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1. Introduction

In this paper we are concerned with spacelike convex hypersurfaces of positive con-
stant (K-hypersurfaces) or prescribed Gauss curvature in Minkowski space R™! (n > 2).
Any such hypersurface may be written locally as the graph of a convex function
Xn+1 = u(x), x € R" satisfying the spacelike condition

(1.1) |Du| < 1
and the Monge-Ampére type equation
(1.2) det D*u = y(x,u)(1 — | Du?)'T

where 1 is a prescribed positive function (the Gauss curvature). Our main purpose is to
study entire solutions on R” of (1.1)—(1.2).

For yy = 1 a well known entire solution of (1.1)—(1.2) is the hyperboloid
(1.3) Xur1 = V14 [x]?, xeR”

which gives an isometric embedding of the hyperbolic space H” into R™'. Hano and
Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings
of H? in R*! by constructing other (geometrically distinct) entire solutions of (1.1)—(1.2)
for n =2 (and y = 1) using methods of ordinary differential equations. Using the theory
of Monge-Ampere equations, A.-M. Li [12] studied entire spacelike K-hypersurfaces with
uniformly bounded principal curvatures, while the Dirichlet problem for (1.1)—(1.2) in a
bounded domain Q < R" was treated by Delanoé [8] when Q is strictly convex, and by
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Guan [9] for general (non-convex) Q. In this paper we are interested in entire spacelike
K-hypersurfaces, and more generally hypersurfaces of prescribed Gauss curvature, without
a boundedness assumption on principal curvatures.

Our first goal is to classify all entire spacelike K-hypersurfaces with symmetries,
i.e. those invariant under a subgroup of isometries of R”™!, extending the results of Hano-
Nomizu [11] to higher dimensions. We will focus on hypersurfaces which are rotationally
symmetric with respect to a spacelike axis, as a rotationally symmetric entire spacelike
K-hypersurface with other types of axes either does not exist (when the axis is lightlike) or
is congruent to a rescaling of the standard hyperboloid (1.3) (when the axis is timelike).
These surfaces will be constructed in Section 2 where we will study their properties and
asymptotic behavior at infinity. As we will see in Section 4, understanding these surfaces
is crucial to our study of the Minkowski type problem described below. One of our main
results in Section 2 states that these symmetric K-hypersurfaces are complete with respect
to the induced metric from R™!.

For general entire spacelike K-hypersurfaces it is an important question to under-
stand their asymptotic behavior at infinity. Li [12] proved that an entire spacelike K-
hypersurface given by a convex solution u € C*(R") of (1.1)—(1.2) has uniformly bounded
principal curvatures if and only if Du(R") = B;(0), the unit ball in R”. On the other hand,
as we will see in Section 2 there do exist entire K-hypersurfaces with unbounded principal
curvatures. As in the case of hypersurfaces with constant mean curvature which was
treated in [13] and [7], the asymptotic behavior of an entire spacelike K-hypersurface can
be characterized by its tangent cone at infinity. (See Section 3.) Finding entire spacelike
K-hypersurfaces with prescribed tangent cones at infinity is more subtle. A substantial dif-
ficulty is due to the fact that spacelike K-hypersurfaces do not admit a priori interior uni-
form bounds which keep them from becoming null. To overcome this difficulty we adopt a
variational approach, following an idea from [10], that allows us to introduce an appropri-
ate class of weak solutions, called admissible maximal solutions, to (1.2) which may only
satisfy the weakly spacelike condition

(1.4) \Du| < 1.

The details will be discussed in Section 3 where we consider the existence and regularity of
entire weak solutions to (1.2) with prescribed tangent cone at infinity.

Another interesting approach to finding entire spacelike hypersurfaces with prescribed
Gauss curvature and tangent cone at infinity is to consider the Minkowski type problem of
prescribing the Gauss curvature as a function (defined on a domain Q in H”", the unit
sphere in R™!) of the unit normal vector of the prospective hypersurface. This was indeed
the approach employed by Li [12] who considered the case when the function is defined on
the whole space H"” (or equivalently B;(0) = R” via the Legendre transformation), coupled
with a smoothness requirement on the asymptotic behavior at infinity of the prospective
solution graph(u) (in terms of x - Du(x) — u(x)). With the aid of the K-hypersurfaces con-
structed in Section 2, we will extend Li’s result to allow Lipschitz boundary data for n = 2,
which geometrically seems to be a more natural assumption. Another challenging problem
is to study more general cases where the function is prescribed on only part of H”. In this
paper we are able to treat the case Q = H” := H" n {x; > 0}. This part of the work is in-
cluded in Section 4. We hope to come back to the problem in future work.
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The corresponding questions for spacelike hypersurfaces of constant mean curvature
have received considerably more intensive investigation. In their remarkable work on the
Bernstein theorem for maximal hypersurfaces which extends earlier results of Calabi [5] to
higher dimensions, Cheng-Yau [6] proved that entire spacelike hypersurfaces of constant
mean curvature in R™! are complete (with respect to the induced metric) and have uni-
formly bounded principal curvatures. Subsequently, Treibergs [13] and Choi-Treibergs [7]
studied the asymptotic behavior at infinity of entire spacelike graphs of constant mean cur-
vature and treated the existence of such hypersurfaces with prescribed tangent cone at infin-
ity. In [1] Bartnik-Simon dealt with the Dirichlet problem for the equation of prescribed
mean curvature. While our results indicate that there are significant differences between en-
tire spacelike hypersurfaces of constant Gauss curvature and those of constant mean curva-
ture, it seems to be an interesting open question whether an entire spacelike K-hypersurface
must be complete.

