�.

Proof. The first case is obvious since lc < f0ð0Þ � fcð0Þ ¼ 1 � ð1 � cÞ1=n for c < 0.
Next, for any fixed N > 0 there exists cN A ð0; 1Þ such that

fcð0Þ ¼ ð1 � cÞ1=n < f1ð�2NÞ; EcN < c < 1:

By Lemma 2.6 (a),

fcðtÞ < f1ðt � 2NÞ; Et > 0; cN < c < 1:

In particular,

fcðNÞ < f1ð�NÞ; EcN < c < 1:
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It follows that

lc > f0ðNÞ � fcðNÞ > f0ðNÞ � f1ð�NÞ; EcN < c < 1

since f0ðtÞ � fcðtÞ is increasing for t > 0 when c > 0. Letting c ! 1� and then N ! þy,
we prove the second case. r

3. The tangent cone at infinity

In this section we first characterize the tangent cones for entire spacelike convex hy-
persurfaces in Minkowski space with bounded Gauss curvature. We then will consider the
problem of finding such K-hypersurfaces with a prescribed tangent cone at infinity. Let u be
an entire convex solution of (1.1)–(1.2) with 0 < c1 ecec2 on Rn where c1, c2 are con-
stant. Consider

urðxÞ :¼
uðrxÞ

r
; x A Rn; r > 0;

VuðxÞ :¼ lim
r!0

urðxÞ; x A Rn:ð3:1Þ

Following [7] and [13] we call Vu the blowdown of u at infinity. Note that, by (1.1) and the
convexity of u, Vu is well-defined and convex on Rn,

VuðlxÞ ¼ lVuðxÞ; Ex A Rn; l > 0ð3:2Þ

and

jVuðxÞ � VuðyÞje jx � yj; Ex; y A Rn:ð3:3Þ

Moreover, Vu satisfies the null condition, that is

Lemma 3.1. For any x A Rn there exists y A Rn, y3 x, such that

jVuðxÞ � VuðyÞj ¼ jx � yj:ð3:4Þ

Proof. Suppose this is not true. Then there exists x0 A Rn and d > 0 such that

VuðxÞeVuðx0Þ þ 1 � 2d; Ex A qB1ðx0Þ

where B1ðx0Þ is the unit ball in Rn centered at x0. By the convexity of u we have

d

dr

�
urðxÞ � urð0Þ

�
e 0; Ex A Rn:

Thus the limit in (3.1) is uniform on compact sets by Dini’s Theorem. Consequently, we
can find r0 > 0 such that

urðxÞeVuðx0Þ þ 1 � d; Ex A qB1ðx0Þð3:5Þ
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for all r > r0. It therefore follows from the maximum principle that

urðxÞeWðx; rÞ :¼ Vuðx0Þ þ
�
ðc1=n

1 rÞ�2 þ jx � x0j2
�1

2 � d; Ex A B1ðx0Þ

as both ur and Wð�; rÞ are spacelike in B1ðx0Þ and

det D2urðxÞ ¼ rn det D2uðrxÞf rnc1ð1 � jDuj2Þ
nþ2

2 ; x A B1ðx0Þ

while

det D2Wðx; rÞ ¼ rnc1

�
1 � jDWðx; rÞj2

�nþ2
2 ; x A B1ðx0Þ:

Letting r ! y we obtain

Vuðx0ÞeVuðx0Þ � d;

which is a contradiction. r

Recall that the set of subdi¤erentials of a convex function v at a point x0 A Rn is
defined as

Tvðx0Þ :¼ fa A Rn : vðxÞf vðx0Þ þ a � ðx � x0Þ; Ex A Rng:

Obviously, Tvðx0Þ is a closed convex set and equals Dvðx0Þ if v is di¤erentiable at x0. We
call TVu

ðRnÞ the tangent cone at infinity of graph u. Using Lemma 3.1 one can show as in [7]
that

TVu
ðRnÞ ¼ TVu

ð0Þ ¼ DuðRnÞLB1ð0Þð3:6Þ

and

VuðyÞ ¼ jyj; Ey A DuðRnÞ:ð3:7Þ

This last identity can be seen as follows. By definition

VuðyÞfVuð0Þ þ y � y ¼ jyj2; Ey A TVu
ð0Þ

since Vuð0Þ ¼ 0. In particular, from (3.3) we have

VuðyÞ ¼ 1; Ey A TVu
ð0ÞX qB1ð0Þ:

By (3.2), we therefore obtain (3.7). The following lemma can also be shown as in [7].

