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1. Introduction

Let Ω be a bounded domain in Cn with C∞ boundary ∂Ω. In this paper we are

concerned with the Dirichlet problem for complex Monge-Ampère equations

(1.1) det(uzj z̄k
) = ψ(z, u,∇u) in Ω, u = ϕ on ∂Ω

and related questions.

When Ω is a strongly pseudoconvex domain, this problem has received extensive study.

In [4]-[6], E. Bedford and B. A. Taylor established the existence, uniqueness and global

Lipschitz regularity of generalized pluri-subharmonic solutions. S.-Y. Cheng and S.-T.

Yau [8], in their work on complete Kähler-Einstein metrics on non-compact complex

manifolds, solved (1.1) for ψ = eu and ϕ = +∞, obtaining a solution in C∞(Ω). In

1985, L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck [7] proved the existence of

classical pluri-subharmonic solutions of (1.1) for the non-degenerate case ψ > 0, under

suitable conditions on ψ. The degenerate case ψ ≥ 0 has also attracted a lot of attention,

and counterexamples have been found showing that there need not be a C2 solution (see

[3], [11]). It is of interest in complex analysis to ask whether C1,1 regularity holds for

the degenerate case; see [1] for related results and further references. In [20], S.-Y. Li

studied the Neumann problem for complex Monge-Ampère equations.

In this paper we treat the Dirichlet problem (1.1) for general domains which are not

necessarily pseudoconvex. We shall prove

Theorem 1.1. Let ϕ, ψ be real-valued smooth functions, ψ > 0. Suppose there exists a

strictly pluri-subharmonic subsolution u ∈ C2(Ω) of (1.1), that is,

(1.2) det(uzj z̄k
) ≥ ψ(z, u,∇u) in Ω, u = ϕ on ∂Ω.

Then there exists a strictly pluri-subharmonic solution u ∈ C∞(Ω) of (1.1) with u ≥ u.

In [13] and [12], J. Spruck and the author treated the Dirichlet problem for the real

Monge-Ampère equations in non-convex domains. As in the real case, the point here is

that no restrictions (other than being bounded and smooth) to the underlying domain Ω
1
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are needed. As complex Monge-Ampère equations are closely related to certain problems

in geometry and complex analysis, it seems reasonable to expect such a result to find

interesting applications. In this paper we will apply Theorem 1.1 to prove the C1,α

regularity of the pluri-complex Green function for a strongly pseudoconvex domain. We

recall that, given a domain Ω ⊂ Cn and a point ζ ∈ Ω, the function

gζ(z) = sup{v(z) : v is pluri-subharmonic on Ω, v < 0 and v(z) ≤ log |z − ζ|+O(1)}

is called the pluri-complex Green function on Ω with logarithmic pole at ζ (see [9], [15]

and [18]). In the case that Ω is smooth, bounded and strictly convex, Lempert [18] has

shown that gζ ∈ C∞(Ω− {ζ}). In the strongly pseudoconvex case, however, E. Bedford

and J.-P. Demailly [2] have found counterexamples which show that gζ in general does

not belong to C2(Ω− {ζ}). We will prove

Theorem 1.2. Let Ω be a smooth bounded strongly pseudoconvex domain and ζ ∈ Ω.

Then gζ ∈ C1,α(Ω− {ζ}) for any 0 < α < 1.

In [23], S. Semmes developed a theory of generalized Riemann mappings that is closely

related with the pluri-complex Green functions (see Theorem 2.2 of [23]). Using the

work of Lempert [18], he proved the existence of smooth Riemman mappings with given

smooth strictly convex images in Cn. Theorem 1.2 has the following consequence: if

ρ : Bn → Cn is a Riemann mapping whose image is a smooth strongly pseudoconvex

domain in Cn, where Bn denotes the unit ball in Cn, then ρ is C1,α in Bn − {0} for any

0 < α < 1.

A fundamental property of the pluri-complex Green function is that it is a week

solution of the following problem

(1.3)


u is pluri-subharmonic in Ω− {ζ}
det(uzj z̄k

) = 0 in Ω− {ζ}
u = 0 on ∂Ω

u(z) = log |z − ζ|+O(1) as z → ζ.

