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Abstract. The aim of this paper is to study convergence of Bousfield-Kan

completions with respect to the 1-excisive approximation of the identity functor
and exotic convergence of the Taylor tower of the identity functor, for algebras

over operads in spectra centered away from the null object. In Goodwillie’s

homotopy functor calculus, being centered away from the null object amounts
to doing homotopy theory and functor calculus in the retractive setting.

1. Introduction

Let R be a (−1)-connected commutative ring spectrum (i.e., a commutative

monoid object in the category (SpΣ,⊗S , S) of symmetric spectra [25, 32]). We
denote by (ModR,∧,R) the closed symmetric monoidal category of R-modules and
assume that O is an operad in R-modules whose terms are (−1)-connected and
satisfies O[0] = ∗ (i.e., such O-algebras are non-unital). We denote by AlgO the
category of O-algebras in R-modules; it is pointed by the null object ∗. Let Y be an
O-algebra and denote by AlgYO the category of retractive O-algebras over Y ; in other

words, AlgYO is the factorization category of the identity map on Y . The objects in

AlgYO are factorizations Y → X → Y of the identity map idY : Y→Y in AlgO, and
morphisms are the commutative diagrams of the form

Y // X //

��

Y

Y // X ′ // Y

in AlgO; it is pointed by the factorization Y = Y = Y of idY .
To keep this paper appropriately concise, we freely use notation from [11]. To

understand how to do homotopy theory in AlgYO , see [3, 2.1], [21, 4.9]; see also

[17, 3.10], [31] and note that AlgYO
∼= idY ↓ (AlgO ↓ Y ) (the category of objects

in (AlgO ↓ Y ) under idY [27, II.6]); in particular, AlgYO inherits a simplicial (e.g.,
[31], [23, 4.2]) cofibrantly generated (e.g., [22]) model structure from AlgO which is
equipped with the positive (flat) stable model structure. Our basic assumption is
that Y is (−1)-connected and both fibrant and cofibrant in AlgO.

If X is a retractive O-algebra over Y , we say that X is k-connected relative to Y
(or k-connected (rel. Y ), for short) if the structure map Y → X is k-connected in

AlgO. In Goodwillie’s homotopy functor calculus [19, 20, 26], AlgYO is the category
that naturally arises when studying Taylor towers in AlgO centered at the object
Y . The aim of this paper is to extend several results in [5, 12, 29, 30] on Bousfield-
Kan completions and Taylor towers for O-algebras centered at the null object ∗, to
analogous results for O-algebras centered at Y . Here are our main results.
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In the statement of Theorems 1.1, 1.2, and 1.3, Ω̃r
Y denotes derived r-fold loops

([17, 10.8], [28, I.2]) in AlgYO , Σ̃r
Y denotes derived r-fold suspension ([17, 10.4],

[28, I.2]) in AlgYO , Ω̃
∞
Y denotes the derived version of the 0-th object functor Ω∞

Y

([24], Section 3) on Hovey spectra SpN(AlgYO) on AlgYO , and Σ̃∞
Y denotes the derived

version of the stabilization functor Σ∞
Y ([24], Section 3) on AlgYO . In the special

case when Y = ∗, Theorem 1.1 is proved in [12] when r =∞, and subsequently in
[5] (using a different approach, more closely related to ideas in [6, 7, 14, 15]) for
1 ≤ r ≤ ∞. We observe that these results generalize to the context of O-algebras
centered at Y .

Theorem 1.1. Assume that R,O, Y are (−1)-connected and O[0] = ∗. Let X be a
retractive O-algebra over Y . If X is 0-connected (rel. Y ), then the Bousfield-Kan
completion maps

X ≃ X∧
Ω̃r

Y Σ̃r
Y

, (1 ≤ r ≤ ∞)

are weak equivalences. In particular, since Ω̃∞
Y Σ̃∞

Y ≃ PY
1 (id), where PY

1 (id) denotes
the 1-excisive approximation to the identity functor on O-algebras centered at Y ,
the Bousfield-Kan completion of X with respect to PY

1 (id) recovers X, up to weak
equivalence.

In the special case when Y = ∗, Theorem 1.2 is proved in [29] for r =∞ (using
an approach closely related to ideas in [9]) and Theorem 1.3 is proved in [30] (using
ideas closely related to [1]). We observe that these results generalize to the context
of O-algebras centered at Y .

Theorem 1.2. Assume that R,O, Y are (−1)-connected and O[0] = ∗. Consider
any fibration sequence of the form

F → E → B

in retractive O-algebras over Y . If E,B are 0-connected (rel. Y ), then the Bousfield-
Kan completion maps

F ≃ F∧
Ω̃r

Y Σ̃r
Y

, (1 ≤ r ≤ ∞)(1)

are weak equivalences. More generally, consider any∞-cartesian 2-cube of the form

F //

��

E

��
Z // B

in retractive O-algebras over Y . If E,B,Z are 0-connected (rel. Y ), then the
Bousfield-Kan completion maps (1) are weak equivalences.

Theorem 1.3. Assume that R,O, Y are (−1)-connected and O[0] = ∗. Let X be
a retractive O-algebra over Y . If X is (−1)-connected (rel. Y ) and PY

1 (id)X is
0-connected (rel. Y ), then the homotopy limit of the Taylor tower of the identity
functor on O-algebras centered at Y (and evaluated at X) is weakly equivalent

PY
∞(id)X ≃ X∧

Ω̃∞
Y Σ̃∞

Y

to the Bousfield-Kan completion of X with respect to PY
1 (id).
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Remark 1.4. We know from [11] that the identity functor is 0-analytic, but not (−1)-
analytic, hence it follows ([19, 20]) that any 0-connected (rel Y ) X ∈ AlgYO satisfies
X ≃ PY

∞(id)X; we also know by Theorem 1.1 that such anX satisfiesX ≃ X∧
Ω̃∞

Y Σ̃∞
Y

.

On the other hand, whenX is (−1)-connected (rel. Y ) but its stabilization PY
1 (id)X

is 0-connected (rel. Y ), then Theorem 1.3 provides an interesting convergence
result for the Taylor tower of the identity functor. It is worth pointing out that
∗Y → Ω̃∞

Y Σ̃∞
Y X is 0-connected in AlgYO if and only if ∗Y → Σ̃∞

Y X is 0-connected in

SpN(AlgYO); e.g., by the (derived) triangle identities.

Our results are enabled by the homotopical resolutions studied in [8], together
with Hovey spectra [24] of retractive O-algebras over Y by work on Bousfield local-
ization in model structures that are not left proper; see, for instance, [18] and [21],
and the subsequent work of [2] and [10].

2. Homotopical estimates

The purpose of this section is to prove Theorem 2.16 which provides the detailed
homotopical estimates underlying each of our main results. Since making these
types of estimates may not be so familiar, we ease the reader into the various
higher Blakers-Massey (and its dual) arguments, before building up to a proof of
Theorem 2.16. Readers who would like to first see proofs of the main results are
invited to look ahead to Section 3.

Denote by ∗Y := Y the null object (or point) in the pointed category AlgYO . It
will sometimes be conceptually and notationally convenient to denote by ∗′Y ≃ ∗Y
an appropriately fattened up version of the point ∗Y in AlgYO ; this will not cause

any confusion. Let’s explore the behavior of derived suspension Σ̃Y ([17, 10.4], [28,

I.2]) on objects in AlgYO .

Proposition 2.1. Let k ≥ −1. If X ∈ AlgYO is k-connected (rel. Y ), then Σ̃Y X is
(k + 1)-connected (rel. Y ).

Proof. It suffices to assume that X is cofibrant in AlgYO . Consider a pushout cofi-
bration 2-cube of the form

X
(∗) //

(∗)

��

∗′Y
(#)

��
∗′Y

(#) // Σ̃Y X

(2)

in AlgYO . By assumption, we know that ∗Y → X is k-connected, hence the maps (∗)
are (k+1)-connected. Since the 2-cube is∞-cocartesian by construction, it follows
that the maps (#) are (k + 1)-connected; see, for instance, [11, 1.4]. □

Let’s explore the behavior of Σ̃Y on maps in AlgYO ; this will provide a useful
warmup in using cocartesian-ness estimates.

Proposition 2.2. Let n ≥ −1. Consider any n-connected map A → B in AlgYO.