Acknowledgments. Part of this work was done while the second author was visiting
the Department of Mathematics at University of Tennessee and he wishes to thank them
for their hospitality.

2. Entire spacelike K-hypersurfaces with SO(n — 1, 1) symmetries

In this section we will classify all entire spacelike K-hypersurfaces which possess a
rotational symmetry with respect to a spacelike axis. Up to rescaling any such hypersurface
is congruent in R™! to the graph of a convex solution of (1.1)-(1.2) with ¢ = 1 of the form

(2.1) u(x) = Vi) + 5% X=(x...,x), x=(x1,%) € R",

where f is a positive function defined on R. Geometrically the K-hypersurface
M := graph(u) = R™! is invariant under the isometries

cosh 6 sinh 6
(2.2) D,_; , 0eR, @, 1€SO(n—-1).
sinh 6 cosh @

We first recall some basic local formulas for the geometric quantities of spacelike hy-
persurfaces in the Minkowski space R"™ ! which is R"*! endowed with the Lorentzian metric
(2.3) ds* =Y dx} —dx; .

i=1

A spacelike hypersurface M in R™! is a codimension-one submanifold whose induced met-
ric is Riemannian. Locally M can be written as a graph x,;; = u(x), x € R”, satisfying the
spacelike condition (1.1). The induced metric and second fundamental form of M are given
by

(24) 9ij = 6!7 = Uy;Uy;

and, respectively,
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(25) hl] = MXin

while the timelike unit normal vector field to M is

Du, 1
(2.6) Y — u,
V1 —|Du?
where Du = (uy, , ..., uy,) and D*u = {u,,,,} denote the ordinary gradient and Hessian of u,

respectively. We will use Vu to denote the gradient of u# on M. Note that the norm of Vu
(with respect to the induced metric on M from R™!) is

(2.7) |Vu| = Vg uguy, = ——
" V1 —|Duf?

where

. Uy Uy,
28 [/ — 51“ + Tt
(2.8) g ij 1 _ Du|2

is the inverse matrix of {g;}. The Gauss-Kronecker curvature, which is the product of the
principal curvatures (i.e. the eigenvalues of the second fundamental form with respect to
the metric of M), and the mean curvature of M are given by

det D%u

(1= [Dul7) >

and, respectively

1 Du
(2.10) Hy = - div| —————|.
n vVi1-— |Du\2

Thus equation (1.2) locally describes hypersurfaces with prescribed Gauss-Kronecker cur-
vature .

Now assume that u is of the form (2.1). One calculates

" '
(2.11) um:i; uxi:ﬁ7 2<5isZn,
u u
and
-7
(2.12) I — [Dul* = 2

Thus u is spacelike if and only if
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(2.13) lf'l<1 onR.

By (2.7) and (2.12) we have

1 1
(2.14) Vul _ = .
u w1 —|Du)*  fV1—f"
Next,
:f"+f’2_f2f’2:f"+f’2—1+@
T u u3 u u’
.., . .
(2.15) oo = P90 5y,
/ u? u
1 i ij ..
%M:_G%_X?>:ga 2<i,j<n
u u u
and therefore,
3rn
2SS
det D°u = e

The Gauss curvature of the spacelike hypersurface M in R™! is thus given by

_ f‘//
= 1)

(2.16) Kur

nt2
2

while, by (2.12) and (2.15), the principal curvatures are

[ 1
(2.17) Kl=—>——, K=+ =Ky=—"H+.
(1—=/") S = f7)

Consequently, if K); = 1 then

(2.18) Ir= N R
Integrating (2.18) we obtain

(2.19) A=fA"P === —a" =
where

(2.20) a=f(0), b= f'(0).

We summarize some of our observations in the following.

Lemma 2.1. Leta>0,|b| <1 andc=(1— bz)*”/2 — a". The following results hold:
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(a) The (unique) solution f to (2.18) and (2.20) exists on the entire R and satisfies
(2.13).

(b) If b = 0 then

(2.21) lim f'(f)=1 and gﬂjﬁfﬂ—fkf):L

t—+00

() Ifc< 1 then f >0and f" > 0onR.
(d) If ¢ > 1 then f changes signs on R.

(e) Suppose g is another solution of (2.19) satisfying g(0) > 0 and |g’'(0)| < 1. Then
either g = (1 — c)l/ " which is possible only when ¢ < 1, or there exists ty € R such that
g(t) = f(at + ty) where o =1 or —1.

Proof.  Suppose f'(t)) = 1 for some 7y € R. We may assume 7p >0 and 0 < f/ < 1
in [0,7). Then

t

@)= f0)+ [fl(t)dt <a+1y, YO=1<t.
0

However, by (2.19),

lim f() = +o0.

t—vta

This contradiction shows that |f’| < 1 wherever the solution exists. By the theory of ordi-
nary differential equations we see the solution extends to the entire R. This proves (a).