Lemma 3.2. TVu
ð0Þ is the convex hull of TVu

ð0ÞX qB1ð0Þ. In particular, TVu
ð0Þ has no

interior strictly extremal points. Moreover,

VuðxÞ ¼ supfa � x : a A TVu
ð0ÞX qB1ð0Þg; x A Rn:
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It is a natural question to find entire K-hypersurfaces with a given tangent cone. In
order to treat this problem we introduce a class of weak solutions to (1.2) and discuss their
basic properties.

For a domain WLRn and a nonnegative function c defined on W� R, let A½c;W�
denote the collection of weakly spacelike, locally convex subsolutions (in the viscosity
sense) of (1.2) in C0ðWÞ. We call u A A½c;W� an admissible maximal solution of (1.2) in W if

Ð
W 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDuj2 dxf

Ð
W 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDvj2 dxð3:8Þ

for any bounded subdomain W 0 of W and v A A½c;W 0� with u ¼ v on qW0. Note that (3.8)
means geometrically that the volume of graphW 0 ðuÞ is greater than or equal to that of
graphW 0 ðvÞ. Thus the graph of an admissible maximal solution is a volume maximizer in
A½c;W�.

Lemma 3.3. Let u A A½c;W� be an admissible maximal solution of (1.2). If u is space-

like in a subdomain W 0 LW, then it is a viscosity solution in W 0. In particular, if u A C2ðW 0Þ
then it is a classical solution, and is locally strictly convex if c > 0.

Proof. We first assume that W 0 is smooth and bounded, c A CyðW 0 � RÞ, c > 0,
and u A C2ðW 0Þ. Using u as a subsolution, we can apply a theorem in [9] to obtain a space-
like locally strict convex solution v A CyðW 0Þ of (1.2) satisfying vf u in W 0 and v ¼ u on
qW 0. By Lemma 3.4 (below) we have

Ð
W 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDuj2 dxe

Ð
W 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDvj2 dx:

Replacing u by v on W 0, we obtain a function ~uu A A½c;W�. By the definition of admissible
maximal solutions we see that the equality holds and therefore v ¼ u in W 0. By an approx-
imation argument we prove the lemma in the general case. r

Lemma 3.4. Let u1; u2 A C0;1ðWÞXC0ðWÞ be spacelike and satisfy u1 f u2 in W and

u1 ¼ u2 on qW. Suppose u1 is convex, or more generally, the spacelike graph of u1 in Rn;1 has

nonnegative generalized mean curvature almost everywhere, that is

div
Du1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

1 � jDu1j2

 !
f 0 a:e:

Then

Ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu1j2 dxf

Ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu2j2 dx:

The equality holds if and only if u1 ¼ u2 in W.

Proof. Let Si denote the graph of ui in Rnþ1 over W and

ni ¼
�
�DuiðxÞ; 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 þ jDuiðxÞj2
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the (Euclidean) upward unit normal vector field to Si, i ¼ 1; 2. Consider the vector filed

Nðx; zÞ ¼
�
Du1ðxÞ; 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu1ðxÞj2

; ðx; zÞ A R

where

R :¼ fðx; zÞ A Rnþ1 : u2ðxÞ < z < u1ðxÞ; x A Wg

is the region in Rnþ1 bounded by S1 and S2. We have

div Nðx; zÞ ¼ div
Du1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

1 � jDu1j2

 !
f 0 a:e: in R:

Consequently by the divergence theorem

0e
Ð
R

div N dv ¼
Ð

S1

N � n1 ds�
Ð

S2

N � n2 ds

¼
Ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu1j2 dx �

Ð
W

1 � Du1 � Du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu1j2

dx

e
Ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu1j2 dx �

Ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jDu2j2 dx:

The last inequality follows from

ð1 � Du1 � Du2Þ2
f ð1 � jDu1j2Þð1 � jDu2j2Þ:

Obviously, all the equalities hold if and only if u1 ¼ u2 in W. r

We now state our existence result of this section.