Assume that A,B are (−1)-connected (rel. Y ). Then the induced map Σ̃Y A →
Σ̃Y B is (n+ 1)-connected.
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Proof. One way to verify this is to make systematic use of cocartesian-ness esti-
mates. It suffices to assume that A,B are cofibrant in AlgYO . Consider the induced
3-cube of the form

A //

��

��

∗′Y
��

��
B //

��

∗′Y

��
∗′Y

��

// Σ̃Y A
��

∗′Y // Σ̃Y B

in AlgYO where the front and back 2-faces are pushout cofibration 2-cubes (and
hence ∞-cocartesian). It follows from [11, 3.8] (e.g., [19, 1.7]) that the 3-cube is
∞-cocartesian. Consider the left-hand 2-face of the form

A //

��

B

��
∗′Y // ∗′Y

Since the upper map is n-connected by assumption and the bottom map is ∞-
connected (i.e., a weak equivalence), it follows from [11, 3.8] (e.g., [19, 1.7]) that
this 2-face is (n+1)-cocartesian. Putting it all together, the 3-cube is∞-cocartesian
and the left-hand 2-face is (n + 1)-cocartesian, hence the right-hand 2-face of the
form

∗′Y //

��

∗′Y

��
Σ̃Y A // Σ̃Y B

is (n+1)-cocartesian; since the upper map is∞-connected, it follows from [11, 3.8]
(e.g., [19, 1.7]) that the bottom map is (n+ 1)-connected. □

Let’s explore the behavior of derived loops Ω̃Y ([17, 10.8], [28, I.2]) on objects

in AlgYO .

Proposition 2.3. Let k ∈ Z. If X ∈ AlgYO is k-connected (rel. Y ), then Ω̃Y X is
(k − 1)-connected (rel. Y ).

Proof. It suffices to assume that X is fibrant in AlgYO . Consider a pullback fibration
2-cube of the form

Ω̃Y X
(#) //

(#)

��

∗′Y

(∗)
��

∗′Y
(∗) // X

in AlgYO . By assumption, we know that ∗Y → X is k-connected, hence the maps (∗)
are k-connected. Since the 2-cube is ∞-cartesian by construction, it follows that
the maps (#) are k-connected. Hence the map ∗Y → Ω̃Y X is (k−1)-connected. □
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Let’s explore the behavior of Ω̃Y on maps in AlgYO ; this will provide a useful
warmup in using cartesian-ness estimates.

Proposition 2.4. Let n ∈ Z. Consider any n-connected map A → B in AlgYO.

Then the induced map Ω̃Y A→ Ω̃Y B is (n− 1)-connected.

Proof. One way to verify this is to make systematic use of cartesian-ness estimates.
It suffices to assume that A,B are fibrant in AlgYO . Consider the induced 3-cube of
the form

Ω̃Y A //

��

��
∗′Y

��

��

Ω̃Y B //

��

∗′Y

��

∗′Y
��

// A

��
∗′Y // B

in AlgYO where the front and back 2-faces are pullback fibration 2-cubes (and hence
∞-cartesian). It follows from several applications of [11, 3.8] (e.g., [19, 1.6]) that
the left-hand 2-face is (n − 1)-cartesian, and hence by another application of [11,

3.8] (e.g., [19, 1.6]), we know that the map Ω̃Y A→ Ω̃Y B is (n− 1)-connected. □

The following, which appears in [4, 6.7], can be understood as a consequence of
Blakers-Massey [11, 1.5] for AlgO.

Proposition 2.5. Let k ≥ −1. If X ∈ AlgYO is k-connected (rel. Y ), then the map

of the form X → Ω̃Y Σ̃Y X in AlgYO is (2k + 2)-connected.

Proof. It suffices to assume that X is cofibrant in AlgYO . Consider a pushout cofi-
bration 2-cube of the form (2). By assumption, we know that the maps (∗) are
(k + 1)-connected. Since the 2-cube is ∞-cocartesian by construction, it follows
that the maps (#) are (k + 1)-connected; see, for instance, [11, 1.4]. To estimate

the connectivity of the map X → Ω̃Y Σ̃Y X, it suffices to estimate the cartesian-ness
of the 2-cube. By Blakers-Massey [11, 1.5] for AlgO, we know that diagram (2) is
l-cartesian where l is the minimum of

−2 + l{1,2} + 1 = −1 +∞
−2 + l{1} + 1 + l{2} + 1 = (k + 1) + (k + 1) = 2k + 2

Hence l = 2k+2, our 2-cube is (2k+2)-cartesian, and hence the map X → Ω̃Y Σ̃Y X
is (2k + 2)-connected. □

The next step, on our way to proving Theorem 2.16, is to observe some low-
dimensional patterns that naturally arise in the homotopical estimates; this will be
useful. Let X be a 0-cube in AlgYO of the form X∅ and consider the maps

∗Y
(∗)−−→ X∅

(#)−−→ ∗Y
in AlgO. If X∅ is 0-connected (rel. Y ), then (∗) is 0-connected and (#) is 1-

connected; hence the 0-cube X is 0-cocartesian and 1-cartesian in AlgYO . These
three conditions are tautologically the same: X∅ is 0-connected (rel. Y ) if and only

if the 0-cube X is 1-cartesian in AlgYO if and only if the 0-cube X is 0-cocartesian in
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AlgYO . By Proposition 2.5, the 1-cube of the form X→ Ω̃Y Σ̃Y X in AlgYO , which has
the form

X∅ → Ω̃Y Σ̃Y X∅(3)

is 2-connected; furthermore, the 0-cubes are 0-connected (rel. Y ). In other words,
the 1-cube (3) satisfies (i) the 0-subcubes are 1-cartesian and the 1-subcubes are

2-cartesian in AlgYO (i.e., the 1-cube (3) is (id + 1)-cartesian in AlgYO) and (ii) the
0-subcubes are 0-cocartesian and the 1-subcubes are 2-cocartesian (i.e., the 1-cube

(3) is (2 · id)-cocartesian in AlgYO). These conditions are tautologically the same: a

1-cube is (id + 1)-cartesian in AlgYO if and only if it is (2 · id)-cocartesian in AlgYO .
With these observations, we can restate the k = 0 case of Proposition 2.5 as

follows: If the 0-cube X is (id + 1)-cartesian in AlgYO , then so is the 1-cube of the

form X→ Ω̃Y Σ̃Y X.

Remark 2.6. Equivalently, we could have restated the k = 0 case of Proposition 2.5
as follows: If the 0-cube X is (2 · id)-cocartesian in AlgYO , then so is the 1-cube of

the form X→ Ω̃Y Σ̃Y X.

It turns out that this relationship persists for all higher dimensional n-cubes X
in AlgYO (n ≥ 0), beyond the n = 0 case of Proposition 2.5 above.

Theorem 2.7. Let W be a finite set and X a W -cube in AlgYO. Let n = |W |. If

the n-cube X is (id + 1)-cartesian in AlgYO, then so is the (n+ 1)-cube of the form

X→ Ω̃Y Σ̃Y X.

Remark 2.8. The cartesian-ness estimates in Theorem 2.7 are strong enough to
show that if X ∈ AlgYO is 0-connected (rel. Y ), then (i) X is weakly equivalent to

its Bousfield-Kan completion with respect to Ω̃Y Σ̃Y (i.e., X ≃ X∧
Ω̃Y Σ̃Y

) and (ii) the

associated homotopy spectral sequence converges strongly.

The duality relationship observed above—between a specific uniform cartesian-
ness of 1-cubes in AlgYO and a specific uniform cocartesian-ness of 1-cubes in AlgYO—

persists for all higher dimensional n-cubes X in AlgYO (n ≥ 0).

Proposition 2.9. Let W be a finite set and X a W -cube in AlgYO. Let n = |W |.
The n-cube X is (id + 1)-cartesian in AlgYO if and only if it is (2 · id)-cocartesian in

AlgYO.

Remark 2.10. In particular, we could have restated the last statement of Theorem
2.7 as follows: If the n-cube X is (2 · id)-cocartesian in AlgYO , then so is the (n+1)-

cube of the form X→ Ω̃Y Σ̃Y X.

Let’s first work out the proof of Proposition 2.9, before proceeding with a proof
of Theorem 2.7; this will provide a useful warmup in making certain cartesian-ness
and cocartesian-ness estimates.

Proof of Proposition 2.9. Here is the basic idea. As noted above, this is tauto-
logically true for the case of 0-cubes and 1-cubes. Consider the case of 2-cubes.
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Suppose X is a {1, 2}-cube in AlgYO of the form

X∅ //

��

X{1}

��
X{2} // X{1,2}

(4)

Assume that X is (id + 1)-cartesian in AlgYO ; this means that: the 0-subcubes are
1-cartesian, the 1-subcubes are 2-cartesian, and the 2-subcubes are 3-cartesian.
Let’s verify that X is (2 · id)-cocartesian in AlgYO . The first step is to estimate
the cocartesian-ness of X itself (the only 2-subcube of X). By higher dual Blakers-
Massey [11, 1.11] for AlgO, we know that X is k-cocartesian where k is the minimum
of

k{1,2} + 2− 1 = 3 + 1

2 + k{1} + k{2} = 2 + 2 + 2

Hence k = 4 and we have calculated that the 2-cube X is 4-cocartesian. By the
earlier cases for n = 0, 1, together with [11, 3.9] (e.g., [19, 1.8]), we have verified
that: the 0-subcubes are 0-cocartesian, the 1-subcubes are 2-cocartesian, and the
2-subcubes are 4-cocartesian. Hence X is (2 · id)-cocartesian in AlgYO . Conversely,

assume that X is (2·id)-cocartesian in AlgYO . Let’s verify that X is (id+1)-cartesian in

AlgYO . The first step is to estimate the cartesian-ness of X itself (the only 2-subcube
of X). By higher Blakers-Massey [11, 1.7] for AlgO, we know that X is k-cartesian
where k is the minimum of

−2 + k{1,2} + 1 = 4− 1

−2 + k{1} + 1 + k{2} + 1 = 2 + 2

Hence k = 3 and we have calculated that the 2-cube X is 3-cartesian. By the earlier
cases for n = 0, 1, together with [11, 3.9] (e.g., [19, 1.8]), we have verified that: the
0-subcubes are 1-cartesian, the 1-subcubes are 2-cartesian, and the 2-subcubes are
3-cartesian. Hence X is (id + 1)-cartesian in AlgYO .