If b = 0 then from (2.18) we see f”(¢) > 0 and f'(z) > 0 on ¢ > 0. It follows that
i 110 =+
By (2.19) this implies (2.21) and (b) is proved.

From (2.18) we see f” > 0 if f > 0 while /" = 1 — ¢ by (2.19). Now suppose ¢ = 1
and f(#) = 0 for some ) € R. Then f’(#)) = 0 and therefore f = 0 by the uniqueness of
solution. This contradicts the fact that f(0) = a > 0, proving (c).

Suppose that ¢ > 1 and /=0 on R. Then |f’| = (1 —c‘z/”)l/2 =¢>0on R by
(2.19). Without loss of generality, let us assume ' = ¢ on R. Then

f(t):f(0)+ff'(t)dt§a+5t, vt £0.
0

Letting  — — oo we reach a contradiction, which implies (d).

Finally, to prove (e) we observe that if g is not constant then it also satisfies (2.18).
From the proof of (b) we see that g is unbounded above on R. There exist therefore
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t1,1 € R such that f(r1) =g(r2) and hence |f’(11)] = |g’(r2)] by (2.19). The function
f(t) = f(a(t — 12) + t1) where

a:{l, if f(t1) =g'(1),
=1, if f'(1) = —g'(12) * 0,

then satisfies (2.18) and
f(n)=g(n), ['(n)=4¢'n)
By the uniqueness of solutions we have f = g. The proof is complete. []

By Lemma 2.1 when ¢ > 1 the corresponding function u given by (2.1) fails to be
smooth in R” while when ¢ < 1 the resulting hypersurface is a smooth spacelike strictly
convex entire graph. Our next lemma enables us to classify these surfaces.

Lemma 2.2. Supposea>0,0<b<1,¢=(1—b>)"*—a"<1andlet f be the so-
lution of (2.18) and (2.20) on R.

(@) If c=1then f" > 0 on R and
(2.22) tli{n f()=0 and tli{n f'(t) =

(b) If ¢ < 1 then there exists T € R such that f(t) = f(t+ ) is an even function. In

particular, if ¢ = 0 then f(1) =1+ 2.

Proof.  We first consider the case ¢ = 1. Suppose f'(#)) = 0 for some ) € R. Then
f(to) = 0 by (2.19) and therefore f = 0 by the uniqueness of solution, which is a contradic-
tion. Thus f/ > 0 on the entire R. Since /" is convex and bounded below from zero, we have
f'(t) — 0 and hence f(#) — 0 by (2.19) as ¢ approaches negative infinity. This proves (a).

Now suppose ¢ < 1 and let # be the unique solution of (2 18) satisfying /#'(0) =0
and h(0) = (1 — ¢)"/" > 0. Then & is an even function as h(—1) is also a solution of (2.18)
satisfying the same initial conditions. By Lemma 2.1 (e) we have A(¢) = f(¢ + 7) for some
teR. [

It follows from Lemma 2.1 that for each constant ¢ < 1, up to a translation and reflec-
tion there exists a unique positive solution f. of (2.13) and (2.18) which satisfies (2.19) on R.
According to Lemma 2.2 we will assume throughout the paper £, is even for ¢ < 1, and that
/i is chosen so that f1(0) =1 and f/(7) > 0 for all 7 € R. Note that fy(7) = V'1 + 2. Let 9,
denote the graph of

(2.23) ue(x) = Vfu(x1)* + %%, xeR™

We see that $, is a spacelike entire graph of constant Gauss curvature one in R™!. Our
main result of this section is the following characterization of ..

Theorem 2.3. (a) Forall c <1, 9, is a complete Riemannian manifold with respect to
the induced metric from R™".
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(b) The principal curvatures of $, are uniformly bounded for ¢ < 1, while $, has un-
bounded principal curvatures.

(¢) Du.(R") = B(0) for all ¢ < 1 and Du;(R") = B (0) := B1(0) n {x; > 0}.

Proof. Note that the principal curvatures are given by (2.17). Part (b) therefore fol-
lows from Lemma 2.2 and Lemma 2.1 (b), as does part (c) in view of (2.11).

To prove part (a) we write f = f, and u = u.. Let o(s) = (x(s),u(s)), s€[0,L) be a

geodesic ray on $, parametrized by arc length such that |x(s)| — oo as s — L. By (2.14) we
have

logu(s) —logu(0) < [ —ds < J"4 VO<s<L.
0 0

If ¢ < 1 we see from f/1 — f”2 = /1 — ¢ that

logu(s) —logu(0) <

It follows that L = oo since u is a proper function on R” in this case.
We now consider case ¢ = 1 and assume f’ > 0. Suppose there exists some constant
N > 0O such that x;(s) = —N forall 0 < s < L. We then have L = oo as in the previous case
(¢ < 1) since, by Lemma 2.2 (a), f/1 — "> = ¢y > 0 for all 0 < s < L where ¢ is a con-
stant.
Now assume that
liminf x;(s) = —o0.

s—L

Let g;; be the metric of $,. We claim that

(2.24) gicié = (1= (f)7)E, VE=(&,8) eR".

