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Abstract. We prove that the stabilization (resp. iterated suspension) func-

tor participates in a derived adjunction comparing pointed spaces with certain
(highly homotopy coherent) homotopy coalgebras, in the sense of Blumberg-

Riehl, that is a Dwyer-Kan equivalence after restriction to 1-connected spaces,
with respect to the associated enrichments. A key ingredient of our proof, of

independent interest, is a higher stabilization theorem (resp. higher Freuden-

thal suspension theorem) for pointed spaces that provides strong estimates for
the uniform cartesian-ness of certain cubical diagrams associated to iterating

the space level stabilization map (resp. Freudenthal suspension map)—these

technical results provide, in particular, new proofs (with strong estimates) of
the stabilization and iterated loop-suspension completion results of Carlsson

and the subsequent work of Arone-Kankaanrinta, and Bousfield and Hopkins,

respectively, for 1-connected spaces; this is the stabilization (resp. Freudenthal
suspension) analog of Dundas’ higher Hurewicz theorem.

1. Introduction

We have written this paper simplicially: in other words, “space” means “sim-
plicial set” unless otherwise noted; see Dwyer-Henn [27] for a useful introduction
to these ideas, together with Bousfield-Kan [14], Goerss-Jardine [36], and Hovey
[43]. We work in the category of symmetric spectra (see Hovey-Shipley-Smith [44]
and Schwede [60]), equipped with the injective stable model structure, so that “S-
modules” means “symmetric spectra”, which are the same as modules over the
sphere spectrum S; in particular, fibrant S-modules enjoy the property of being
Ω-spectra [44, 1.4] that are objectwise Kan complexes. Alternatively, the results
here could be developed in the context of EKMM spectra [30], or even Bousfield-
Friedlander [12] spectra.

Our main result is that the stabilization functor—the classical construction of
associating a spectrum to a pointed space by tensoring with the sphere spectrum—
participates in a Dwyer-Kan equivalence with certain (highly homotopy coherent)
homotopy coalgebra spectra, in the sense of Blumberg-Riehl [10], where the sta-
bilization construction naturally lands, after restriction to 1-connected spaces. In
the statement of the following theorem, K̃ is the homotopical comonad (Remark
1.3, Definition 3.4, and (23)–(24)) naturally acting (Remark 3.6) on the suspension
spectrum Σ∞X (see (23)) of a pointed space X, and C(Y ) is the cosimplicial cobar

construction (Definition 3.10) associated to the K̃-coalgebra Y (Definition 3.5).

Theorem 1.1. The stabilization functor

Σ∞ : Ho(S∗)→Ho(coAlgK̃)
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restricts to an equivalence between the homotopy categories of 1-connected spaces
and 1-connected K̃-coalgebra spectra (Remark 1.3 and Definition 3.4); more pre-
cisely, Σ∞ participates in a derived adjunction (Proposition 4.2) comparing pointed

spaces to K̃-coalgebra spectra

MapcoAlgK̃
(Σ∞X,Y ) ' MapS∗(X,holim∆ C(Y ))(1)

that is a Dwyer-Kan equivalence after restriction to the full subcategories of 1-
connected spaces and 1-connected K̃-coalgebra spectra, with respect to the associated
enrichments (Definition 3.18).

This can be thought of as a stabilization analog of the Quillen [57] (resp. Sullivan
[63]) main result that the rational chains (resp. cochains) functor participates
in a derived equivalence with certain coalgebra (resp. algebra) complexes, after
restriction to 1-connected spaces up to rational equivalence.

Our second main result is that an analogous statement is true when we re-
place the stabilization functor Σ∞ with the iterated suspension functor Σr. In the
statement of the following theorem, K̃r is the homotopical comonad (Remark 1.3,
Definition 3.4 and (26)–(27)) naturally acting (Remark 3.6) on the iterated sus-
pension ΣrX (see (26)) of a pointed space X, and Cr(Z) is the cosimplicial cobar

construction (Definition 3.10) associated to the K̃r-coalgebra Z (Definition 3.5).

Theorem 1.2. Let r ≥ 1. The iterated suspension functor

Σr : Ho(S∗)→Ho(coAlgK̃r
)

restricts to an equivalence between the homotopy categories of 1-connected spaces
and (1+r)-connected K̃r-coalgebras (Remark 1.3 and Definition 3.4); more precisely,
Σr participates in a derived adjunction (Proposition 4.2) comparing pointed spaces

to K̃r-coalgebras

MapcoAlgK̃r
(ΣrX,Z) ' MapS∗(X,holim∆ Cr(Z))(2)

that is a Dwyer-Kan equivalence after restriction to the full subcategories of 1-
connected spaces and (1 + r)-connected K̃r-coalgebras, with respect to the associated
enrichments (Definition 3.18).