Consider the case of 3-cubes. Suppose X is a {1, 2, 3}-cube in AlgYO . Assume that

X is (id+1)-cartesian in AlgYO ; this means that: the 0-subcubes are 1-cartesian, the
1-subcubes are 2-cartesian, the 2-subcubes are 3-cartesian, and the 3-subcubes are
4-cartesian. Let’s verify that X is (2 · id)-cocartesian in AlgYO . The first step is to
estimate the cocartesian-ness of X itself (the only 3-subcube of X). By higher dual
Blakers-Massey [11, 1.11] for AlgO, we know that X is k-cocartesian where k is the
minimum of

k{1,2,3} + 3− 1 = 4 + 2

3 + k{1,2} + k{3} = 3 + 3 + 2

3 + k{1} + k{2} + k{3} = 3 + 2 + 2 + 2

Note that by uniformity of the cartesian-ness estimates, allowing other partitions
of {1, 2, 3} provides nothing new; hence we have left them out of the above. Hence
k = 6 and we have calculated that the 3-cube X is 6-cocartesian. By the earlier
cases for n = 0, 1, 2, together with [11, 3.9] (e.g., [19, 1.8]), we have verified that: the
0-subcubes are 0-cocartesian, the 1-subcubes are 2-cocartesian, the 2-subcubes are
4-cocartesian, and the 3-subcubes are 6-cocartesian. Hence X is (2 · id)-cocartesian
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in AlgYO . Conversely, assume that X is (2 · id)-cocartesian in AlgYO . Let’s verify that

X is (id + 1)-cartesian in AlgYO . The first step is to estimate the cartesian-ness of
X itself (the only 3-subcube of X). By higher Blakers-Massey [11, 1.7] for AlgO, we
know that X is k-cartesian where k is the minimum of

−3 + k{1,2,3} + 1 = −2 + 6

−3 + k{1,2} + 1 + k{3} + 1 = −1 + 4 + 2

−3 + k{1} + 1 + k{2} + 1 + k{3} + 1 = 2 + 2 + 2

Note that by uniformity of the cocartesian-ness estimates, allowing other partitions
of {1, 2, 3} provides nothing new; hence we have left them out of the above. Hence
k = 4 and we have calculated that the 3-cube X is 4-cartesian. By the earlier
cases for n = 0, 1, 2, together with [11, 3.9] (e.g., [19, 1.8]), we have verified that:
the 0-subcubes are 1-cartesian, the 1-subcubes are 2-cartesian, the 2-subcubes are
3-cartesian, and the 3-subcubes are 4-cartesian. Hence X is (id + 1)-cartesian in

AlgYO . And so forth. □

Proof of Theorem 2.7. Here is the basic idea. The case of 0-cubes is given in Propo-
sition 2.5 above. Consider the case of 1-cubes. Suppose X is a {1}-cube in AlgYO of

the form X∅ → X{1}. Assume that X is (id+ 1)-cartesian in AlgYO ; this means that:
the 0-subcubes are 1-cartesian and the 1-subcubes are 2-cartesian. Let’s verify that
the 2-cube of the form X → Ω̃Y Σ̃Y X is (id + 1)-cartesian in AlgYO . It suffices to
assume that X is a cofibration 1-cube. Let C be the homotopy cofiber of X∅ → X{1}

in AlgYO and consider the associated ∞-cocartesian 2-cube of the form

X :

��

X∅ //

��

X{1}

��
C : ∗Y // C

(5)

in AlgYO , where C is the indicated 1-face on the bottom. By Proposition 2.9, we
know that X is (2 · id)-cocartesian; in particular, X is 2-cocartesian and hence C is
2-connected (rel. Y ). Putting it all together, it follows that the vertical maps in
diagram (5) are 1-connected and the horizontal maps are 2-connected. Here is our

strategy: consider the commutative diagram of 2-cubes in AlgYO of the form

X
(a) //

(∗)
��

C

(c)

��
Ω̃Y Σ̃Y X

(b) // Ω̃Y Σ̃Y C

(6)

Instead of attempting to estimate the cartesian-ness of the 2-cube (∗) directly, which
seems difficult, we will take an indirect attack and first estimate the cartesian-ness
of the 2-cubes (a), (b), (c); then we will use [11, 3.9] (e.g., [19, 1.8]) to deduce an
estimate for (∗). Consider the 2-cube (a). By higher Blakers-Massey [11, 1.7] for
AlgO, we know that (a) is k-cartesian where k is the minimum of

−2 + k{1,2} + 1 = −1 +∞
−2 + k{1} + 1 + k{2} + 1 = 2 + 1
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Hence k = 3 and we have calculated that the 2-cube (a) is 3-cartesian. Consider

the 2-cube (b). The 2-cube Σ̃Y X→ Σ̃Y C is ∞-cocartesian and has the form

Σ̃Y X :

��

Σ̃Y X∅ //

��

Σ̃Y X{1}

��
Σ̃Y C : Σ̃Y ∗Y // Σ̃Y C

(7)

in AlgYO , where Σ̃Y ∗Y ≃ ∗Y . It follows that the vertical maps in diagram (7) are
2-connected and the horizontal maps are 3-connected. By higher Blakers-Massey
[11, 1.7] for AlgO, we know that Σ̃Y X→ Σ̃Y C is k-cartesian where k is the minimum
of

−2 + k{1,2} + 1 = −1 +∞
−2 + k{1} + 1 + k{2} + 1 = 3 + 2

Hence k = 5 and we have calculated that the 2-cube Σ̃Y X → Σ̃Y C is 5-cartesian;
therefore the 2-cube (b) is 4-cartesian. Consider the 2-cube (c). We know that C is

2-connected (rel. Y ) from above, hence by Proposition 2.5 the map C → Ω̃Y Σ̃Y C
is (2 · 2 + 2)-connected. This calculation will produce a cartesian-ness estimate for
the 2-cube (c). Here is why: the 2-cube (c) has the form

∗Y //

��

C

(#)

��
Ω̃Y Σ̃Y ∗Y // Ω̃Y Σ̃Y C

(8)

in AlgYO , where Ω̃Y Σ̃Y ∗Y ≃ ∗Y . Taking homotopy fibers horizontally produces the

map Ω̃Y C → Ω̃Y Ω̃Y Σ̃Y C; this map is Ω̃Y of the right-hand vertical map. We know
(#) is 6-connected from above; hence the 2-cube (c) is 5-cartesian. Putting it all
together, it follows from diagram (6) and [11, 3.9] (e.g., [19, 1.8]), together with
our cartesian-ness estimates for (a), (b), (c), that the 2-cube (∗) of the form

X :

(∗)
��

X∅ //

��

X{1}

��
Ω̃Y Σ̃Y X : Ω̃Y Σ̃Y X∅ // Ω̃Y Σ̃Y X{1}

(9)

in AlgYO , is 3-cartesian. Finally, note that since the top horizontal map is 2-
connected, it follows that the bottom horizontal map is 2-connected; i.e., the
bottom horizontal 1-face is 2-cartesian. Hence we have verified that the 2-cube
X → Ω̃Y Σ̃Y X satisfies: the 0-subcubes are 1-cartesian, the 1-subcubes are 2-
cartesian, and the 2-subcubes are 3-cartesian. Therefore, the 2-cube of the form
X→ Ω̃Y Σ̃Y X is (id + 1)-cartesian in AlgYO .