This follows from the following calculations

N2 =122
gllf% = (1 — (f/)Z)é%_,_%’
2]]'/5 f/ 2= 262 f2 E 2
zigzgliflfiz — li;xiéi > _( )LJ;C| 1 u|2|
and
S ot = 187~ E 9 5 LI
y=is) = .

2
ijz2 u
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Using (2.24) we obtain

. . 1 .
where the constant ¢ < x;(0) is chosen to satisfy f’(f) < — for # < a. Letting s — L we
obtain L = c0. [] V2

Remark 2.4. When ¢ < 1 part (a) of Theorem 2.3 also follows from a result of Li
[12] as the principal curvatures of $,. are bounded.

Remark 2.5. Up to rescaling any entire spacelike K-hypersurface M in R™! which is
rotationally symmetric about a spacelike line is congruent to §, for some ¢ < 1 if the prin-
cipal curvatures of M are uniformly bounded, and to £, otherwise.

These K-hypersurfaces will be used to construct barrier functions in our study of the
Minkowski type problem in Section 4. For this purpose we need to know more accurate
asymptotic behavior at infinity of these hypersurfaces. The rest of this section is devoted
to this topic. Our main tool is the following comparison result for solutions of (2.18). For
a solution f of (2.13), (2.18) we denote Cr = (1 — T2 <,

Lemma 2.6. Let f and g be positive solutions of (2.13), (2.18) with Cr < Cy £ 1.
Then

(@) 1)) < |9’ (0)| wherever £() < g(£); and

(b) if f'(t0) = g'(t0) for some ty € R then f(t) — g(t) = f(to) — g(to) > 0 for all t € R.
Moreover, f'(t) > g'(t) for all t > ty and f'(t) < g'(¢) for all t < t,.

Proof. Clearly (a) follows from equation (2.19). To prove (b) let # = f — g. Since
Cr < Cy we have i > 0 by (2.19) and, therefore, 2" > 0 by (2.18) whenever i’ = 0. Con-

sequently, / attains a positive local minimum at any critical point. This implies that /& can
have at most one critical point; (b) is thus proved. []

Corollary 2.7. (a) If c <0 or c =1 then
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VI+22< fult) < V14 (t+7), V>0

where T, = \/(fc(O))2 —-1= \/(1 — )" =1 for ¢ <0, and 1, = V22" — 1. (Recall that
Jo(t) =V1+1¢2)

(b) 0 < c <1 then
fo() < VI+2< fo(t+7.), Y>0
where 7, > 0 satisfies f.(t.) = fo(0) = 1.

Proof. These are consequences of Lemma 2.6 (b) (applied to f. and fp; recall that
fo =+V1+ £?) and the uniqueness of solutions to the boundary value problems of equation
(2.18). ™

By Lemma 2.6 and Corollary 2.7, fo(tz) — f.(t) is monotone and bounded for ¢z > 0.
Consequently, the limit

Je= Jim (i(0) = £.(0)

exists for all ¢ < 1. Note that 4. < fo(0) — f.(0) < 0 for ¢ <0, A, > fo(0) — £.(0) > 0 for
0<e<1,and 4; <0O.

Theorem 2.8. For any c =1

(2.25) dim (o(0) = fe(0) = Ze,
while
(2.26) tim ((1) = fi(1)) = 0.

Proof. Let F.(t) = tf/(t) — f.(t). By the convexity of f., F/(t) = tf"(t) > 0 fort >0
and F/(1) = tf!"(t) < 0 for t < 0.

Let us first prove

(2.27) A= lim Fi(1)=0.

t——00

The limit exists since F;(7) < 0 and F/(¢) < 0 for # < 0. Suppose 4 < 0. Since Fi(t) < A4 for
t <0and f(¢) — 0 as t — —oo, there exists 7" < 0 such that

if{(t) < A+ fi(t) <0, Vi<T.

Thus

and
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In|fi(T)+ A| —In|fi(t) + A EIn|T| —In|t|, Vi< T.
Letting t — —oo we obtain a contradiction
In|fi(T) + A|] — In|4| = — 0.

This proves (2.26).

We next prove (2.25) for ¢ < 0; the proof for 0 < ¢ < 1 is similar and will be omitted.
In the rest of this proof let ¢ < 0 be fixed. For any fixed N = 0 there is unique Sy > 0 and
Tx > 0 such that f/(N) = f/(N + Sy) and f.(N) = fo(N + Tx). We have

(2.28) Jo(t+ Sy) + fo(N) — fo(N+ Sy) < fo(t) < fo(t + Ty), Vi>N
and

(2.29) fo(t) < fl(t) < fo(t+ Ty), VYt>N,

by Lemma 2.6. ((a) for the second inequality in (2.29) and (b) for the first ones in (2.28) and
(2.29). Note that f/(0) = f,(0).) Consequently,
Fo(t) < 1fy (14 Tw) = (fo(t + Sy) + fe(N) = fo(N + Sy))
< Fy(t+Twn) + fo(t + Tn) — Tnfy (1 + Tw)
= Jo(t+ Sn) + fo(N + Sy) — fe(N)
< Fo(t+Tn) + fo(t) = fo(t + Sn) + fo(N +Sy) — fe(N), Vi>N

since fo(t+ Tn) — Tnfy(t+ Tn) < fo(t) by the convexity of fy. Thus lim F,.(¢) exists as
t — 400 and