We will prove Theorem 1.2 by showing that the above problem has a unique solution

in C1,α(Ω − {ζ}) if Ω is a smooth bounded strongly pseudoconvex domain. The proof,

which is contained in Section 4, involves deriving interior estimates for the Laplacian of

solutions to the approximate nondegenerate equations. We formulate the estimates in

the following more general form due to its own interest.

Theorem 1.3. Let u ∈ C4(Ω)∩C1(Ω) be a strictly pluri-subharmonic solution of (1.1).

Assume that there exists a strictly pluri-subharmonic function v ∈ C2(Ω) with v = ϕ on
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∂Ω. Then

(1.4) |uzj z̄k
(z)| ≤ C

(dist(z, ∂Ω))N
, for z ∈ Ω,

where C and N are constants depending on n, Ω, ‖u‖C1(Ω), ‖v‖C2(Ω), ψ up to its second

derivatives, and a lower bound ψ0 > 0 of ψ(x, u,∇u), which in turn depends on ‖u‖C1(Ω).

This may be regarded as an analogue of Pogorelov’s C2 interior estimates for the

corresponding real Monge-Ampère equations (see [21]). For ψ = ψ(z, u) and ϕ = 0 (in

this case, Ω must be strongly pseudoconvex, and one may take v ≡ 0, though it is not

strictly pluri-subharmonic), this result was proved by F. Schulz [22] whose proof uses the

integral method approach of N. M. Ivochkina [14] to the real Monge-Ampère equations.

S.-Y. Cheng and S.-T. Yau [8] also obtained similar estimates which in addition depend

on supΩ

∑
ujk̄uzj

uz̄k
. Our proof, which is presented in Section 3, is an extension to the

complex case of Pogorelov’s original argument. We also should point out that, as we

will see in Section 4, Theorem 1.3 can not be directly used in the proof of Theorem 1.2

as our problem (1.3) is degenerate.

In Section 2 we will establish a priori bounds on the boundary of Ω for the second

derivatives of strictly pluri-subharmonic solutions of (1.1), thereby proving Theorem 1.1.

Section 3 contains the proof of Theorem 1.3. In Section 4 we prove the solvability of

(1.3) in C1,α(Ω− {ζ}).
Notation. Let z1, . . . , zn be complex coordinates in Cn, zj = xj + iyj and z =

(z1, . . . , zn). If u is a C2 function on an open set of Cn we use the notation

uj = uzj
= ∂ju, uj̄ = uz̄j

= ∂j̄u, ujk̄ = uzj z̄k
= ∂j∂k̄u, etc,

and

∇u = (uz1 , uz̄1 , . . . , uzn , uz̄n),

where

∂j =
∂

∂zj

=
1

2

(
∂

∂xj

− i
∂

∂yj

)
, ∂j̄ =

∂

∂z̄j

=
1

2

(
∂

∂xj

+ i
∂

∂yj

)
.

A notable property of the complex Monge-Ampère operator is that under a holomorphic

change of variable z 7→ w we have

det(uzj z̄k
) = | det(wz)|2 det(uwjw̄k

).

We also recall that a real-valued function u ∈ C2(Ω) is strictly pluri-subharmonic if the

complex Hessian matrix {uzj z̄k
} is positive definite in Ω. We denote by {ujk̄} the inverse

matrix of {uzj z̄k
} when it is invertible.
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2. Boundary estimates for second derivatives

It is now well known, through the work [10], [16] and [7], that the solvability of the

Dirichlet problem (1.1) depends upon the establishment of global a priori estimates,

up to the second derivatives, for prospective solutions. Let u ∈ C4(Ω) be a strictly

pluri-subharmonic solution of (1.1) with u ≥ u. Our goal of this section is to derive a

bound

(2.1) ‖u‖C2(Ω) ≤ C.

Theorem 1.1 then may be proved by the method of continuity and degree theory as in

the real case in [12].

From [7], we have the global C1 estimate

(2.2) |u|+ |∇u| ≤ K in Ω.

It follows that ψ(x, u,∇u) is bounded below from zero. We set

ψ0 ≡ min
|z|+|p|≤K, x∈Ω

ψ(x, z, p) > 0, ψ1 ≡ max
|z|+|p|≤K, x∈Ω

ψ(x, z, p).