Consider the case of 2-cubes. Suppose X is a {1, 2}-cube in AlgYO of the form

(4). Assume that X is (id + 1)-cartesian in AlgYO ; this means that: the 0-subcubes
are 1-cartesian, the 1-subcubes are 2-cartesian, and the 2-subcubes are 3-cartesian.
Let’s verify that the 3-cube of the form X→ Ω̃Y Σ̃Y X is (id + 1)-cartesian in AlgYO .
It suffices to assume that X is a cofibration 2-cube. Let C be the iterated homotopy
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cofiber of X in AlgYO and consider the associated ∞-cocartesian 3-cube of the form

X :

��

X∅

��

//

��

X{1}

��

��
X{2}

��

// X{1,2}

��

C : ∗Y //

��

∗Y
��

∗Y // C

(10)

in AlgYO , where C is the indicated 2-face on the bottom. By Proposition 2.9, we
know that X is (2 · id)-cocartesian; in particular, X is 4-cocartesian and hence C
is 4-connected (rel. Y ). Putting it all together, it follows that the vertical maps
in diagram (10) are 1-connected, the horizontal maps in the top 2-face (i.e., the
1-faces of X) are 2-connected, and the top 2-face is 4-cocartesian. We would like to
estimate the cocartesian-ness of the back 2-face of the form

X∅ //

��

X{1}

��
∗Y // ∗Y

(11)

The upper horizontal map is 2-connected and the lower horizontal map is ∞-
connected (i.e., a weak equivalence), hence by [11, 3.8] the back 2-face in (10)

is 3-cocartesian in AlgYO . Similarly, the left-hand 2-face in (10) is 3-cocartesian in

AlgYO . Here is our strategy: consider the commutative diagram of 3-cubes in AlgYO of
the form (6). Instead of attempting to estimate the cartesian-ness of the 3-cube (∗)
directly, which seems difficult, we will take an indirect attack and first estimate the
cartesian-ness of the 3-cubes (a), (b), (c); then we will use [11, 3.9] (e.g., [19, 1.8])
to deduce an estimate for (∗). Consider the 3-cube (a). By higher Blakers-Massey
[11, 1.7] for AlgO, we know that (a) is k-cartesian where k is the minimum of

−3 + k{1,2,3} + 1 = −2 +∞
−3 + k{1,2} + 1 + k{3} + 1 = −1 + 4 + 1

−3 + k{1,3} + 1 + k{2} + 1 = −1 + 3 + 2

−3 + k{2,3} + 1 + k{1} + 1 = −1 + 3 + 2

−3 + k{1} + 1 + k{2} + 1 + k{3} + 1 = 2 + 2 + 1

Hence k = 4 and we have calculated that the 3-cube (a) is 4-cartesian. Consider the

3-cube (b). The 3-cube Σ̃Y X→ Σ̃Y C is ∞-cocartesian in AlgYO , where Σ̃Y ∗Y ≃ ∗Y .
By higher Blakers-Massey [11, 1.7] for AlgO, we know that Σ̃Y X → Σ̃Y C is k-
cartesian where k is the minimum of

−3 + k{1,2,3} + 1 = −2 +∞
−3 + k{1,2} + 1 + k{3} + 1 = −1 + 5 + 2

−3 + k{1,3} + 1 + k{2} + 1 = −1 + 4 + 3

−3 + k{2,3} + 1 + k{1} + 1 = −1 + 4 + 3

−3 + k{1} + 1 + k{2} + 1 + k{3} + 1 = 3 + 3 + 2
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Hence k = 6 and we have calculated that the 3-cube Σ̃Y X → Σ̃Y C is 6-cartesian;
therefore the 3-cube (b) is 5-cartesian. Consider the 3-cube (c). We know that C is

4-connected (rel. Y ) from above, hence by Proposition 2.5 the map C → Ω̃Y Σ̃Y C
is (2 · 4 + 2)-connected. This calculation will produce a cartesian-ness estimate for
the 3-cube (c). Here is why: the 3-cube (c) has the form

∗Y

��

//

��

∗Y

��

��
∗Y

��

// C

(#)

��
∗′Y //

��
∗′Y

��
∗′Y // Ω̃Y Σ̃Y C

(12)

in AlgYO , where Ω̃Y Σ̃Y ∗Y ≃ ∗′Y . Taking homotopy fibers (twice) in AlgYO produces

the map Ω̃2
Y C → Ω̃2

Y Ω̃Y Σ̃Y C; this map is Ω̃2
Y of the right-hand vertical map (#).

We know (#) is 10-connected from above; hence the 3-cube (c) is 8-cartesian.
Putting it all together, it follows from diagram (6) and [11, 3.9] (e.g., [19, 1.8]),
together with our cartesian-ness estimates for (a), (b), (c), that the 3-cube (∗) of
the form

X :

(∗)
��

X∅ //

��

X{1}

��
Ω̃Y Σ̃Y X : Ω̃Y Σ̃Y X∅ // Ω̃Y Σ̃Y X{1}

in AlgYO , is 4-cartesian. Let’s calculate a cartesian-ness estimate for the 2-subcube

Ω̃Y Σ̃Y X of (∗). We know that X is (2 · id)-cocartesian in AlgYO from above, hence

Σ̃Y X is (2 · id+1)-cocartesian in AlgYO . By higher Blakers-Massey [11, 1.7] for AlgO,

we know that Σ̃Y X is k-cartesian where k is the minimum of

−2 + k{1,2} + 1 = −1 + 5

−2 + k{1} + 1 + k{2} + 1 = 3 + 3

Hence k = 4 and we have calculated that the 2-cube Σ̃Y X is 4-cartesian; therefore
the 2-cube Ω̃Y Σ̃Y X is 3-cartesian. Hence we have verified that the 3-cube X →
Ω̃Y Σ̃Y X satisfies: the 0-subcubes are 1-cartesian, the 1-subcubes are 2-cartesian,
the 2-subcubes are 3-cartesian, and the 3-subcubes are 4-cartesian. Therefore, the
3-cube of the form X→ Ω̃Y Σ̃Y X is (id + 1)-cartesian in AlgYO . And so forth. □

2.11. The general case k ≥ 0. It will be useful to have similar cartesian-ness and
cocartesian-ness estimates for k ≥ 0, beyond the k = 0 case when X ∈ AlgYO is
0-connected (rel. Y ). For this purpose, let’s revisit our above motivating remarks
in the case when k ≥ 0.

Let k ≥ 0. Let X be a 0-cube in AlgYO of the form X∅ and consider the maps

∗Y
(∗)−−→ X∅

(#)−−→ ∗Y
in AlgO. If X∅ is k-connected (rel. Y ), then (∗) is k-connected and (#) is (k + 1)-

connected; hence the 0-cube X is k-cocartesian and (k+1)-cartesian in AlgYO . These
three conditions are tautologically the same: X∅ is k-connected (rel. Y ) if and only
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if the 0-cube X is (k+1)-cartesian in AlgYO if and only if the 0-cube X is k-cocartesian

in AlgYO . By Proposition 2.5, the 1-cube of the form X → Ω̃Y Σ̃Y X in AlgYO , which
has the form

X∅ → Ω̃Y Σ̃Y X∅(13)

is (2k + 2)-connected; furthermore, the 0-cubes are k-connected (rel. Y ). In other
words, the 1-cube (13) satisfies (i) the 0-subcubes are (k + 1)-cartesian and the

1-subcubes are (2k + 2)-cartesian in AlgYO (i.e., the 1-cube (13) is (id + 1)(k + 1)-

cartesian in AlgYO) and (ii) the 0-subcubes are k-cocartesian and the 1-subcubes are

(2k + 2)-cocartesian (i.e., the 1-cube (13) is (id(k + 2) + k)-cocartesian in AlgYO).
These conditions are tautologically the same: a 1-cube is (id + 1)(k + 1)-cartesian

in AlgYO if and only if it is (id(k + 2) + k)-cocartesian in AlgYO .
With these observations, we can restate Proposition 2.5 as follows: If the 0-cube

X is (id+1)(k+1)-cartesian in AlgYO , then so is the 1-cube of the form X→ Ω̃Y Σ̃Y X.

Remark 2.12. Equivalently, we could have restated Proposition 2.5 as follows: If
the 0-cube X is (id(k + 2) + k)-cocartesian in AlgYO , then so is the 1-cube of the

form X→ Ω̃Y Σ̃Y X.

It turns out that this relationship persists for all higher dimensional n-cubes X
in AlgYO (n ≥ 0), beyond the n = 0 case of Proposition 2.5 above.

Theorem 2.13. Let k ≥ 0. Let W be a finite set and X a W -cube in AlgYO. Let

n = |W |. If the n-cube X is (id + 1)(k + 1)-cartesian in AlgYO, then so is the

(n+ 1)-cube of the form X→ Ω̃Y Σ̃Y X.

The duality relationship observed above—between a specific uniform cartesian-
ness of 1-cubes in AlgYO and a specific uniform cocartesian-ness of 1-cubes in AlgYO—

persists for all higher dimensional n-cubes X in AlgYO (n ≥ 0).

Proposition 2.14. Let W be a finite set and X a W -cube in AlgYO. Let n = |W |.
The n-cube X is (id+1)(k+1)-cartesian in AlgYO if and only if it is (id(k+2)+k)-

cocartesian in AlgYO.