(2.30) rllgrnOC F (1) = fo(N + Sy) — fo(N) — Sy
as
lim, i) =0
and

Jim (fo(r+ Sy) = fo(1)) = S
On the other hand, from (2.28) and (2.29) we have
F.(1) > tf(1) — folt + Tw) = Fo(0) + fot) — fot + Tw), V&> N.
It follows that

(2.31) lim Fo(r) 2 lim (fo(r) = folt + Ty)) = ~Tw.
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Note that

(fo(N + Sx) — fo(N) — Sy) =0

lim
N—+o0
and
Jim Ty = lim (f(N+Tv) = /o(N)) = (fe(N) = fo(N)) = =2

Letting N approach infinity, from (2.30) and (2.31) we obtain (2.25). [

lim
N—+o0

Corollary 2.9. Let f,(1) = fi(t+ A1). Then
tim (1)~ /(1) =0
Corollary 2.10. Let u be the Legendre transform of u defined by

*

ur(y)=sup{x-y—u(x): xeR"}, yeDu(R").
Then

eyl Jor y = (y1,7) € B1(0), if ¢ <1,
2.32 u.(y) = _ .
(2.32) V) {)w,-J’la Jor y = (y1,7) € 0B} (0), if ¢ =1,
where By (0) is the unit ball in R", and B} (0) = B;(0) n {y; > 0}.
Proof. For any y € Q. = Du.(R"), by (2.11)

w(y) = x - Due(x) — ue(x) = ﬁ(n)(mfif(?;)) — fe(x1)) ’

where x = (x,X) € R” is uniquely given by Du.(x) = y. Letting y approach an arbitrarily
fixed point on 0Q, we obtain (2.32) from Theorem 2.8 and (2.11). [

This proves to be useful in Section 4 where we will also need the following lemma.
Lemma211. A, — —wasc— —ow and A, — +o0 asc — 17,

Proof. The first case is obvious since 4. < f5(0) — fo(0) =1 — (1 = ¢)"/" for ¢ < 0.
Next, for any fixed N > 0 there exists ¢y € (0, 1) such that

£:0)= (1= < fi(-2N), Vey<c<l.
By Lemma 2.6 (a),
f(t) < fi(t—=2N), VYt>0,cy<c<l.
In particular,

fo(N) < fi(=N), Vey<c<1.
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It follows that
Je > fo(N) — fo(N) > fo(N) — fi(=N), Vey<c<1

since fo(t) — f.(2) is increasing for ¢ > 0 when ¢ > 0. Letting ¢ — 1~ and then N — +o0,
we prove the second case. []

3. The tangent cone at infinity

In this section we first characterize the tangent cones for entire spacelike convex hy-
persurfaces in Minkowski space with bounded Gauss curvature. We then will consider the
problem of finding such K-hypersurfaces with a prescribed tangent cone at infinity. Let u be
an entire convex solution of (1.1)—(1.2) with 0 < ; < <, on R” where ¥/, , are con-
stant. Consider

u(x) := u(:x) , xeR", r>0,
(3.1) Vi(x) :==lim u,(x), xeR"

r—

Following [7] and [13] we call V,, the blowdown of u at infinity. Note that, by (1.1) and the
convexity of u, V,, is well-defined and convex on R”,

(3.2) Vi(Ax) = AV,u(x), VYxeR", A>0
and
(3.3) Vau(x) = Vi)l = [x = yl,  Vx,yeR"
Moreover, V, satisfies the null condition, that is
Lemma 3.1. For any x € R" there exists y € R", y £ x, such that
(3.4) [Va(x) = V()] = [x = .
Proof.  Suppose this is not true. Then there exists xp € R” and J > 0 such that
Vi(x) £ Vi(xo) + 1 =20, Vxe dBi(xp)

where Bj(xo) is the unit ball in R” centered at xy. By the convexity of u we have

%(ur(x) —u,(0)) £0, VxeR"

Thus the limit in (3.1) is uniform on compact sets by Dini’s Theorem. Consequently, we
can find ry > 0 such that

(3.5) ur(x) < Vy(xo) +1 -9, VxedBi(xo)
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for all r > ry. It therefore follows from the maximum principle that

up(x) < W(x;r) := Vi(xo) + (( 11/"1”)*2 +|x - xo|2)]E -0, Vxe Bj(x)

as both u, and W (-;r) are spacelike in B;(x() and
det D?u,(x) = r" det D*u(rx) = "y, (1 — \Du!z)%, x € By (xo)
while
det D2 W (x:r) = 'y, (1 — [DW(x:1)?)T,  xe Bi(x).
Letting r — oo we obtain
Vu(xo0) = Vu(xo) — 9,

which is a contradiction. []

Recall that the set of subdifferentials of a convex function v at a point xy € R”" is
defined as

Ty(x0) :={a e R" : v(x) = v(xp) + o+ (x — xp), Vx € R"}.
Obviously, T,(xp) is a closed convex set and equals Dv(xp) if v is differentiable at x,. We

call Ty, (R") the tangent cone at infinity of graph u. Using Lemma 3.1 one can show as in [7]
that

(3.6) Ty, (R") = Ty, (0) = Du(R") =

o

B1(0)

and

(3.7) Vu(y) = Iyl, Vy € Du(R").
This last identity can be seen as follows. By definition
Vu(2) Z Vi(0) + vy =y, VyeTy(0)
since V,,(0) = 0. In particular, from (3.3) we have
Vu(y)=1, VyeTy/(0)ndB;(0).
By (3.2), we therefore obtain (3.7). The following lemma can also be shown as in [7].