It is also shown in [7] how to derive global bounds on Ω for the second derivatives from

(2.2) and a priori estimates on the boundary

(2.3) max
∂Ω

|∇2u| ≤ C.

The rest of this section is devoted to deriving (2.3).

At any point 0 ∈ ∂Ω, we may choose coordinates z1, . . . , zn with origin at 0 and such

that the positive xn axis is the interior normal direction to ∂Ω at 0. For convenience

we set t1 = x1, t2 = y1, . . . , t2n−3 = xn−1, t2n−2 = yn−1, t2n−1 = yn, t2n = xn, and

t′ = (t1, . . . , t2n−1). Near 0, we may represent ∂Ω as a graph

(2.4) xn = ρ(t′) =
1

2

∑
α,β<2n

Bαβtαtβ +O(|t′|3).

Since (u− u)(t′, ρ(t′)) = 0, we have

(2.5) (u− u)tαtβ(0) = −(u− u)xn(0)Bαβ, α, β < 2n.

It follows that

(2.6) |utαtβ(0)| ≤ C, α, β < 2n.

Next we proceed to estimate utαxn(0) for α ≤ 2n. Consider the linearized operator

L = ujk̄∂j∂k̄ where {ujk̄} is the inverse matrix of {ujk̄}. For any first order differential

operator D of constant coefficients, we have

L(Du) = D(logψ(z, u(z),∇u(z))).
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Set L = L − fpj
∂j − fp̄j

∂j̄ where f ≡ logψ. We will employ a barrier function of the

form

(2.7) v = (u− u) + t(h− u)−Nd2,

where h is the harmonic function in Ω with h|∂Ω = ϕ, d is the distance function from

∂Ω, and t, N are positive constants to be determined. We may take δ > 0 small enough

so that d is smooth in Ωδ = Ω ∩Bδ(0). The key ingredient is the following

Lemma 2.1. For N sufficiently large and t, δ sufficiently small,

Lv ≤ − ε
4
(1 +

∑
ukk̄) in Ωδ, v ≥ 0 on ∂Ωδ,

where ε > 0 is a uniform lower bound of the eigenvalues of {ujk̄} on Ω.

Proof. It follows from ujk̄(ujk̄ − ujk̄) ≤ n− ε
∑
ukk̄ that

(2.8) L(u− u) ≤ C0 − ε
∑

ukk̄.

Next, since ∆u ≥ nε > 0,

(h− u)(x) ≥ c0d(x), for x ∈ Ω

for some uniform constant c0 > 0. Moreover, we have

L(h− u) ≤ C1(1 +
∑

ukk̄),

for some constant C1 > 0 under control. Thus

Lv ≤ C0 + tC1 + (tC1 − ε)
∑

ukk̄ − 2N(dLd+ ujk̄djdk̄) in Ωδ.

It is easy to see that

Ld ≥ −C2(1 +
∑

ukk̄).

Furthermore, since {ujk̄} is positive definite and dtβ(0) = 0 for all β < 2n, dt2n(0) = 1,

we have, for δ sufficiently small,

(2.9)

ujk̄djdk̄ ≥ unn̄dndn̄ +
∑
k<n

(unk̄dndk̄ + ukn̄dkdn̄)

≥ unn

2
− C3δ

∑
ukk̄ in Ωδ.

Let λ1 ≤ · · · ≤ λn be the eigenvalues of {ujk̄}. We have
∑
ukk̄ =

∑
λ−1

k and unn̄ ≥ λ−1
n .

By the inequality for arithmetic and geometric means,
ε

4

∑
ukk̄ +Nunn̄ ≥ nε

4
(Nλ−1

1 · · ·λ−1
n )

1
n ≥ nε

4(ψ1)1/n
N

1
n ≡ c1N

1
n .

Now we fix t > 0 sufficiently small so that tC1 ≤ ε
4

and fix N so that c1N
1/n ≥ C0 + ε.

We obtain

Lv ≤ − ε
4
(1 +

∑
ukk̄) in Ωδ
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if we require δ to satisfy 2(C2 + C3)Nδ ≤ ε
4

in Ωδ.