Theorem 3.5. Let E be a subset of qB1ð0Þ which is not contained in any hyperplane in

Rn. Then there exists a convex admissible maximal solution u A C0;1ðRnÞ to (1.2) with c1 1
satisfying

DuðRnÞ ¼ GðEÞ;ð3:9Þ

where GðEÞ denotes the convex hull of E, and

VuðxÞ ¼ VE :¼ sup
a AE

a � x; x A Rn:ð3:10Þ

Proof. By a theorem of Choi-Treibergs [7] there exists a spacelike entire graph
xnþ1 ¼ vðxÞ, v A CyðRnÞ, of mean curvature one whose tangent cone is GðEÞ. Moreover, v

is strictly convex and satisfies vfVv ¼ VE on Rn.
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For each integer k f 1, by a theorem of Delanoë [8] there exists a unique spacelike
strictly convex solution uk A Cy

�
Bkð0Þ

�
to the Dirichlet problem

det D2u ¼ ð1 � jDuj2Þ
nþ2

2 in Bkð0Þ;

u ¼ v on qBkð0Þ:

Since jDukj < 1 and jDVE j ¼ 1 where DVE exists, by the maximum principle we have

VE e uk e v on Bkð0Þ for all k. Moreover, there exists a subsequence ukj
and a weakly

spacelike convex function u A C0;1ðRnÞ such that ukj
converges to u in C0;1ðWÞ for any

bounded domain W in Rn. It follows from Lemma 3.4 and the comparison principle that
u is an admissible maximal solution to (1.2). Note that VE e ue v. From Vv ¼ VE we
obtain (3.10) and therefore (3.9) by (3.6). r

4. The Minkowski type problem

In this section we consider the Minkowski type problem which provides a natural
approach to the problem of finding entire spacelike hypersurfaces of prescribed Gauss cur-
vature. Let M ¼ graphðuÞ be a smooth spacelike strictly convex hypersurface. Then the
Gauss map

n : M ! Hn HRn;1; n
�
x; uðxÞ

�
¼ ðDu; 1Þ

ð1 � jDuj2Þ1=2

is a di¤eomorphism from M onto its image in Hn. On the other hand, Hn can be identified
with the unit ball B1ð0Þ in Rn by the di¤eomorphism

p : Hn ! B1ð0Þ; pðx; xnþ1Þ ¼
x

xnþ1

:

For convenience we will also call n :¼ p � n the Gauss map. It is immediately seen that

n
�
x; uðxÞ

�
¼ DuðxÞ; Ex A Rn:

Thus geometric quantities of M can be viewed as defined via the Gauss map on its
image W :¼ nðMÞLB1ð0Þ. Naturally one can consider the Minkowski type problem: given
a domain WLB1ð0Þ and a function h > 0 on W, find an entire spacelike strictly convex
hypersurface M ¼ graphðuÞ whose Gauss map image is W and Gauss curvature at n�1ðyÞ
is given by hðyÞ for y A W where n�1 : W ! M is the inverse Gauss map.

As W has nonempty boundary (in Rn), one needs to impose certain boundary con-
ditions in order to describe the asymptotic behavior of the hypersurface at infinity. To
formulate such a boundary value problem, we consider the support function of the graph

of u given by the Lorentz inner product hX ; ni ¼ ðx � Du � uÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jduj2. The expression

x � DuðxÞ � uðxÞ, x A Rn leads us to consider the Legendre transform of u

u�ðyÞ ¼ sup
x ARn

�
x � y � uðxÞ

�
; y A W;

183Guan, Jian and Schoen, Entire spacelike hypersurfaces



where W ¼ DuðRnÞLB1ð0Þ. It is well known that u� is strictly convex and that for y A W

u�ðyÞ ¼ x � y � uðxÞ; Du�ðyÞ ¼ x

and

D2u�ðyÞ ¼
�
D2uðxÞ

��1

where x A Rn is uniquely determined by DuðxÞ ¼ y. By (1.2) we see that u� should satisfy
the Monge-Ampère equation

det D2vðyÞ ¼ 1

hðyÞð1 � jyj2Þ
nþ2

2

; Ey A Wð4:1Þ

where hðyÞ ¼ cðxÞ.

Conversely, given a convex domain WLB1ð0Þ and h A CyðWÞ, h > 0, if there exists a
strictly convex solution v A CyðWÞ of (4.1) such that

DvðWÞ ¼ Rn;ð4:2Þ

then its Legendre transform u ¼ v� is a smooth spacelike strictly convex solution of (1.2)
defined on Rn with cðxÞ ¼ hðyÞ, where y is given by DvðyÞ ¼ x, for all x A Rn. According
to Li [12], the resulting hypersurface M ¼ graphðuÞ has uniformly bounded principal cur-
vatures if and only if W ¼ B1ð0Þ.