Remark 2.15. In particular, we could have restated the last statement of Theorem
2.13 as follows: If the n-cube X is (id(k + 2) + k)-cocartesian in AlgYO , then so is

the (n+ 1)-cube of the form X→ Ω̃Y Σ̃Y X.

Let’s first work out the proof of Proposition 2.14, before proceeding with a proof
of Theorem 2.13; this will provide a useful warmup in making certain cartesian-ness
and cocartesian-ness estimates.

Proof of Proposition 2.14. These estimates were observed in [5] for the special case
of Y = ∗, and they remain true in the context of O-algebras centered at Y . Here
is the basic idea. As noted above, this is tautologically true for the case of 0-cubes
and 1-cubes. Consider the case of 2-cubes. Suppose X is a {1, 2}-cube in AlgYO of

the form (4). Assume that X is (id + 1)(k + 1)-cartesian in AlgYO ; this means that:
the 0-subcubes are (k+1)-cartesian, the 1-subcubes are (2k+2)-cartesian, and the
2-subcubes are (3k+3)-cartesian. Let’s verify that X is (id(k+2)+ k)-cocartesian

in AlgYO . The first step is to estimate the cocartesian-ness of X itself (the only
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2-subcube of X). By higher dual Blakers-Massey [11, 1.11] for AlgO, we know that
X is l-cocartesian where l is the minimum of

l{1,2} + 2− 1 = 1 + (3k + 3)

2 + l{1} + l{2} = 2 + (2k + 2) + (2k + 2)

Hence l = 3k+4 and we have calculated that the 2-cube X is (3k+4)-cocartesian. By
the earlier cases for n = 0, 1, together with [11, 3.9] (e.g., [19, 1.8]), we have verified
that: the 0-subcubes are k-cocartesian, the 1-subcubes are (2k + 2)-cocartesian,
and the 2-subcubes are (3k+4)-cocartesian. Hence X is (id(k+2)+ k)-cocartesian

in AlgYO . Conversely, assume that X is (id(k + 2) + k)-cocartesian in AlgYO . Let’s

verify that X is (id + 1)(k + 1)-cartesian in AlgYO . The first step is to estimate the
cartesian-ness of X itself (the only 2-subcube of X). By higher Blakers-Massey [11,
1.7] for AlgO, we know that X is l-cartesian where l is the minimum of

−2 + l{1,2} + 1 = (3k + 4)− 1

−2 + l{1} + 1 + l{2} + 1 = (2k + 2) + (2k + 2)

Hence l = 3k+3 and we have calculated that the 2-cube X is (3k+3)-cartesian. By
the earlier cases for n = 0, 1, together with [11, 3.9] (e.g., [19, 1.8]), we have verified
that: the 0-subcubes are (k + 1)-cartesian, the 1-subcubes are (2k + 2)-cartesian,
and the 2-subcubes are (3k + 3)-cartesian. Hence X is (id + 1)(k + 1)-cartesian in

AlgYO .

Consider the case of 3-cubes. Suppose X is a {1, 2, 3}-cube in AlgYO . Assume

that X is (id + 1)(k + 1)-cartesian in AlgYO ; this means that: the 0-subcubes are
(k+1)-cartesian, the 1-subcubes are (2k+2)-cartesian, the 2-subcubes are (3k+3)-
cartesian, and the 3-subcubes are (4k + 4)-cartesian. Let’s verify that X is (id(k +

2) + k)-cocartesian in AlgYO . The first step is to estimate the cocartesian-ness of X
itself (the only 3-subcube of X). By higher dual Blakers-Massey [11, 1.11] for AlgO,
we know that X is l-cocartesian where l is the minimum of

l{1,2,3} + 3− 1 = (4k + 4) + 2

3 + l{1,2} + l{3} = 3 + (3k + 3) + (2k + 2)

3 + l{1} + l{2} + l{3} = 3 + (2k + 2) + (2k + 2) + (2k + 2)

Note that by uniformity of the cartesian-ness estimates, allowing other partitions
of {1, 2, 3} provides nothing new; hence we have left them out of the above. Hence
l = 4k+6 and we have calculated that the 3-cube X is (4k+6)-cocartesian. By the
earlier cases for n = 0, 1, 2, together with [11, 3.9] (e.g., [19, 1.8]), we have verified
that: the 0-subcubes are k-cocartesian, the 1-subcubes are (2k+2)-cocartesian, the
2-subcubes are (3k + 4)-cocartesian, and the 3-subcubes are (4k + 6)-cocartesian.

Hence X is (id(k + 2) + k)-cocartesian in AlgYO . Conversely, assume that X is

(id(k+2)+k)-cocartesian in AlgYO . Let’s verify that X is (id+1)(k+1)-cartesian in

AlgYO . The first step is to estimate the cartesian-ness of X itself (the only 3-subcube
of X). By higher Blakers-Massey [11, 1.7] for AlgO, we know that X is l-cartesian
where l is the minimum of

−3 + l{1,2,3} + 1 = −2 + (4k + 6)

−3 + l{1,2} + 1 + l{3} + 1 = −1 + (3k + 4) + (2k + 2)

−3 + l{1} + 1 + l{2} + 1 + l{3} + 1 = (2k + 2) + (2k + 2) + (2k + 2)
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Note that by uniformity of the cocartesian-ness estimates, allowing other partitions
of {1, 2, 3} provides nothing new; hence we have left them out of the above. Hence
l = 4k + 4 and we have calculated that the 3-cube X is (4k + 4)-cartesian. By the
earlier cases for n = 0, 1, 2, together with [11, 3.9] (e.g., [19, 1.8]), we have verified
that: the 0-subcubes are (k + 1)-cartesian, the 1-subcubes are (2k + 2)-cartesian,
the 2-subcubes are (3k + 3)-cartesian, and the 3-subcubes are (4k + k)-cartesian.

Hence X is (id + 1)(k + 1)-cartesian in AlgYO . And so forth. □

Proof of Theorem 2.13. Here is the basic idea. The case of 0-cubes is given in
Proposition 2.5 above. Consider the case of 1-cubes. Suppose X is a {1}-cube
in AlgYO of the form X∅ → X{1}. Assume that X is (id + 1)(k + 1)-cartesian in

AlgYO ; this means that: the 0-subcubes are (k + 1)-cartesian and the 1-subcubes

are (2k + 2)-cartesian. Let’s verify that the 2-cube of the form X → Ω̃Y Σ̃Y X is

(id+1)(k+1)-cartesian in AlgYO . It suffices to assume that X is a cofibration 1-cube.

Let C be the homotopy cofiber of X∅ → X{1} in AlgYO and consider the associated

∞-cocartesian 2-cube of the form (5) in AlgYO , where C is the indicated 1-face on
the bottom. By Proposition 2.14, we know that X is (id(k + 2) + k)-cocartesian;
in particular, X is (2k+2)-cocartesian and hence C is (2k+2)-connected (rel. Y ).
Putting it all together, it follows that the vertical maps in diagram (5) are (k+1)-
connected and the horizontal maps are (2k + 2)-connected. Here is our strategy:

consider the commutative diagram of 2-cubes in AlgYO of the form (6). Instead of
attempting to estimate the cartesian-ness of the 2-cube (∗) directly, which seems
difficult, we will take an indirect attack and first estimate the cartesian-ness of the
2-cubes (a), (b), (c); then we will use [11, 3.9] (e.g., [19, 1.8]) to deduce an estimate
for (∗). Consider the 2-cube (a). By higher Blakers-Massey [11, 1.7] for AlgO, we
know that (a) is l-cartesian where l is the minimum of

−2 + l{1,2} + 1 = −1 +∞
−2 + l{1} + 1 + l{2} + 1 = (2k + 2) + (k + 1)

Hence l = 3k + 3 and we have calculated that the 2-cube (a) is (3k + 3)-cartesian.

Consider the 2-cube (b). The 2-cube Σ̃Y X → Σ̃Y C is ∞-cocartesian and has the

form (7) in AlgYO , where Σ̃Y ∗Y ≃ ∗Y . It follows that the vertical maps in diagram
(7) are (k+2)-connected and the horizontal maps are (2k+3)-connected. By higher

Blakers-Massey [11, 1.7] for AlgO, we know that Σ̃Y X → Σ̃Y C is l-cartesian where
l is the minimum of

−2 + l{1,2} + 1 = −1 +∞
−2 + l{1} + 1 + l{2} + 1 = (2k + 3) + (k + 2)

Hence l = (3k+5) and we have calculated that the 2-cube Σ̃Y X→ Σ̃Y C is (3k+5)-
cartesian; therefore the 2-cube (b) is (3k + 4)-cartesian. Consider the 2-cube (c).
We know that C is (2k + 2)-connected (rel. Y ) from above, hence by Proposition

2.5 the map C → Ω̃Y Σ̃Y C is (4k + 6)-connected. This calculation will produce a
cartesian-ness estimate for the 2-cube (c). Here is why: the 2-cube (c) has the form

(8) in AlgYO , where Ω̃Y Σ̃Y ∗Y ≃ ∗Y . Taking homotopy fibers horizontally produces

the map Ω̃Y C → Ω̃Y Ω̃Y Σ̃Y C; this map is Ω̃Y of the right-hand vertical map.
We know (#) is (4k + 6)-connected from above; hence the 2-cube (c) is (4k + 5)-
cartesian. Putting it all together, it follows from diagram (6) and [11, 3.9] (e.g.,
[19, 1.8]), together with our cartesian-ness estimates for (a), (b), (c), that the 2-cube
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(∗) of the form (9) in AlgYO , is (3k + 3)-cartesian. Finally, note that since the top
horizontal map in (9) is (2k + 2)-connected, it follows that the bottom horizontal
map is (2k + 2)-connected; i.e., the bottom horizontal 1-face is (2k + 2)-cartesian.