Next we examine the value of v on ∂Ωδ. On ∂Ω∩Bδ(0) we have v = 0. On Ω∩∂Bδ(0),

v ≥ tc0d−Nd2 ≥ (tc0 −Nδ)d ≥ 0,

if we require, in addition, Nδ ≤ tc0. Now we can fix δ sufficiently small to complete the

proof of Lemma 2.1. �

To estimate utαxn(0) for α < 2n we consider in Ω ∩Bσ(0) the real, linear operator

T =
∂

∂tα
+ ρtα

∂

∂xn

.

Since T is a tangential operator on ∂Ω,

T (u− u) = 0 on ∂Ω ∩Bσ(0).

Moreover, we have

T (u− u) ≤ C in Ω ∩Bσ(0),

and (see [7])

L(±T (u− u)− (uyn − uyn
)2) ≤ C(1 +

∑
F kk̄) in Ω ∩Bσ(0).

We note that, since on ∂Ω near 0,

(u− u)yn = −(u− u)xnρyn ,

by (2.4) and (2.2),

(uyn − uyn
)2 ≤ C|z|2.

Now by Lemma 2.1 we may choose A� B � 1 so that

L(Av +B|z|2 − (uyn − uyn
)2 ± T (u− u)) ≤ 0 in Ω ∩Bσ(0),

and

Av +B|z|2 − (uyn − uyn
)2 ± T (u− u)) ≥ 0 on ∂(Ω ∩Bσ(0)).

Consequently, from the maximum principle,

Av +B|z|2 − (uyn − uyn
)2 ± T (u− u)) ≥ 0 in Ω ∩Bσ(0).

It follows that

(2.10) |utαxn(0)| ≤ Avxn(0) + |utαxn
(0)| ≤ C, α < 2n.

It remains to establish the estimate

(2.11) |uxnxn(0)| ≤ C.

Since we have already derived

(2.12) |utαtβ(0)|, |utαxn(0)| ≤ C, α, β < 2n,
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it suffices to prove

(2.13) |unn̄(0)| ≤ C.

Solving equation (1.1) for unn̄(0) we see that (2.13) follows from (2.12) provided that

(2.14)
∑

α,β<n

uzαz̄β
(0)ξαξ̄β ≥ c0 > 0

for any unit vector ξ = (ξ1, . . . , ξn−1) ∈ Cn−1.

Proposition 2.2. There exists c0 = c0(ψ0, ϕ, u, ∂Ω) such that (2.14) holds.

Proof. Without loss of generality, it suffices to show that

(2.15) u11̄(0) ≥ c0 > 0.

We may also assume u(0) = utj(0) = 0, j ≤ 2n− 1. We have, similar to (2.5),

(2.16) (u− u)zαz̄β
(0) = −(u− u)xn(0)ρzαz̄β

(0), α, β < n.

In particular,

(2.17) u11̄(0) = u11̄(0)− (u− u)xn(0)ρ11̄(0).

It follows that if ρ11̄(0) ≤ 1
4K
u11̄(0) (where K as in (2.2), so 0 ≤ (u − u)xn(0) ≤ 2K),

then u11̄(0) ≥ 1
2
u11̄(0) > 0. So we may assume ρ11̄(0) ≥ 1

4K
u11̄(0) > 0. The function

ũ = u− λxn, where λ = uxn
(0) + u11̄(0)/ρ11̄(0), satisfies

(2.18) det(ũjk̄) = det(ujk̄) ≥ ψ0,

and

(2.19)

(
∂2

∂t21
+
∂2

∂t22

)
ũ(t′, ρ(t′)) = 0 at 0.

On ∂Ω, ũ is expanded in a Taylor series

(2.20) ũ|∂Ω =
1

2

∑
α,β<2n

γαβtαtβ + q(t′) +O(|t′|4)

where q(t′) is a cubic polynomial. We may assume γ11 = γ12 = γ22 = 0. For in view of

(2.19), we have γ11 + γ22 = 0, and hence (2.18), (2.19) still hold if we replace ũ by

ũ− 1

2

(
γ11x

2
1 + 2γ12x1y1 + γ22y

2
1

)
.

We claim that, after subtracting the real part of a holomorphic polynomial (this does

not affect (2.18) and (2.19)), we may assume

(2.21) ũ|∂Ω ≤ Re
∑

1<j≤n

ajz1z̄j + C
∑

1<j≤n

|zj|2,
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for suitable aj ∈ C. To see this we first note that

2∑
α=1

2n−1∑
β=3

γαβtαtβ = Re
n−1∑
j=2

z1(a1jzj + a1j̄ z̄j) + Re(cz1yn).