Remark 1.3. Here, K̃ and K̃r are point-set level (highly homotopy coherent) ho-
motopical comonads in the sense of Blumberg-Riehl [10]; in particular, they are
homotopy invariant, they satisfy highly homotopy coherent analogs of the usual
counit and coassociativity diagrams for comonads, and their (highly homotopy co-
herent) homotopy coalgebras play a key role in the formulation and proofs of our
main results.

The following are immediate corollaries of our main results.

Corollary 1.4. A pair of 1-connected pointed spaces X and X ′ are weakly equiva-
lent if and only if the suspension spectra Σ∞X and Σ∞X ′ (resp. iterated suspension

spaces ΣrX and ΣrX ′) are weakly equivalent as derived K̃-coalgebra spectra (resp.

K̃r-coalgebras).

Corollary 1.5. Let X,X ′ be pointed spaces. Assume that X ′ is 1-connected and
fibrant.

(a) (Existence) Given any map φ in [Σ∞X,Σ∞X ′]K̃ (resp. [ΣrX,ΣrX ′]K̃r
),

there exists a map f in [X,X ′] such that φ = Σ∞(f) (resp. φ = Σr(f)).
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(b) (Uniqueness) For each pair of maps f, g in [X,X ′], f = g if and only if

Σ∞(f) = Σ∞(g) (resp. Σr(f) = Σr(g)) in the homotopy category of K̃-

coalgebra spectra (resp. K̃r-coalgebras).

Corollary 1.6. A K̃-coalgebra spectrum Y (resp. K̃r-coalgebra space Z) is weakly
equivalent to the suspension spectrum Σ∞X (resp. iterated suspension ΣrX) of

some 1-connected space X, via derived K̃-coalgebra maps (resp. K̃r-coalgebra maps),
if and only if Y is 1-connected (resp. Z is (1 + r)-connected).

The following two theorems, of independent interest, are our main technical re-
sults (see Section 5.9 for the proofs). The higher stabilization (resp. higher Freuden-
thal suspension) theorem provides strong estimates for the uniform cartesian-ness of
certain cubical diagrams associated to n-fold iterations of the space level stabiliza-
tion (resp. Freudenthal suspension) map; it can be thought of as the stabilization
(resp. Freudenthal suspension) analog of Dundas’ higher Hurewicz theorem [24,
2.6]; see also the elaboration in Dundas-Goodwillie-McCarthy [25, A.8.3]. In the

statement of the following theorems, Ω̃∞ is the derived version of the 0-th space
functor Ω∞ (Definition 3.4 and (23)) and Ω̃r is the derived version of the iterated
loop space functor Ωr (Definition 3.4 and (26)).

Theorem 1.7 (Higher stabilization). Let k ≥ 1, W a finite set, and X a W -cube

of pointed spaces. If X is (k(id + 1) + 1)-cartesian, then so is X→Ω̃∞Σ∞X.

Theorem 1.8 (Higher Freudenthal suspension). Let k ≥ 1, W a finite set, and X

a W -cube of pointed spaces. If X is (k(id + 1) + 1)-cartesian, then so is X→Ω̃rΣrX.

It is worth pointing out that Theorems 1.7 and 1.8 provide new proofs (with

strong estimates) of the Ω̃∞Σ∞-completion results in Carlsson [16] and the subse-

quent work of Arone-Kankaanrinta [2], and the Ω̃rΣr-completion results of Bousfield
[11] and Hopkins (see [11]), respectively, for 1-connected spaces; this is elaborated
in Remarks 5.28 and 5.29. These uniform cartesian-ness estimates imply certain
uniform cocartesian-ness estimates, and vice-versa (Proposition 5.14); this unifor-
mity phenomenon is the stabilization (resp. Freudenthal suspension) analog of a
closely related uniformity correspondence appearing in [24, 2.4] and [25, A.8.3.2]
that naturally arises from a homotopical analysis of iterations of the Hurewicz map
for integral homology.