Hence we have verified that the 2-cube X → Ω̃Y Σ̃Y X satisfies: the 0-subcubes
are (k+1)-cartesian, the 1-subcubes are (2k+2)-cartesian, and the 2-subcubes are

(3k+3)-cartesian. Therefore, the 2-cube of the form X→ Ω̃Y Σ̃Y X is (id+1)(k+1)-

cartesian in AlgYO .

Consider the case of 2-cubes. Suppose X is a {1, 2}-cube in AlgYO of the form (4).

Assume that X is (id+1)(k+1)-cartesian in AlgYO ; this means that: the 0-subcubes
are (k + 1)-cartesian, the 1-subcubes are (2k + 2)-cartesian, and the 2-subcubes

are (3k + 3)-cartesian. Let’s verify that the 3-cube of the form X → Ω̃Y Σ̃Y X is

(id+1)(k+1)-cartesian in AlgYO . It suffices to assume that X is a cofibration 2-cube.

Let C be the iterated homotopy cofiber of X in AlgYO and consider the associated

∞-cocartesian 3-cube of the form (10) in AlgYO , where C is the indicated 2-face on
the bottom. By Proposition 2.14, we know that X is (id(k + 2) + k)-cocartesian;
in particular, X is (3k + 4)-cocartesian and hence C is (3k + 4)-connected (rel.
Y ). Putting it all together, it follows that the vertical maps in diagram (10) are
(k + 1)-connected, the horizontal maps in the top 2-face (i.e., the 1-faces of X)
are (2k + 2)-connected, and the top 2-face is (3k + 4)-cocartesian. We would like
to estimate the cocartesian-ness of the back 2-face of the form (11). The upper
horizontal map is (2k+2)-connected and the lower horizontal map is ∞-connected
(i.e., a weak equivalence), hence by [11, 3.8] the back 2-face in (10) is (2k + 3)-

cocartesian in AlgYO . Similarly, the left-hand 2-face in (10) is (2k+3)-cocartesian in

AlgYO . Here is our strategy: consider the commutative diagram of 3-cubes in AlgYO of
the form (6). Instead of attempting to estimate the cartesian-ness of the 3-cube (∗)
directly, which seems difficult, we will take an indirect attack and first estimate the
cartesian-ness of the 3-cubes (a), (b), (c); then we will use [11, 3.9] (e.g., [19, 1.8])
to deduce an estimate for (∗). Consider the 3-cube (a). By higher Blakers-Massey
[11, 1.7] for AlgO, we know that (a) is l-cartesian where l is the minimum of

−3 + l{1,2,3} + 1 = −2 +∞
−3 + l{1,2} + 1 + l{3} + 1 = −1 + (3k + 4) + (k + 1)

−3 + l{1,3} + 1 + l{2} + 1 = −1 + (2k + 3) + (2k + 2)

−3 + l{2,3} + 1 + l{1} + 1 = −1 + (2k + 3) + (2k + 2)

−3 + l{1} + 1 + l{2} + 1 + l{3} + 1 = (2k + 2) + (2k + 2) + (k + 1)

Hence l = (4k+4) and we have calculated that the 3-cube (a) is (4k+4)-cartesian.

Consider the 3-cube (b). The 3-cube Σ̃Y X→ Σ̃Y C is ∞-cocartesian in AlgYO , where

Σ̃Y ∗Y ≃ ∗Y . By higher Blakers-Massey [11, 1.7] for AlgO, we know that Σ̃Y X →
Σ̃Y C is l-cartesian where l is the minimum of

−3 + l{1,2,3} + 1 = −2 +∞
−3 + l{1,2} + 1 + l{3} + 1 = −1 + (3k + 5) + (k + 2)

−3 + l{1,3} + 1 + l{2} + 1 = −1 + (2k + 4) + (2k + 3)

−3 + l{2,3} + 1 + l{1} + 1 = −1 + (2k + 4) + (2k + 3)

−3 + l{1} + 1 + l{2} + 1 + l{3} + 1 = (2k + 3) + (2k + 3) + (k + 2)
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Hence l = (4k+6) and we have calculated that the 3-cube Σ̃Y X→ Σ̃Y C is (4k+6)-
cartesian; therefore the 3-cube (b) is (4k + 5)-cartesian. Consider the 3-cube (c).
We know that C is (3k + 4)-connected (rel. Y ) from above, hence by Proposition

2.5 the map C → Ω̃Y Σ̃Y C is (6k + 10)-connected. This calculation will produce
a cartesian-ness estimate for the 3-cube (c). Here is why: the 3-cube (c) has the

form (12) in AlgYO , where Ω̃Y Σ̃Y ∗Y ≃ ∗′Y . Taking homotopy fibers (twice) in AlgYO
produces the map Ω̃2

Y C → Ω̃2
Y Ω̃Y Σ̃Y C; this map is Ω̃2

Y of the right-hand vertical
map (#). We know (#) is (6k+10)-connected from above; hence the 3-cube (c) is
(6k+8)-cartesian. Putting it all together, it follows from diagram (6) and [11, 3.9]
(e.g., [19, 1.8]), together with our cartesian-ness estimates for (a), (b), (c), that the
3-cube (∗) of the form

X :

(∗)
��

X∅ //

��

X{1}

��
Ω̃Y Σ̃Y X : Ω̃Y Σ̃Y X∅ // Ω̃Y Σ̃Y X{1}

in AlgYO , is (4k + 4)-cartesian. Let’s calculate a cartesian-ness estimate for the 2-

subcube Ω̃Y Σ̃Y X of (∗). We know that X is (id(k+2)+k)-cocartesian in AlgYO from

above, hence Σ̃Y X is (id(k + 2) + k + 1)-cocartesian in AlgYO . By higher Blakers-

Massey [11, 1.7] for AlgO, we know that Σ̃Y X is l-cartesian where l is the minimum
of

−2 + l{1,2} + 1 = −1 + (3k + 5)

−2 + l{1} + 1 + l{2} + 1 = (2k + 3) + (2k + 3)

Hence l = (3k+4) and we have calculated that the 2-cube Σ̃Y X is (3k+4)-cartesian;

therefore the 2-cube Ω̃Y Σ̃Y X is (3k+3)-cartesian. Hence we have verified that the

3-cube X→ Ω̃Y Σ̃Y X satisfies: the 0-subcubes are (k+1)-cartesian, the 1-subcubes
are (2k+2)-cartesian, the 2-subcubes are (3k+3)-cartesian, and the 3-subcubes are

(4k+4)-cartesian. Therefore, the 3-cube of the form X→ Ω̃Y Σ̃Y X is (id+1)(k+1)-

cartesian in AlgYO . And so forth. □

Theorem 2.16. Let k ≥ 0 and 1 ≤ r ≤ ∞. Let W be a finite set and X a W -cube
in AlgYO. Let n = |W |. If the n-cube X is (id+ 1)(k+1)-cartesian in AlgYO, then so

is the (n+ 1)-cube of the form X→ Ω̃r
Y Σ̃

r
Y X.

Proof. These estimates were worked out in [5] for the special case of Y = ∗. The
detailed proof above of Theorem 2.13 in the case of r = 1 shows why these estimates
remain true in the context of O-algebras centered at Y ; intuitively, r = 1 is the
most restrictive situation in terms of estimates (e.g,. the comparison map in all
other cases factors through the comparison map for r = 1). In the case of r = ∞,

several of the estimate steps are easier since Σ̃∞
Y preserves cocartesian-ness, Ω̃∞

Y

preserves cartesian-ness, and the stable estimates in [11, 3.10] become available for

each estimate step following the application of Σ̃∞
Y . □

3. Homotopical resolutions

The purpose of this section is to introduce the homotopical resolutions studied in
[5] and to prove Theorems 1.1, 1.2, and 1.3. These kinds of homotopical resolutions
are studied in [8]; see also [7, 12]. There are adjunctions of the form
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AlgYO
Σr

Y // AlgYO
Ωr

Y

oo AlgYO
Σ∞

Y // SpN(AlgYO)
Ω∞

Y

oo (r ≥ 1)(14)

with left adjoint on top. Here, SpN(AlgYO) denotes Hovey spectra [24] on AlgYO ; we are
using that left Bousfield localization constructions produce semi-model categories
in situations where left properness is not available (together with the fact that in

AlgO, and hence in AlgYO , the generating cofibrations and acyclic cofibrations have
cofibrant domains); see [2, 10, 18, 21]. If we iterate the comparison map id→ Ωr

Y Σ
r
Y

and evaluate on X ∈ AlgYO , this builds a cosimplicial resolution of X with respect
to Ωr

Y Σ
r
Y of the form (1 ≤ r ≤ ∞)

id(X) // Ωr
Y Σ

r
Y (X) //// (Ωr

Y Σ
r
Y )

2(X) ////
//
(Ωr

Y Σ
r
Y )

3(X) · · ·

showing only the coface maps. This resolution is not what we want—it is not
homotopy meaningful.

The basic idea is to turn this into a derived (homotopy meaningful) resolution by
appropriately inserting fibrant replacements and cofibrant replacements. In more
detail, let r ≥ 1. Denote by ε : Q→id and m : Q→QQ the counit and comultiplica-
tion maps of the cofibrant replacement comonad Q on AlgYO (see [8, 6.1]) and define

Σ̃r
Y := Σr

Y Q (resp. Σ̃∞
Y := Σ∞

Y Q). Denote by η : id→Φ and m : ΦΦ→Φ the unit

and multiplication maps of the fibrant replacement monad Φ on AlgYO (see [8, 6.1])

and define Ω̃r
Y := Ωr

Y Φ. Similarly, denote by η : id→F and m : FF→F the unit

and multiplication maps of the fibrant replacement monad F on SpN(AlgYO) (see [8,

6.1]) and define Ω̃∞
Y := Ω∞

Y F .

Remark 3.1. Since SpN(AlgYO) is only equipped with a cofibrantly generated sim-

plicial semi-model structure (AlgYO is not left proper, in general, so left Bousfield
localization only produces a semi-model structure, without further work)—see, for

instance, [2, 10, 18, 21]—this simply means that F, Ω̃∞
Y are only homotopy mean-

ingful when evaluated on cofibrant objects. In other words, small object arguments
(and their generalizations that produce monads) in SpN(AlgYO) only behave as fi-
brant replacements when evaluated on cofibrant objects; we note that this is always
satisfied in the homotopical resolutions below.

It follows easily that we can build a cosimplicial resolution of X with respect to
Ω̃r

Y Σ̃
r
Y of the form (1 ≤ r ≤ ∞)

id(X) // Ω̃r
Y Σ̃

r
Y (X) //// (Ω̃r

Y Σ̃
r
Y )

2(X) ////
//
(Ω̃r

Y Σ̃
r
Y )

3(X) · · ·

in AlgYO , which is given precisely by the homotopical resolution

Q(X) // QΩ̃r
Y Σ̃

r
Y (X) //// Q(Ω̃r

Y Σ̃
r
Y )

2(X) ////
//
Q(Ω̃r

Y Σ̃
r
Y )

3(X) · · ·(15)

in AlgYO (showing only the coface maps); see, for instance, [5, 8]. If X ∈ AlgYO ,

the Bousfield-Kan completion X∧
Ω̃r

Y Σ̃r
Y

of X with respect to Ω̃r
Y Σ̃

r
Y is the homotopy

limit

X∧
Ω̃r

Y Σ̃r
Y

:= holim∆ Q(Ω̃r
Y Σ̃

r
Y )

•+1(X)
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of the cosimplicial resolution indicated on the right-hand side of (15). To get our
hands on this construction, we filter ∆ by its subcategories ∆≤n ⊂ ∆, n ≥ 0, which
leads to the following (e.g., [12]). Define

(Ω̃r
Y Σ̃

r
Y )n := holim∆≤n Q(Ω̃r

Y Σ̃
r
Y )

•+1, n ≥ 0

It follows that the Ω̃r
Y Σ̃

r
Y -completion of X is weakly equivalent to

X∧
Ω̃r

Y Σ̃r
Y

≃ holim
(
(Ω̃r

Y Σ̃
r
Y )0(X)← (Ω̃r

Y Σ̃
r
Y )1(X)← (Ω̃r

Y Σ̃
r
Y )2(X)← · · ·

)
(16)

the homotopy limit of the indicated tower; here, (Ω̃r
Y Σ̃

r
Y )0(X) ≃ Ω̃r

Y Σ̃
r
Y (X).

Proof of Theorem 1.1. Here is the basic idea. To verify thatX ≃ X∧
Ω̃r

Y Σ̃r
Y

, it suffices

to verify that the map of the form

X ≃ QX
(∗)n−−−→ (Ω̃r

Y Σ̃
r
Y )n(X)

into the n-th stage of the completion tower in (16) has connectivity strictly increas-
ing with n. The connectivity of the map (∗)n is the same as the cartesian-ness of
the coface (n + 1)-cube ([7, 5.20]) of the coaugmented cosimplicial resolution (15)
which we know (Theorem 2.16) is ((n+1)+ 1)(0+ 1) = n+2; hence the map (∗)n
is (n+ 2)-connected which completes the proof. □

Proof of Theorem 1.2. Here is the basic idea. We will follow the proof ideas in [29]
and exploit the estimates in Theorem 2.16. We start with the fibration sequence in
AlgYO of the form F → E → B and resolve the E,B terms

F //

��

F̃ 0

��

//// F̃ 1

��

////
//
F̃ 2 · · ·

��
E //

��

Ω̃r
Y Σ̃

r
Y (E)

��

//// (Ω̃r
Y Σ̃

r
Y )

2(E) ////
//

��

(Ω̃r
Y Σ̃

r
Y )

3(E) · · ·

��
B // Ω̃r

Y Σ̃
r
Y (B) //// (Ω̃r

Y Σ̃
r
Y )

2(B) ////
//
(Ω̃r

Y Σ̃
r
Y )

3(B) · · ·

by their cosimplicial resolutions with respect to Ω̃r
Y Σ̃

r
Y ; this produces the bottom

two rows of the indicated form (for notational convenience, we omit writing the Q).

Taking homotopy fibers vertically in AlgYO produces the top horizontal row of the

form F → F̃ ; in particular, each of the rows is a coaugmented cosimplicial diagram
in AlgYO , and the columns are homotopy fiber sequences in AlgYO . Since homotopy
fibers commute with homotopy limits, together with the assumption that E,B are
0-connected (rel. Y ) and Theorem 1.1, we know that F ≃ holim∆ F̃ .

The next step is to get Ω̃r
Y Σ̃

r
Y -completion into the picture. Resolving each term

in the upper row above by its cosimplicial resolution with respect to Ω̃r
Y Σ̃

r
Y produces
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a diagram of the form

(Ω̃r
Y Σ̃

r
Y )

3F
(#) // (Ω̃r

Y Σ̃
r
Y )

3F̃ 0 //// (Ω̃r
Y Σ̃

r
Y )

3F̃ 1
////
//
(Ω̃r

Y Σ̃
r
Y )

3F̃ 2 · · ·

(Ω̃r
Y Σ̃

r
Y )

2F
(#) //

OOOOOO

(Ω̃r
Y Σ̃

r
Y )

2F̃ 0 ////

OOOOOO

(Ω̃r
Y Σ̃

r
Y )

2F̃ 1

OOOOOO

////
//
(Ω̃r

Y Σ̃
r
Y )

2F̃ 2 · · ·

OOOOOO

(Ω̃r
Y Σ̃

r
Y )F

(#) //

OOOO

(Ω̃r
Y Σ̃

r
Y )F̃

0 ////

OOOO

(Ω̃r
Y Σ̃

r
Y )F̃

1
////
//

OOOO

(Ω̃r
Y Σ̃

r
Y )F̃

2 · · ·

OOOO

F
(#) //

OO

F̃ 0 ////

(∗∗)

OO

F̃ 1

(∗∗)

OO

////
//
F̃ 2 · · ·

(∗∗)

OO

where each column (resp. row) is a coaugmented cosimplicial diagram in AlgYO .
Since E,B are 0-connected (rel. Y ) by assumption, we know from Theorem 2.16
that the coface (n+ 1)-cubes ([7, 5.20]) associated to the coaugmented cosimplical
resolutions of the form

E → (Ω̃r
Y Σ̃

r
Y )

•+1E

B → (Ω̃r
Y Σ̃

r
Y )

•+1B

are (id + 1)-cartesian for each n ≥ −1. Hence it follows, by several applications

of [11, 3.8] and [19, 1.18] that the coface (n + 1)-cube associated to F → F̃ is id-
cartesian for each n ≥ −1. An easy consequence of higher Blakers-Massey (and its

dual) [11, 1.7, 1.11] for AlgO is that Ω̃r
Y Σ̃

r
Y preserves id-cartesian (n+ 1)-cubes for

each n ≥ −1. Hence it follows that the coface (n + 1)-cubes ([7, 5.20]) associated
to the coaugmented cosimplicial diagrams

(Ω̃r
Y Σ̃

r
Y )

kF → (Ω̃r
Y Σ̃

r
Y )

kF̃ , k ≥ 0

are id-cartesian for each n ≥ −1. Therefore, each of the maps

(Ω̃r
Y Σ̃

r
Y )

kF
(#)n−−−→ holim∆≤n(Ω̃r

Y Σ̃
r
Y )

kF̃ , k ≥ 0(17)

is (n + 1)-connected; hence each of the maps (#) induces a weak equivalence
on holim∆. In other words, applying holim∆ horizontally produces the left-hand
column, and therefore, subsequently applying holim∆ vertically produces F∧

Ω̃r
Y Σ̃r

Y

.