Thus

1

2

∑
α,β<2n

γαβtαtβ = Re
n−1∑
j=2

z1(a1jzj + a1j̄ z̄j) + Re(cz1yn) +O(t23 + · · ·+ t22n−1).

Next, in q(t′), the cubic in (t1, t2) has a unique decomposition Re(az3
1 + bz1|z1|2), the

terms that are quadratic in (t1, t2) can be written in the form

Re
n−1∑
j=2

z2
1(a

′
1jzj + a′1j̄ z̄j) + Re

n−1∑
j=2

cjzj|z1|2,

and all the other terms are bounded by C
∑

3≤β<2n t
2
β. Finally, with the aid of (2.4)

we may replace |z1|2 by (ρ11̄(0))−1xn modulo a holomorphic polynomial and an error

controlled by C
∑

1≤β≤n |zβ|2, if we change the coefficients a1j̄ and c appropriately. So

we have verified (2.21).

Now we assume (2.18), (2.19), (2.21) hold simultaneously and consider the barrier

function

(2.22) h = −εxn + δ|z|2 +
1

2B

∑
1<j≤n

|ajz1 +Bzj|2

in Ω∩Bσ(0) for σ > 0 sufficiently small. The smallest eigenvalue of {hjk̄} is 2δ and the

largest eigenvalue is bounded above by CB with C a controlled constant, independent

of δ.

We will choose 0 < ε � δ so that δ|z|2 − εxn > 0 on ∂(Ω ∩ Bσ(0)) and B so large

(independent of δ) that h ≥ ũ on ∂(Ω ∩ Bσ(0)). Having thus fixed B, we can choose δ

small enough that det(hjk̄) ≤ ψ0 in Ω ∩Bσ(0). These choices now determine ε.

Thus h is an upper barrier for ũ. That is, by the maximum principle, ũ ≤ h in

Ω ∩Bσ(0). Consequently, since ũ(0) = h(0), ũxn(0) ≤ hxn(0) = −ε. By (2.18),

ũ11̄(0) = −ũxn(0)ρ11̄(0) ≥ ε
u11̄(0)

2K
.

Thus (2.15) holds with c0 = ε
2K
u11̄(0) > 0. �

We have established (2.1). Thus the proof of Theorem 1.1 is complete.

3. Interior estimates for second derivatives

The main purpose of this section is to prove Theorem 1.3. We start with the following

lemma which we will also need in Section 4.
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Lemma 3.1. Let u be a pluri-subharmonic solution of (1.1) and L = ujk̄∂j∂k̄ the lin-

earized operator. Let η be a positive function in Ω and set

(3.1) W = max
z∈Ω

max
|ξ|=1,ξ∈Cn

ηN
∑
j,k

ujk̄(z)ξj ξ̄k exp
{
a|∇u(z)|2

}
,

where a ≥ 0 and N ≥ 2 are constant. Suppose W is achieved at an interior point z0 ∈ Ω

with ξ = (1, 0, . . . , 0) and ujk̄(z
0) = 0 for j 6= k. Then, at z0,

(3.2)

Nu11̄

η
L(η)−N

∣∣∣∣η1

η

∣∣∣∣2 +
au11̄

2

(∑
j

ujj̄ +
∑
j,k

|ujk|2

ujj̄

)
+ (f)11̄ + 2au11̄Re

∑
k

uk̄L(uk) ≤ 0,

when N ≥ 8amaxz∈Ω |∇u(z)|2.

Proof. Since the function N log η + log u11̄ + a|∇u|2 attains a maximum at z0, we have,

at that point

(3.3) N
ηj

η
+
u11̄j

u11̄

+ a
∑

k

(ukuk̄j + uk̄ukj) = 0,

and

(3.4) N
ηjj̄

η
−N

∣∣∣∣ηj

η

∣∣∣∣2 +
u11̄jj̄

u11̄

−
∣∣∣∣u11̄j

u11̄

∣∣∣∣2 + a

(
u2

jj̄ +
∑

k

|ukj|2
)

+ 2Re
∑

k

uk̄ukjj̄ ≤ 0.