Lemma 3.2. Ty, (0) is the convex hull of Ty,(0) n 0B;(0). In particular, Ty, (0) has no
interior strictly extremal points. Moreover,

Vi(x) =sup{a-x:ae Ty (0)ndBi(0)}, xeR"
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It is a natural question to find entire K-hypersurfaces with a given tangent cone. In
order to treat this problem we introduce a class of weak solutions to (1.2) and discuss their
basic properties.

For a domain Q = R” and a nonnegative function y defined on Q x R, let .«7[), Q]
denote the collection of weakly spacelike, locally convex subsolutions (in the viscosity
sense) of (1.2) in C°(Q). We call u € .« [\, Q] an admissible maximal solution of (1.2) in Q if

(3.8) [V1—=|Duf*dx= [V1—|Dv|*dx
Q' Q'

for any bounded subdomain Q' of Q and v e /[, Q'] with u = v on dQ'. Note that (3.8)
means geometrically that the volume of graphg/(u) is greater than or equal to that of
graphg/(v). Thus the graph of an admissible maximal solution is a volume maximizer in
oL, Q.

Lemma 3.3. Let u € /[y, Q| be an admissible maximal solution of (1.2). If u is space-
like in a subdomain Q' = Q, then it is a viscosity solution in Q'. In particular, if ue C*(Q’)
then it is a classical solution, and is locally strictly convex if y > 0.

Proof.  We first assume that Q' is smooth and bounded, ¥ € C*(Q' x R), ¥ > 0,
and u € C*(Q'). Using u as a subsolution, we can apply a theorem in [9] to obtain a space-
like locally strict convex solution v e C*(Q') of (1.2) satisfying v = u in Q" and v =u on
0Q'. By Lemma 3.4 (below) we have

[V1—|Dul*dx £ [V1—|Dv|*dx.
Q' Q'

Replacing u by v on Q', we obtain a function # € .o/, Q]. By the definition of admissible
maximal solutions we see that the equality holds and therefore v = u in Q. By an approx-
imation argument we prove the lemma in the general case. []

Lemma 3.4. Let uj,ur € C%1(Q) n CY(Q) be spacelike and satisfy uy = up in Q and

uy = uy on OQ. Suppose uy is convex, or more generally, the spacelike graph of u; in R™" has
nonnegative generalized mean curvature almost everywhere, that is

div <$> >0 ae.
V1~ |Duy?
Then
[V1—|Du|*dx = [ V1~ |Duy|* dx.
Q Q
The equality holds if and only if u; = up in Q.
Proof. Let S; denote the graph of u; in R"*! over Q and

(—=Dui(x),1)

V1 + | Duy(x)|?

V; =
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the (Euclidean) upward unit normal vector field to S;, i = 1, 2. Consider the vector filed

(Dul(x), 1)
V1= |Duy ()]

N(x,z) =

(x,z) € R

where
R = {(X,Z) € Rn+1 : uz(x) <z< ul(x)’x c Q}

is the region in R""!' bounded by S; and S,. We have

Du1

V1 —|Duy|*

divN(x,z) = div< ) >0 ae.inR

Consequently by the divergence theorem

0< [divNdv= [N-vido— [N -v,do
R S S

—J‘\/l—’Dul dx— #dx
1— |Du1|

éf\/l—|Du1 IVl—lDuz

Q
The last inequality follows from
(1 — Duy - Duz)* = (1 — |Dus|*)(1 — | Du|?).
Obviously, all the equalities hold if and only if u; = u; in Q. [
We now state our existence result of this section.

Theorem 3.5. Let E be a subset of 0B (0) which is not contained in any hyperplane in
R". Then there exists a convex admissible maximal solution u € C%'(R") to (1.2) with = 1

satisfying

(3.9) Du(R") =T(E),
where I'(E) denotes the convex hull of E, and

(3.10) Vux)=Vg:=supoa-x, xeR"
aekE

Proof. By a theorem of Choi-Treibergs [7] there exists a spacelike entire graph
Xpt1 = v(x), ve C*(R"), of mean curvature one whose tangent cone is I'(E). Moreover, v
is strictly convex and satisfies v = V, = Vg on R”.
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For each integer k = 1, by a theorem of Delanoé [8] there exists a unique spacelike
strictly convex solution u; € C* (B (0)) to the Dirichlet problem

det D*u = (1 — |Dul>)'T in By(0),
u=v ondB(0).

Since |Dux| <1 and |DVg| =1 where DV exists, by the maximum principle we have
Ve S u < v on By(0) for all k. Moreover, there exists a subsequence u;, and a weakly
spacelike convex function u € C*!(R") such that u, converges to u in C*'(Q) for any
bounded domain Q in R”. It follows from Lemma 3.4 and the comparison principle that
u is an admissible maximal solution to (1.2). Note that Vg < u < v. From V, = Vg we
obtain (3.10) and therefore (3.9) by (3.6). [

4. The Minkowski type problem

In this section we consider the Minkowski type problem which provides a natural
approach to the problem of finding entire spacelike hypersurfaces of prescribed Gauss cur-
vature. Let M = graph(u) be a smooth spacelike strictly convex hypersurface. Then the
Gauss map

(Du, 1)

y: M — H" < R™', v(x,u(x))=——""—
(x, u(x)) (1— |Du|2)1/2

is a diffeomorphism from M onto its image in H”. On the other hand, H” can be identified

with the unit ball B;(0) in R" by the diffeomorphism

w W B(0), Al ) =
n+

For convenience we will also call n := 7 o v the Gauss map. It is immediately seen that
n(x,u(x)) = Du(x), VxeR"

Thus geometric quantities of M can be viewed as defined via the Gauss map on its
image Q :=n(M) < B;(0). Naturally one can consider the Minkowski type problem: given
a domain Q < B;(0) and a function # > 0 on Q, find an entire spacelike strictly convex
hypersurface M = graph(u) whose Gauss map image is Q and Gauss curvature at n=!(y)
is given by 7(y) for y € Q where n! : Q — M is the inverse Gauss map.

As Q has nonempty boundary (in R"), one needs to impose certain boundary con-
ditions in order to describe the asymptotic behavior of the hypersurface at infinity. To
formulate such a boundary value problem, we consider the support function of the graph
of u given by the Lorentz inner product <X, v> = (x - Du — u)/V/'1 — |du|*. The expression
x - Du(x) — u(x), x € R" leads us to consider the Legendre transform of u

u*(y) = sup (x-y—u(x)), yeQ,

xeR"
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where Q = Du(R") < B;(0). It is well known that u* is strictly convex and that for y € Q
u'(y)=x-y—ulx), Du(y)=x
and
Dzu*(y) = (Dzu(x))_l

where x € R” is uniquely determined by Du(x) = y. By (1.2) we see that u* should satisfy
the Monge-Ampere equation

VyeQ

1
nt2 9

(4.1) det D*v(y) = N
n(y)(1—1[y[7)2

where 7(y) = ¥(x).

Conversely, given a convex domain Q < B;(0) and n € C*(Q), n > 0, if there exists a
strictly convex solution v € C*(Q) of (4.1) such that

(4.2) Do(Q) = R,

then its Legendre transform « = v* is a smooth spacelike strictly convex solution of (1.2)
defined on R" with (x) = 5(y), where y is given by Dv(y) = x, for all x e R". According
to Li [12], the resulting hypersurface M = graph(u) has uniformly bounded principal cur-
vatures if and only if Q = B (0).

Li [12] treated the Dirichlet problem in Q = B (0) for (4.1)—(4.2) with smooth bound-
ary data. From the geometric point of view, it would be natural to consider Lipschitz
boundary data, as well as general subdomains of B;(0). Analytically, this is a challenging
problem as one has to construct more sophisticated barrier functions to prove that (4.2)
is satisfied. (In [12] the barriers are constructed from the function v/ 1 — | y|2 which is
(minus) the Legendre transform of the hyperboloid (1.3).) Our main results of this section
extend the theorem of Li [12] to allow Lipschitz boundary data in dimension n =2
(Theorem 4.5), and to the case Q = B/ (0) (Theorem 4.1) for all n. This is achieved with
the aid of the rotationally symmetric K-hypersurfaces $, constructed in Section 2. We first
consider the case Q = B (0): write 0Q = 0,Q U dQ where 3,Q =dQ N {y; >0} and
00Q =0Qn{y =0}.

Theorem 4.1. Let Q= B (0) and ¢ € C°(0Q) N C*(0.Q), ne C*(Q) n C*(Q),
n > 0. Suppose in addition that

(4.3) @ is affine  on 0pQ.

Then there exists a unique strictly convex solution v e C*(Q) n C°(Q) of (4.1) which satisfies
(4.2) and the Dirichlet condition

(4.4) v=¢ ondQ.
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Proof. For convenience we write i = 1/5 and will still use ¢ to denote its harmonic
extension to Q. Note that p e C*(QuU 0, Q). Let Q) = --- =« Q = --- = Q be a sequence
of smooth strictly convex domains such that

(4.5) Q= Q.
=1

1

Let ¢ — 1 be a strictly increasing sequence. By [4] there exists a unique strictly convex so-
lution vy € C*™(€Y) to the Dirichlet problem

_ni2
2

(4.6) det Do = (1 — ily)) "% in Gy,
UV = ¢ oOn an.
By the maximum principle
(4.7) P> v 20 inQy, k21,

where

—1 .
v(y) =g —ynV1— [y, yeBi,

¢ =min ¢, Y =max y,
oQ a

since v is a subsolution of (4.6) for each k = 1, i.e.