What about the other way? By formal arguments (i.e., Ω̃r
Y commutes with homo-

topy fibers), the (∗∗) columns have extra codegeneracy maps s−1 [16, 6.2]; hence

applying holim∆ vertically induces a weak equivalence [13, 3.16] with the F̃ cosim-
plicial diagram, and therefore, subsequently applying holim∆ horizontally produces
F (i.e., we know that F ≃ holim∆ F̃ as noted above, or by the connectivities in
(17) with k = 0). Hence we have verified that F ≃ F∧

Ω̃r
Y Σ̃r

Y

.

The more general case of an ∞-cartesian 2-cube is nearly identical; constructing
F → F̃ by taking homotopy pullbacks instead of homotopy fibers, it follows, by
several applications of [11, 3.8] and [19, 1.18], that the coface (n+1)-cube associated

to F → F̃ is id-cartesian for each n ≥ −1, and the above arguments complete the
proof. □
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Proof of Theorem 1.3. Here is the basic idea. We will follow the proof ideas in [30]
and exploit the estimates in Theorem 2.16. Start with the tower (16) associated

with the cosimplicial resolution of the identity functor on AlgYO with respect to

Ω̃∞
Y Σ̃∞

Y , resolve each functor in the tower

PY
3 (Ω̃∞

Y Σ̃∞
Y )0(X)

��

PY
3 (Ω̃∞

Y Σ̃∞
Y )1(X)oo

��

PY
3 (Ω̃∞

Y Σ̃∞
Y )2(X) · · ·oo

��
PY
2 (Ω̃∞

Y Σ̃∞
Y )0(X)

��

PY
2 (Ω̃∞

Y Σ̃∞
Y )1(X)oo

��

PY
2 (Ω̃∞

Y Σ̃∞
Y )2(X) · · ·oo

��
PY
1 (Ω̃∞

Y Σ̃∞
Y )0(X) PY

1 (Ω̃∞
Y Σ̃∞

Y )1(X)oo PY
1 (Ω̃∞

Y Σ̃∞
Y )2(X) · · ·oo

(Ω̃∞
Y Σ̃∞

Y )0(X)

OO

(Ω̃∞
Y Σ̃∞

Y )1(X)oo

OO

(Ω̃∞
Y Σ̃∞

Y )2(X) · · ·oo

OO

(18)

by its Taylor tower [20] centered at Y , and evaluate the result on X. We know,

by Theorem 2.16, that the map id → (Ω̃∞
Y Σ̃∞

Y )n satisfies On+1(0, 1) ([20, 1.2]) for
every n ≥ 0 (for notational convenience, we omit writing the Q); in particular, the

identity functor and (Ω̃∞
Y Σ̃∞

Y )n agree to order (n + 1) via this map; this implies
([20, 1.6]) that the maps

PY
n+1(id)(X)

≃−−→ PY
n+1(Ω̃

∞
Y Σ̃∞

Y )n(X)

PY
n (id)(X)

≃−−→ PY
n (Ω̃∞

Y Σ̃∞
Y )n(X)

· · ·

PY
1 (id)(X)

≃−−→ PY
1 (Ω̃∞

Y Σ̃∞
Y )n(X)

are weak equivalences for every n ≥ 0. This means that the rows above the dotted
arrows in (18) are eventually constant and hence applying holim horizontally pro-
duces the tower {PY

n (id)(X)}, and therefore, subsequently applying holim vertically

produces PY
∞(id)(X). What about the other way? By assumption, ∗Y → Σ̃∞

Y X in

SpN(AlgYO) is 0-connected (Remark 1.4). It follows, by iteratively applying higher
Blakers-Massey (and its dual) [11, 1.7, 1.11] for AlgO,

(Ω̃∞
Y Σ̃∞

Y )k(X)
(#)1−−−→ TY

1 (Ω̃∞
Y Σ̃∞

Y )k(X)→ TY
1 (TY

1 (Ω̃∞
Y Σ̃∞

Y )k)(X)→ · · ·

that the maps (#)1 are 3-connected (and the indicated subsequent maps are even
higher connected) for each k ≥ 2. Hence the maps

(Ω̃∞
Y Σ̃∞

Y )k(X)
(∗)1−−→ PY

1 (Ω̃∞
Y Σ̃∞

Y )k(X)

are 3-connected for each k ≥ 2; if k = 1, no estimates are required: the map (∗)1 is

∞-connected since Ω̃∞
Y Σ̃∞

Y ≃ PY
1 (id) and hence PY

1 (id) → PY
1 (PY

1 (id)) is a weak
equivalence. That was a useful warmup. More generally, by iteratively applying
higher Blakers-Massey (and its dual) [11, 1.7, 1.11] for AlgO, it follows that (n ≥ 1)

(Ω̃∞
Y Σ̃∞

Y )k(X)
(#)n−−−→ TY

n (Ω̃∞
Y Σ̃∞

Y )k(X)→ TY
n (TY

n (Ω̃∞
Y Σ̃∞

Y )k)(X)→ · · ·
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the maps (#)n are (n+2)-connected (and the indicated subsequent maps are even
higher connected) for each k ≥ 2. Hence the maps

(Ω̃∞
Y Σ̃∞

Y )k(X)
(∗)n−−−→ PY

n (Ω̃∞
Y Σ̃∞

Y )k(X), n ≥ 1

are (n+ 2)-connected for each k ≥ 2; if k = 1, no estimates are required: the map

(∗)n is ∞-connected since Ω̃∞
Y Σ̃∞

Y ≃ PY
1 (id) and hence PY

1 (id) → PY
n (PY

1 (id)) is
a weak equivalence. It now follows by iteratively applying [11, 3.8] (e.g., [19, 1.6])
that the maps

(Ω̃∞
Y Σ̃∞

Y )k(X)
(∗∗)n−−−→ PY

n+k(Ω̃
∞
Y Σ̃∞

Y )k(X), n ≥ 1

are (n+ 2)-connected for each k ≥ 1; if k = 0, no estimates are required: the map

(∗∗)n is ∞-connected since Ω̃∞
Y Σ̃∞

Y ≃ PY
1 (id) and hence PY

1 (id) → PY
n (PY

1 (id)) is
a weak equivalence. Let’s illustrate the case of k = 1: the map (∗∗)n fits into a
3-cube of the form

(Ω̃∞
Y Σ̃∞

Y )1X

��

//

(∗∗)n

((

Ω̃∞
Y Σ̃∞

Y X

��

≃

((
PY
n+1(Ω̃

∞
Y Σ̃∞

Y )1X

��

// PY
n+1(Ω̃

∞
Y Σ̃∞

Y )X

��

Ω̃∞
Y Σ̃∞

Y X //

≃

((

(Ω̃∞
Y Σ̃∞

Y )2X

(∗)n+1

((
PY
n+1(Ω̃

∞
Y Σ̃∞

Y )X // PY
n+1(Ω̃

∞
Y Σ̃∞

Y )2X

(19)

The back 2-face is ∞-cartesian by definition, hence the front 2-face is ∞-cartesian
(PY

n+1 commutes ([20, 1.7]) with such holim’s). The 3-cube is therefore∞-cartesian
by [11, 3.8] (e.g., [19, 1.6]). We know from above that the map (∗)n+1 is (n + 3)-
connected, hence by [11, 3.8] the right-hand 2-face is (n + 2)-cartesian. Since
the 3-cube is ∞-cartesian, it follows that the left-hand 2-face is (n + 2)-cartesian.
Therefore, it follows, by another application of [11, 3.8] (e.g., [19, 1.6]) that the map
(∗∗)n is (n+2)-connected. The other cases are similar. The upshot is: it follows that
applying holim vertically (above the dotted arrows) in (18) produces the bottom
horizontal tower, and therefore, subsequently applying holim horizontally produces
X∧

Ω̃∞
Y Σ̃∞

Y

. Hence we have verified that PY
∞(id)(X) ≃ X∧

Ω̃∞
Y Σ̃∞

Y

. □
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