Li [12] treated the Dirichlet problem in W ¼ B1ð0Þ for (4.1)–(4.2) with smooth bound-
ary data. From the geometric point of view, it would be natural to consider Lipschitz
boundary data, as well as general subdomains of B1ð0Þ. Analytically, this is a challenging
problem as one has to construct more sophisticated barrier functions to prove that (4.2)

is satisfied. (In [12] the barriers are constructed from the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jyj2 which is

(minus) the Legendre transform of the hyperboloid (1.3).) Our main results of this section
extend the theorem of Li [12] to allow Lipschitz boundary data in dimension n ¼ 2
(Theorem 4.5), and to the case W ¼ Bþ

1 ð0Þ (Theorem 4.1) for all n. This is achieved with
the aid of the rotationally symmetric K-hypersurfaces Hc constructed in Section 2. We first
consider the case W ¼ Bþ

1 ð0Þ: write qW ¼ qþWW q0W where qþW ¼ qWX fy1 > 0g and
q0W ¼ qWX fy1 ¼ 0g.

Theorem 4.1. Let W ¼ Bþ
1 ð0Þ and j A C0ðqWÞXCyðqþWÞ, h A CyðWÞXC0ðWÞ,

h > 0. Suppose in addition that

j is a‰ne on q0W:ð4:3Þ

Then there exists a unique strictly convex solution v A CyðWÞXC0ðWÞ of (4.1) which satisfies

(4.2) and the Dirichlet condition

v ¼ j on qW:ð4:4Þ
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Proof. For convenience we write c ¼ 1=h and will still use j to denote its harmonic
extension to W. Note that j A CyðWW qþWÞ. Let W1 H � � �HWk H � � �HW be a sequence
of smooth strictly convex domains such that

Sy
i¼1

Wk ¼ W:ð4:5Þ

Let ek ! 1 be a strictly increasing sequence. By [4] there exists a unique strictly convex so-
lution vk A CyðWkÞ to the Dirichlet problem

det D2vk ¼ cð1 � ekjyj2Þ�
nþ2

2 in Wk;

vk ¼ j on qWk:

(
ð4:6Þ

By the maximum principle

jf vk > vkþ1 f v in Wk; Ek f 1;ð4:7Þ

where

vðyÞ ¼ j� c
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
1 � jyj2; y A B1;

j ¼ min
qW

j; c ¼ max
W

c;

since v is a subsolution of (4.6) for each k f 1, i.e.

det D2v ¼ cð1 � jyj2Þ�
nþ2

2 fcð1 � ekjyj2Þ�
nþ2

2 in Wkð4:8Þ

and ve j on qWk. From (4.7) we obtain by the convexity of vk a uniform bound on any
compact subset of W for jDvkj independent of k. It follows that vk converges uniformly on
any compact set in W to the convex function v A C0ðWÞ given by

vðyÞ ¼ lim
k!y

vkðyÞ; y A W:

Next, for an arbitrarily fixed point ŷy A qW by subtracting an a‰ne function we may
assume jð ŷyÞ ¼ 0 and Djð ŷyÞ ¼ 0. Since j A C0ðqWÞXCyðqþWÞ and j is a‰ne on q0W we
can choose A > 0 su‰ciently large depending on jDjj

qþW
such that

�AlðyÞe jðyÞeAlðyÞ; Ey A qW;ð4:9Þ

where lðyÞ ¼ 1 � ŷy � y if ŷy A qþW, lðyÞ ¼ y1 if ŷy A q0W. By the maximum principle we have
as in (4.7) that

jðyÞf vkðyÞfc
1
nu�

1 ðyÞ � AlðyÞ; Ey A Wk; Ek f 1:ð4:10Þ

Here, with a slight abuse of notation, u�
1 is the Legendre transform of the function

~uu1ðxÞ :¼
�
~ff1ðx1Þ2 þ jxj2

�1=2
where ~ff1ðtÞ ¼ f ðt þ l1Þ as in Corollary 2.9, noting that

u�
1 A C0ðBþ

1 ÞXCyðBþ
1 Þ satisfies
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det D2u�
1 ¼ ð1 � jyj2Þ�

nþ2
2 in Bþ

1

and u�
1 ¼ 0 on qW by Corollary 2.9. Letting k ! y we obtain from (4.10) that

lim
y! ŷy

vðyÞ ¼ jð ŷyÞ; E ŷy A qW;ð4:11Þ

since jð ŷyÞ ¼ c
1
nu�

1 ð ŷyÞ � Alð ŷyÞ ¼ 0.

This proves v A C0ðWÞ with v ¼ j on qW. We next want to prove v A CyðWÞ. Note
that v is a convex viscosity solution of (4.1) in W. Let y0 be any interior point in W and P

a supporting plane of Sv :¼ graphðvÞ at
�

y0; vðy0Þ
�
. We claim that PXSv contains a single

point
�

y0; vðy0Þ
�
. For otherwise, by a theorem of Ca¤arelli [2], PXSv would contain a seg-

ment from
�

y0; vðy0Þ
�

to a boundary point
�

ŷy; vð ŷyÞ
�

for some ŷy A qW, which would imply

lim
t!0þ

vð ŷy þ teÞ � vð ŷyÞ
t

¼ vðy0Þ � vð ŷyÞ
jy0 � ŷyj > �yð4:12Þ

where e is the unit vector pointing from y0 to ŷy. However, by the maximum principle and
the second inequality in (4.9) which we may still assume to hold,

vðyÞeAlðyÞ þ c
1
nu�

1 ðyÞ; Ey A W;ð4:13Þ

where

c ¼ min
W

c > 0:

It follows that

lim
t!0þ

vð ŷy þ teÞ � vð ŷyÞ
t

eAe � Dl þ c
1
n lim

t!0þ

u�
1 ð ŷy þ teÞ � u�

1 ð ŷyÞ
t

¼ �yð4:14Þ

since jDu�
1 j ¼ y on qW. This contradicts (4.12), proving our claim. By Ca¤arelli’s theorems

[2], [3] and the Evans-Krylov regularity theory v is a smooth strictly convex solution of
(4.1) in W. Moreover, from (4.14) which holds for any interior point y0 A W and ŷy A qW,
we see v satisfies (4.2). r

Remark 4.2. The resulting entire spacelike hypersurface M ¼ graphðv�Þ must have
unbounded principal curvatures.

Remark 4.3. Assumption (4.3) is also necessary when n ¼ 2. In general ðnf 2Þ it is
necessary to assume j to be convex but not strictly convex at each interior point of q0W.
This is because if j is smooth and strictly convex at a point ŷy A B1ð0ÞX fy1 ¼ 0g then the
solution is at least of class C0;1 up to boundary near ŷy by the boundary regularity of
Monge-Ampère equations. In particular, (4.2) can not hold at ŷy.

Remark 4.4. Concerning problem (4.1)–(4.2) in a general subdomain W of B1ð0Þ,
Lemma 3.2 gives a necessary condition on W for its solvability. In particular, when n ¼ 2
it implies W has to be either B1ð0Þ or B1ð0ÞX fa � y > cg for some a A Rn, jaj ¼ 1 and
�1 < c < 1. In all dimensions ðnf 2Þ this latter case can be reduced to W ¼ Bþ

1 ð0Þ.
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As we mentioned above, our second main theorem of this section concerns the Min-
kowski type problem with Lipschitz Dirichlet boundary data.

Theorem 4.5. Let n ¼ 2, W ¼ B1ð0ÞHR2, h A CyðWÞXC0ðWÞ, h > 0, and

j A C0;1ðqWÞ. Then there exists a unique strictly convex solution v A CyðWÞXC0ðWÞ of

(4.1) which satisfies (4.2) and (4.4). Consequently, there exists a smooth complete entire

spacelike strictly convex hypersurface M with Gauss curvature

KM

�
n�1ðyÞ

�
¼ hðyÞ; Ey A B1ð0Þ;

where n�1 : B1ð0Þ ! M is its inverse Gauss map.

Proof. We modify the proof of Theorem 4.1. First by approximation (solving (4.6)
for Wk ¼ B1ð0Þ for all k f 1) we obtain a convex viscosity solution v A C0ðWÞ of (4.1). To
proceed let ŷy A qW. We may assume ŷy ¼ ð0; 1Þ and jð ŷyÞ ¼ 0. Since j A C0;1ðqWÞ, by Cor-
ollary 2.10 and Lemma 2.11 there exist c1 < 0, 0 < c2 < 1 and A > 0 (independent of ŷy)
such that

c
1
nu�

c1
� Að1 � y2Þe jec

1
nu�

c2
þ Að1 � y2Þ on qW:ð4:15Þ

Applying the maximum principle to the approximation we obtain

c
1
nu�

c1
� Að1 � y2Þe vec

1
nu�

c2
þ Að1 � y2Þ in W:ð4:16Þ

This proves v A C0ðWÞ and v ¼ j on qW.

Finally, using the second inequality in (4.16) (in place of (4.13)) we can prove
v A CyðWÞ and satisfies (4.2) as in the proof of Theorem 4.1. r

It would be interesting to extend Theorem 4.5 to higher dimensions.
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