_nt2

_ 42 N
(4.8) detD?v = y(1— |y~ 2yl —gly) > inO

and v < ¢ on 0Qy. From (4.7) we obtain by the convexity of v; a uniform bound on any
compact subset of Q for |Dv,| independent of k. It follows that v; converges uniformly on
any compact set in Q to the convex function v € C°(Q) given by

v(y) = lim v (y), yeQ.

k—o0

Next, for an arbitrarily fixed point y € 0Q by subtracting an affine function we may
assume ¢(§) = 0 and Dg(3) = 0. Since ¢ € C*(0Q) N C*(0,Q) and g is affine on JQ we
can choose A > 0 sufficiently large depending on |D(p|m such that

(4.9) —Al(y) £ p(y) £ Al(y), VyedQ,

where [(y) =1—p-yif pe0,.Q, I(y) = y; if P € 0pQ. By the maximum principle we have
as in (4.7) that

(4.10) o(y) Z ve(y) Z Py (y) — Aly), VyeQy, k= 1.

Here, with a slight abuls% of notation, u;j is the Legendre transform of the function
u(x) == (fl(x1)2+|)_c|2) /> where Si(t) = f(t+ 1) as in Corollary 2.9, noting that

uj € C°(B}) n C*(BY) satisfies
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_nt2

det D’uf = (1—|y[*)~2 in B}

and u; = 0 on 0Q by Corollary 2.9. Letting k — co we obtain from (4.10) that

(4.11) limv(y) = ¢(3), VyedQ,
=y

since p(§) = §"u; (§) — Al(3) = 0.

This proves v e C°(Q) with v = ¢ on 0Q. We next want to prove ve C*(Q). Note
that v is a convex viscosity solution of (4.1) in Q. Let y, be any interior point in Q and P
a supporting plane of X, := graph(v) at (o, v(o)). We claim that P n X, contains a single
point ( Y0, 0( yo)). For otherwise, by a theorem of Caffarelli [2], P n X, would contain a seg-
ment from ( Y0, 0( yo)) to a boundary point ( y,0( j/)) for some y € 0Q, which would imply

(4.12) lim vo(y+1e) —v(d) _ v(yo) —v(y)
| o ! |0 — ¥

> —0

where e is the unit vector pointing from yg to y. However, by the maximum principle and
the second inequality in (4.9) which we may still assume to hold,

(4.13) v(y) = Al(y) + ﬁul*(y), VyeQ,
where
Y = min ¢ > 0.
- Q

It follows that

(4.14)  lim v(F +re) — v(y) < Ae - DI + i lim 21 (+ fet) iy _

t—0* t — t—0*

since |Duj| = oo on dQ. This contradicts (4.12), proving our claim. By Caffarelli’s theorems
[2], [3] and the Evans-Krylov regularity theory v is a smooth strictly convex solution of
(4.1) in Q. Moreover, from (4.14) which holds for any interior point yy € Q and y € 0Q,
we see v satisfies (4.2). [

Remark 4.2. The resulting entire spacelike hypersurface M = graph(v*) must have
unbounded principal curvatures.

Remark 4.3. Assumption (4.3) is also necessary when n = 2. In general (n = 2) it is
necessary to assume ¢ to be convex but not strictly convex at each interior point of JyQ.
This is because if ¢ is smooth and strictly convex at a point y € B;(0) n {y; = 0} then the
solution is at least of class C%! up to boundary near j by the boundary regularity of
Monge-Ampere equations. In particular, (4.2) can not hold at .

Remark 4.4. Concerning problem (4.1)—(4.2) in a general subdomain Q of Bj(0),
Lemma 3.2 gives a necessary condition on € for its solvability. In particular, when n = 2
it implies Q has to be either B;(0) or Bi(0) n{a-y > ¢} for some a € R", |a| =1 and
—1 < ¢ < 1. In all dimensions (n = 2) this latter case can be reduced to Q = B/ (0).
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As we mentioned above, our second main theorem of this section concerns the Min-
kowski type problem with Lipschitz Dirichlet boundary data.

Theorem 4.5. Let n=2, Q=B;(0)c R} neC?(Q)nCQ), >0, and
p e CY1(0Q). Then there exists a unique strictly convex solution ve C*(Q)n C*(Q) of
(4.1) which satisfies (4.2) and (4.4). Consequently, there exists a smooth complete entire
spacelike strictly convex hypersurface M with Gauss curvature

Ky (n™'() =n(»), VyeBi(0),
where n~! : B1(0) — M is its inverse Gauss map.

Proof. We modify the proof of Theorem 4.1. First by approximation (solving (4.6)
for Q; = B1(0) for all k = 1) we obtain a convex viscosity solution v € C°(Q) of (4.1). To
proceed let € 0Q. We may assume j = (0, 1) and ¢(9) = 0. Since ¢ € C*!(0Q), by Cor-
ollary 2.10 and Lemma 2.11 there exist ¢; < 0, 0 < ¢; < 1 and 4 > 0 (independent of y)
such that

— 1
(4.15) Yl — A1 = y2) < 9 < Y, + A(1 — y2)  on Q.
Applying the maximum principle to the approximation we obtain
— 1 . —
(4.16) Yrul — A(1 = y2) S v < g, + A(1 - y2) in Q.
This proves v e C°(Q) and v = ¢ on Q.

Finally, using the second inequality in (4.16) (in place of (4.13)) we can prove
v e C*(Q) and satisfies (4.2) as in the proof of Theorem 4.1. []

It would be interesting to extend Theorem 4.5 to higher dimensions.
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