From (3.3) we have for j ≥ 2,

(3.5) N

∣∣∣∣ηj

η

∣∣∣∣2 ≤ 2

N

∣∣∣∣u11̄j

u11̄

∣∣∣∣2 +
4a2|∇u|2

N

(
u2

jj̄ +
∑

k

|ukj|2
)
.

Differentiating equation (1.1), we obtain∑
j,k

ujk̄ujk̄l = (f)l,

∑
j,k

ujk̄ujk̄11̄ −
∑

j,k,l,m

ujm̄ulk̄ujk̄1ulm̄1̄ = (f)11̄,

where f = logψ. For N ≥ 2,

(3.6)
∑
j,k

|u1k̄j|2

ukk̄ ujj̄

−
∣∣∣∣u11̄1

u11̄

∣∣∣∣2 − (1 +
2

N

)∑
j>1

|u11̄j|2

u11̄ ujj̄

≥ 0.

At z0 we have L =
∑
u−1

jj̄
∂j∂j̄; consequently, multiplying (3.4) by u11̄u

−1
jj̄

and summing

over j, we obtain (3.2) with the aid of (3.5) and (3.6). �
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Proof of Theorem 1.3. Without loss of generality, we may assume det(vij̄) ≤ ψ0/2 in Ω,

where

ψ0 ≡ min
x∈Ω

ψ(x, u(x),∇u(x)) > 0,

which depends on ‖u‖C1(Ω). (If this is not satisfied we may apply Theorem 1.1 us-

ing v, which is strictly pluri-subharmonic, as a subsolution to obtain a strictly pluri-

subharmonic function ṽ satisfying det(ṽij̄) ≤ ψ0/2 in Ω, and ṽ = ϕ on ∂Ω. We then may

replace v by ṽ.) By a standard barrier argument one sees that

(3.7) (v − u)(z) ≥ ε0dist(z, ∂Ω) for x ∈ Ω

for some uniform constant ε0 > 0. Moreover, since v is pluri-subharmonic, we have

(3.8) L(η) = L(v)− L(u) ≥ −L(u) = −n.

In order to derive (1.4) we take η ≡ v − u in (3.1); it suffices to derive a bound for

W . Since η = 0 on ∂Ω, W is achieved at some interior point z0 ∈ Ω and for some

ξ ∈ Cn. After a holomorphic change of coordinates we may assume ξ = (1, 0, . . . , 0) and

ujk̄(z
0) = 0 for j 6= k. So we can apply Lemma 3.1.

By a straightforward calculation, we obtain (see also [7])

(f)11̄ ≥ 2Re
∑

j

fpj
uj11̄ − C

(
1 + u2

11̄ +
∑

j

|u1j̄|2
)
.

From (3.3) we have

(3.9)

2Re
∑

j

fpj
uj11̄ =− 2au11̄Re

∑
j

fpj

(
ujujj̄ +

∑
k

uk̄ukj

)
− 2Nu11̄

η
Re
∑

j

fpj
ηj

≥− 2au11̄Re
∑

j

uk̄L(uk)− Cu11̄

(
a+

N

η

)
.

Now, multiplying (3.2) by η2, combined with (3.8) and the above two inequalities, we

obtain

(a− C)η2(u2
11̄ +

∑
j

|u1j̄|2)− C(a+N)ηu11̄ − CN ≤ 0.

Choosing N � a � 1 then yields a bound for ηu11̄ and hence a bound for W . Finally,

for any z ∈ Ω we have

max
|ξ|=1,ξ∈Cn

∑
j,k

ujk̄(z)ξj ξ̄k ≤
W

ηN
exp

{
−a|∇u(z)|2

}
.

In view of (3.7), this completes the proof of Theorem 1.3. �
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4. The regularity of the pluri-complex Green function

In this section we prove the following theorem which implies Theorem 1.2.

Theorem 4.1. Let Ω be a smooth bounded strongly pseudoconvex domain and ζ ∈ Ω.

Then there exists a unique weak solution of (1.3) in C1,α(Ω− {ζ}).

Proof. The uniqueness is a easy consequence of the minimum principle of Bedford-

Taylor [4] as in [19]. In the following we prove the existence. Without loss of gen-

erality, we may assume that B1(ζ) ⊂ Ω. According to [7], there exists a unique strictly

pluri-subharmonic solution v ∈ C∞(Ω) to the Dirichlet problem

det(vjk̄) = 1 in Ω, v = − log |z − ζ| on ∂Ω.

Let u ≡ v + log |z − ζ| ∈ C∞(Ω− {ζ}). We see that u satisfies

(4.1)


u is strictly pluri-subharmonic in Ω− {ζ}
det(ujk̄) ≥ ε0 in Ω− {ζ}, for some 0 < ε0 < 1

u ≤ 0, and u|∂Ω = 0

u(z) = log |z − ζ|+O(1) as z → ζ.

For each positive ε ≤ ε0, set Ωε = Ω−Bε(ζ) and consider the Dirichlet problem

(4.2) det(ujk̄) = ε in Ωε, u = u on ∂Ωε.

Note that, since u is a subsolution, by Theorem 1.1 there exists a unique strictly pluri-

subharmonic solution uε ∈ C∞(Ωε) of (4.2). By the maximum principle, we see that

(4.3) u ≤ uε ≤ uε′ ≤ log |z − ζ| in Ωε if ε′ ≤ ε.

Thus the limit

u(z) ≡ lim
ε→0

uε(z)

exists for all z ∈ Ω−{ζ}. We want to show that u ∈ C1,α(Ω−{ζ}) for any 0 < α < 1. It

suffices to establish the following a priori estimate: for any compact subset K ⊂ Ω−{ζ},
and for ε sufficiently small that K ⊂ Ωε

(4.4) ‖uε‖C1,α(K) ≤ C = C(K) independent of ε.

First, from (4.3) we have,

max
K
|uε| ≤ C0 independent of ε.

We now estimate the derivatives on ∂Ω. Let h be the harmonic function in Ωε0 with

boundary value h|∂Ω = 0 and h|∂Bε0 (ζ) = log ε0. Then, for ε ≤ ε0,

u ≤ uε ≤ h in Ωε.
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It follows that

(4.5) 0 < c1 ≤ |∇uε| = uε
ν ≤ C1 on ∂Ω, independent of ε,

where ν in the unit outer normal to ∂Ω. For the second derivatives at a point on ∂Ω, we

observe that the proof of the estimates (2.10) for the mixed normal-tangential second

derivatives in Section 2 still works, while the double normal derivative estimate follows

from (using notation in Section 2)

uzαz̄β
= −uxn(0)ρzαz̄β

,

together with (4.5) and the strong pseudoconvexity of Ω. Thus, we have

(4.6) |∇2uε| ≤ C2 on ∂Ω, independent of ε.

Next we derive a bound

(4.7) ∆uε ≡
n∑

j=1

(uε
xjxj

+ uε
yjyj

) ≤ C in K independent of ε.

Choose ε1 > 0 sufficiently small that K ⊂ Ω−Bε1(ζ). For ε < ε1, set

Mε = max
z∈Ωε

max
|ξ|=1,ξ∈Cn

η2
∑
j,k

uε
jk̄(z)ξj ξ̄k,

where η = |z−ζ|2−ε2
1. We want to estimate Mε, which implies a uniform bound for |ujk̄|

on K as in the proof of Theorem 1.3. (We should point out here that we can not apply

Theorem 1.3 directly for two reasons: one is because we need a bound which does not

depend on ε; the other reason is that we do not have a priori bounds for the gradient.)

If Mε is achieved on ∂Ω, then a bound for Mε follows from (4.6). Assume M is attained

at some point in Ω−Bε1(ζ). By Lemma 3.1 (in (3.2), take N = 2, a = 0, f ≡ log ε) we

obtain at that point,

Mε

∑
j

1

uε
jj̄

≤ C.

By the arithmetic-geometric mean inequality, we have∑
j

1

uε
jj̄

≥ n det(uε
jk̄)

−1/n = nε−1/n.

It follows that Mε ≤ Cε
1
n . Consequently, we have derived a bound for Mε and therefore

(4.7) since ∆u = 4
∑
ujj̄. Finally, (4.4) follows from (4.7) by the standard regularity

theory. This proves that u ∈ C1,α(Ω − {ζ}) and therefore solves (1.3), completing the

proof of Theorem 4.1. �



COMPLEX MONGE-AMPÈRE EQUATIONS 13
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