Remark 1.9. We can state our main result in the context of Lurie’s theory of
∞-categories in the following way [20, 1.3]. Associated to the simplicial Quillen
adjunction (Σ∞,Ω∞) in (23) (resp. (Σr,Ωr) in (26)) is a corresponding adjunction
of ∞-categories [49, 5.2.4.6]. Riehl-Verity [59] show that an adjunction of ∞-
categories of the form

F : A � B : G

determines a homotopy coherent comonad K whose underlying functor is FG. If the
∞-category A admits suitable limits, the adjunction (F,G) lifts to an adjunction of
∞-categories of the form

F̄ : A � CK : C̄

where CK is an ∞-category of coalgebras over the comonad K and C̄ is a suitable
cobar construction applied to K-coalgebras. This is dual to [59, 7.2.4]. Our Theorem
1.1 (resp. 1.2) then implies that, when applied to the adjunction (Σ∞,Ω∞) (resp.
(Σr,Ωr)), the resulting adjunction (F̄ , C̄) restricts to an equivalence between the
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∞-categories of 1-connected objects on each side (resp. 1-connected objects on the
left side and (1 + r)-connected objects on the right side).

In terms of (the opposite of) Lurie’s version of the Barr-Beck theorem [50,
4.7.0.3]: Our main result reduces to proving that the left derived stabilization
functor Σ∞ (resp. iterated suspension functor Σr) commutes,

Σ∞ holim∆ C(Y ) ' holim∆ Σ∞C(Y )(3)

resp. Σr holim∆ Cr(Z) ' holim∆ ΣrCr(Z)(4)

up to weak equivalence, with the right derived limit functor holim∆, when composed
with the cosimplicial cobar construction C (resp. Cr) associated to the homotopical

comonad K̃ (resp. K̃r) and evaluated on 1-connected K̃-coalgebras (resp. (1 + r)-

connected K̃r-coalgebras)—see Theorem 2.4. This condition is precisely the crux
of verifying (the opposite of) [50, 4.7.0.3].

1.10. Strategy of attack and related work. We are leveraging a line of attack
developed in [20] for resolving the 0-connected case of a conjecture in Francis-
Gaitsgory [31], together with a modification of that strategy developed in [9] for
integral chains. We exploit Cohn’s work [21] showing that this extends to (highly
homotopy coherent) homotopy coalgebras over the associated homotopical comonad
(Blumberg-Riehl [10]). A key ingredient underlying our homotopical estimates are
certain uniform cartesian-ness estimates (Theorems 1.7 and 1.8) related to the

Ω̃∞Σ∞-completion map studied in Carlsson [16], and subsequently in the work of

Arone-Kankaanrinta [2], and the Ω̃rΣr-completion map studied in Bousfield [11]
and Hopkins (see [11]).

We were motivated by the results of Hopkins [42] on iterated suspension, the
subsequent work of Goerss [34] on desuspension and Klein-Schwanzl-Vogt [46] on
comultiplication and suspension, and the work of Klein [47] on moduli of suspension
spectra. We benefited from a careful study of the density argument in Dundas-
Goodwillie-McCarthy [25] and the higher Hurewicz theorem in Dundas [24]. Our
results, from a technical point of view, are enabled by Goodwillie’s higher (dual)
Blakers-Massey theorems [37], the homotopical comonads and their associated ho-
motopy coalgebras studied in Blumberg-Riehl [10] and exploited in Cohn [21], to-
gether with the enrichments and framework developed in Arone-Ching [1].

We were encouraged (via rough analogy) by the earlier work of Quillen [57] and
Sullivan [63] (see also Bousfield-Gugenheim [13]), in light of the results in [19] for
structured ring spectra, together with the work of Smirnov [62] on a coalgebraic
study of homology, and the work of Dwyer-Hopkins (see [51, C]), Goerss [35],
Karoubi [45], Kriz [48], and Mandell [51, 52].

Another way to think about Theorems 1.1 and 1.2 is that the functors Σ∞ and
Σr, as they appear in (1) and (2), satisfy homotopical descent on objects and mor-
phisms; see Arone-Ching [1] and Hess [40], for a discussion of related ideas, Carlsson-
Milgram [18] and May [53] for background on related topics, Edwards-Hastings [29]
for a concise discussion of stabilization and abelianization, and Behrens-Rezk [6]
for an interesting survey of closely related ideas.

1.11. Organization of the paper. In Section 2 we outline the argument of our
main result. In Section 3 we review the completion constructions, their associated
cosimplicial cobar constructions, together with the (highly homotopy coherent)
homotopy coalgebras over the associated homotopical comonads that naturally arise
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when making sense of these completion constructions in our context. Furthermore,
in Section 3 we set up the framework for the homotopy theory of these homotopy
coalgebras. In Section 4 we describe the derived unit and derived counit maps
associated to (1) and (2). In Section 5 we develop the homotopical estimates that
underlie our main results, and in the short Section 6 we remind the reader about
notation for various hom-objects used throughout the paper. For the experts that
are already familiar with the enrichments and framework in Arone-Ching [1], it will
suffice to read Sections 2 and 5 for a complete proof of the main results.

Acknowledgments. The authors would like to thank an anonymous referee for
helpful suggestions on this paper that significantly improved the exposition. The
authors are grateful to Michael Ching for helpful comments and useful remarks
throughout this project. The second author would like to thank Bjørn Dundas,
Bill Dwyer, Haynes Miller, and Crichton Ogle for useful suggestions and remarks
and Lee Cohn, Mike Hopkins, Tyler Lawson, and Nath Rao for helpful comments.
The second author is grateful to Haynes Miller for a stimulating and enjoyable visit
to the Massachusetts Institute of Technology in early spring 2015, and to Bjørn
Dundas for a stimulating and enjoyable visit to the University of Bergen in late
spring 2015, and for their invitations which made this possible. The first author
was supported in part by National Science Foundation grants DMS-1510640 and
DMS-1547357. The second author was supported in part by the Simons Foundation:
Collaboration Grants for Mathematicians #638247.

2. Outline of the argument

In this section we will outline the proof of our main results. Since the derived unit
map (Definition 4.3) associated to (1) is tautologically the Ω̃∞Σ∞-completion map
X ′→X ′∧Ω̃∞Σ∞ , which is proved to be a weak equivalence on 1-connected spaces
in Carlsson [16], and subsequently in Arone-Kankaanrinta [2], proving the main
result in the stabilization case reduces to verifying that the derived counit map
(Definition 4.5) associated to (1) is a weak equivalence. Similarly, since the derived

unit map (Definition 4.3) associated to (2) is tautologically the Ω̃rΣr-completion
map X ′→X ′∧Ω̃rΣr , which is proved to be a weak equivalence on 1-connected spaces
in the work of Bousfield [11] and Hopkins (see [11]), proving the main result in the
iterated suspension case reduces to verifying that the derived counit map (Definition
4.5) associated to (2) is a weak equivalence.

The following theorem is proved in Section 5, just after Proposition 5.44.

Theorem 2.1. Let r ≥ 1. If Y is a 1-connected K̃-coalgebra spectrum (resp. Z is

a (1 + r)-connected K̃r-coalgebra) and n ≥ 1, then the natural map

holim∆≤n C(Y ) −→ holim∆≤n−1 C(Y )(5)

resp. holim∆≤n Cr(Z) −→ holim∆≤n−1 Cr(Z)(6)

is an (n+ 2)-connected map between 1-connected objects.

Theorem 2.2. Let r ≥ 1. If Y is a 1-connected K̃-coalgebra spectrum and n ≥ 0,
then the natural maps

holim∆ C(Y ) −→ holim∆≤n C(Y )(7)

Σ∞ holim∆ C(Y ) −→ Σ∞ holim∆≤n C(Y )(8)
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are (n+3)-connected maps between 1-connected objects. Similarly, if Z is a (1+r)-

connected K̃r-coalgebra and n ≥ 0, then

holim∆ Cr(Z) −→ holim∆≤n Cr(Z)(9)

Σr holim∆ Cr(Z) −→ Σr holim∆≤n Cr(Z)(10)

the natural map (9) (resp. (10)) is an (n+ 3)-connected map between 1-connected
objects (resp. (n+ 3 + r)-connected map between (1 + r)-connected objects).

Proof. Consider the first part. By Theorem 2.1 the maps in the holim tower
{holim∆≤n C(Y )}n have connectivity strictly increasing with n; furthermore, the
map above level n is (n + 3)-connected, the map above level n + 1 is (n + 4)-
connected, the map above level n+ 2 is (n+ 5)-connected, and so forth. It follows
that the map (7) is (n+ 3)-connected. The second part follows from the first part.
The other case is similar. �

We prove the following theorem in Section 5, just after Theorem 5.41. It pro-
vides estimates sufficient for verifying that stabilization (resp. iterated suspension)
commutes past the desired homotopy limits.

Theorem 2.3. Let r ≥ 1. If Y is a 1-connected K̃-coalgebra spectrum (resp. Z is

a (1 + r)-connected K̃r-coalgebra) and n ≥ 1, then the natural map

Σ∞ holim∆≤n C(Y ) −→ holim∆≤n Σ∞ C(Y )(11)

resp. Σr holim∆≤n Cr(Z) −→ holim∆≤n Σr Cr(Z)(12)

is (n + 5)-connected (resp. (n + 5 + r)-connected); the map is a weak equivalence
for n = 0.

Theorem 2.4. Let r ≥ 1. If Y is a 1-connected K̃-coalgebra spectrum (resp. Z is

a (1 + r)-connected K̃r-coalgebra), then the natural maps

Σ∞ holim∆ C(Y )
'−−→ holim∆ Σ∞ C(Y )

'−−→ Y(13)

resp. Σr holim∆ Cr(Z)
'−−→ holim∆ Σr Cr(Z)

'−−→ Z(14)

are weak equivalences.

Proof. For the case of the left-hand map in (13), it is enough to verify that the
connectivities of the natural maps (8) and (11) are strictly increasing with n, and
Theorems 2.2 and 2.3 complete the proof. Consider the right-hand map. Since
Σ∞ C(Y ) ' FΣ∞ C(Y ) and the latter is isomorphic to the cosimplicial cobar con-

struction Cobar(F K̃, K̃, Y ), which has extra codegeneracy maps s−1 (Dwyer-Miller-
Neisendorfer [28, 6.2]), it follows from the cofinality argument in Dror-Dwyer [22,
3.16] that the right-hand map in (13) is a weak equivalence. The other case is
similar. �

Proof of Theorems 1.1 and 1.2. We want to verify that the natural map

Σ∞ holim∆ C(Y )→Y
is a weak equivalence; since this is the composite (13), Theorem 2.4 completes the
proof. The other case is similar. �

The following is an immediate corollary of the connectivity estimates in Theorem
2.1. These types of homotopy spectral sequences have been studied, for instance,
in [7, 8, 14, 15].
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Corollary 2.5. If Y is a 1-connected K̃-coalgebra spectrum (resp. Z is a (1 + r)-

connected K̃r-coalgebra), then the homotopy spectral sequence

E2
−s,t = πsπtC(Y ) =⇒ πt−s holim∆ C(Y )(

resp. E2
−s,t = πsπtCr(Z) =⇒ πt−s holim∆ Cr(Z)

)
converges strongly. By strong convergence of {Er} to π∗ holim∆ C(Y ) we mean that
(i) for each (−s, t), there exists an r such that Er−s,t = E∞−s,t and (ii) for each i,
E∞−s,s+i = 0 except for finitely many s; see, for instance, [14, IV.5.6, IX.5.3, IX.5.4]
and [26, p. 255]; similarly for the other case.

3. Homotopical comonads and their homotopy coalgebras

If X is a pointed space, the stabilization map has the form

π∗(X)→πs
∗(X) = colimr π∗+r(Σ

rX)(15)

This comparison map between homotopy groups and stable homotopy groups comes
from a space level stabilization map of the form

X → Ω̃∞Σ∞(X)(16)

and applying π∗ to (16) recovers the map (15); here, Ω̃∞ = Ω∞F (Definition 3.4)
denotes the right-derived functor of the underlying 0-th space functor Ω∞ = Ev0,
Σ∞ = S⊗− denotes the stabilization functor given by tensoring with the sphere
spectrum S, and F denotes a simplicial fibrant replacement monad.

With a space level stabilization map in hand, it is natural to form a cosimplicial
resolution of X with respect to Ω̃∞Σ∞ of the form

X // Ω̃∞Σ∞(X) //// (Ω̃∞Σ∞)2(X) ////
//
(Ω̃∞Σ∞)3(X) · · ·(17)

showing only the coface maps. The homotopical comonad K̃ = Σ∞Ω̃∞, which is the
derived functor of the comonad K = Σ∞Ω∞ associated to the (Σ∞,Ω∞) adjunction
(see (23)), can be thought of as encoding the spectrum level co-operations on the
suspension spectra; compare with [9] for integral chains.

By analogy with the techniques in Bousfield-Kan [14], by iterating the space
level stabilization map (16) Carlsson [16], and subsequently Arone-Kankaanrinta

[2], study the cosimplicial resolution of X with respect to Ω̃∞Σ∞, and taking the

homotopy limit of the resolution (17) produce the Ω̃∞Σ∞-completion map

X→X∧
Ω̃∞Σ∞

(18)

This map arises as the derived unit map (Definition 4.3) associated to (1).
Similarly, if r ≥ 1, the Freudenthal suspension map has the form

π∗(X)→π∗+r(ΣrX)(19)

This map comes from a space level Freudenthal suspension map of the form

X → Ω̃rΣr(X)(20)

Applying π∗ to the map (20) recovers the map (19); here, Ω̃r = ΩrΦ (Defi-
nition 3.4) denotes the right-derived functor of the iterated loop space functor
Ωr = hom∗(S

r,−), Σr = Sr ∧− denotes the iterated suspension functor given
by smashing with the r-sphere Sr = (S1)∧r, and Φ denotes a simplicial fibrant
replacement monad; see Section 6 for a reminder on the hom∗ functor.
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Once one has such a Freudenthal suspension map on the level of spaces, it is
natural to form a cosimplicial resolution of X with respect to Ω̃rΣr of the form

X // Ω̃rΣr(X) //// (Ω̃rΣr)2(X) ////
//
(Ω̃rΣr)3(X) · · ·(21)

showing only the coface maps. The homotopical comonad K̃r = ΣrΩ̃r, which is
the derived functor of the comonad Kr = ΣrΩr associated to the (Σr,Ωr) adjunc-
tion (see (26)), can be thought of as encoding the space level co-operations on the
iterated suspension spaces. Bousfield [11] and Hopkins (see [11]) study the cosim-

plicial resolution of X with respect to Ω̃rΣr, and taking the homotopy limit of the
resolution (21) produces the Ω̃rΣr-completion map

X→X∧
Ω̃rΣr(22)

This map arises as the derived unit map (Definition 4.3) associated to (2).

3.1. Cosimplical cobar constructions associated to homotopy coalgebras.
Consider any pointed space X and S-module Y , and recall that the suspension
spectrum Σ∞(X) = S⊗X and 0-th space Ω∞(Y ) = Ev0(Y ) = Y0 functors fit into
an adjunction

S∗
Σ∞ // ModS
Ω∞
oo(23)

with left adjoint on top. Associated to the adjunction in (23) is the monad Ω∞Σ∞

on pointed spaces S∗ and the comonad K := Σ∞Ω∞ on S-modules ModS of the
form

id
η−→ Ω∞Σ∞ (unit), id

ε←− K (counit),(24)

Ω∞Σ∞Ω∞Σ∞→Ω∞Σ∞ (multiplication), KK
m←− K (comultiplication).

The suspension spectrum Σ∞X is naturally equipped with a K-coalgebra structure.
Denote by m : Ω∞→Ω∞K = Ω∞Σ∞Ω∞ the right K-coaction map on Ω∞ (defined
by m := η id).

Definition 3.2. Let Y be a K-coalgebra. The cosimplicial cobar construction
C(Y ) := Cobar(Ω∞,K, Y ) in (S∗)

∆ looks like

C(Y ) : Ω∞Y
d0 //
d1
// Ω∞KY

////// Ω
∞KKY · · ·(25)

(showing only the coface maps) and is defined objectwise by C(Y )n := Ω∞KnY
with the obvious coface and codegeneracy maps; see, for instance, the face and
degeneracy maps in the simplicial bar constructions described in Gugenheim-May
[39, A.1] or May [54, Section 7], and dualize. For instance, the indicated coface maps
in (25) are defined by d0 := m id and d1 := idm. Here, we denote by m : Y→KY
the K-coaction map on Y . Compare with [20, 3.15].

Similarly, consider any pointed spaces X,X ′ and recall that the iterated sus-
pension space Σr(X) := Sr ∧X and iterated loop space Ωr(X ′) := hom∗(S

r, X ′)
functors fit into the left-hand adjunction

S∗
Σr
// S∗

Ωr
oo S∗

Σ // S∗ · · · S∗
Ω
oo

Σ // S∗
Ω
oo (r copies)(26)
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with left adjoint on top; here, Sr := (S1)∧r for r ≥ 1 where S1 := ∆[1]/∂∆[1].
Note that the left-hand adjunction is naturally isomorphic to the right-hand r-fold
iteration of the suspension-loop adjunctions, by uniqueness of adjoints up to natural
isomorphism. Associated to the adjunction in (26) is the monad ΩrΣr on pointed
spaces S∗ and the comonad Kr := ΣrