randFromArray([ -2, -1, -0.5, -0.25, 0.25, 0.5, 1, 2 ]) randRangeNonZero( -4, 4 )/8 randRangeNonZero( -4, 4 )/8 Y1 + 1 / (4 * A) Y1 - 1 / (4 * A) fractionReduce.apply(KhanUtil, toFraction(A, 0.001)) fractionReduce.apply(KhanUtil, toFraction(X1, 0.001)) fractionReduce.apply(KhanUtil, toFraction(Y1, 0.001)) fractionReduce.apply(KhanUtil, toFraction(VERTEX_Y, 0.001)) fractionReduce.apply(KhanUtil, toFraction(DIR_Y, 0.001))

First, find the focus and directrix of the parabola by moving the orange point and line to their correct positions. Then use that information to find the equation of the parabola.

graph.A = A; graph.X1 = X1; graph.Y1 = Y1; initAutoscaledGraph( [ [ -2.5, 2.5 ], [ -2.5, 2.5 ] ], {} ); addMouseLayer(); graph.directrix = addMovableLineSegment({ coordA: [0, -1], coordZ: [1, -1], snapY: 0.125, vertical: false, extendLine: true, normalStyle: { "stroke": KhanUtil.ORANGE, "stroke-width": 2 }, highlightStyle: { "stroke": KhanUtil.ORANGE, "stroke-width": 4 } }); graph.directrix.onMove = function( x, y ) { var coord = this.coordA[1]; $("#directrix-label").html( "<code>" + fractionReduce.apply(KhanUtil, toFraction(coord, 0.001)) + "</code>" ).tmpl(); }; graph.vertex = addMovablePoint({ coordX: 0, coordY: 1, snapX: 0.125, snapY: 0.125, }); graph.vertex.onMove = function( coordX, coordY ) { $("#focus-x-label").html( "<code>" + fractionReduce.apply(KhanUtil, toFraction(coordX, 0.001)) + "</code>" ).tmpl(); $("#focus-y-label").html( "<code>" + fractionReduce.apply(KhanUtil, toFraction(coordY, 0.001)) + "</code>" ).tmpl(); }; graph.func = addInteractiveFn( function(x) { return ( A * ( x - X1 ) * ( x - X1 ) ) + Y1; }, {}); doParabolaInteraction( graph.func, graph.vertex, graph.directrix );

The two green line segments you see when you point to the parabola are always the same length as each other. Use them to check that you've found the right focus and directrix.

[ graph.vertex.coord, graph.directrix.coordA[1] ]
if (_.isEqual(guess, [[0, 1], -1])) { return ""; } return guess[0][0] === X1 && guess[0][1] === Y1 + 1 / (4 * A) && guess[1] === Y1 - 1 / (4 * A)
graph.vertex.setCoord( guess[0] ); graph.directrix.coordA = [0, guess[1]]; graph.directrix.coordZ = [1, guess[1]]; graph.directrix.transform();

Focus: (0\text{, }1)

Directrix: y = -1

Equation of the parabola:
y - Y1 = A(x - X1)^2

set the focus and directrix by moving them around the graph

for the equation of the parabola, you may enter integers, fractions, or exact decimals for each term

pay attention to the sign of each number you enter to be sure the entire equation is correct

All points on a parabola are equidistant from the focus and directrix. There is only one place to put the orange focus point and directrix line where this is true.

The focus is (PRETTY_X1, PRETTY_FOCUS_Y) and the directrix is y = PRETTY_DIR_Y

The equation for a parabola is y - y_1 = a (x - x_1)^2, where x_1 and y_1 are the coordinates of the vertex of the parabola (halfway between the focus and directrix).

x_1 is the same as the x coordinate of the focus. y_1 is at the midpoint of PRETTY_FOCUS_Y and PRETTY_DIR_Y.

So x_1 = PRETTY_X1. And y_1 = \dfrac{PRETTY_FOCUS_Y + PRETTY_DIR_Y}{2} = PRETTY_Y1.

The leading coefficient a in the equation y - y_1 = a (x - x_1)^2 indicates how "wide" and in what direction the parabola opens. It's always the reciprocal of 2 times the distance from the directrix to the focus.

a = \dfrac{1}{2 \times (PRETTY_FOCUS_Y {-} PRETTY_DIR_Y)} = PRETTY_A a = \dfrac{1}{2 \times (PRETTY_DIR_Y {-} PRETTY_FOCUS_Y)} = PRETTY_A

So the equation of the parabola is y - PRETTY_Y1 = PRETTY_A(x - PRETTY_X1)^2.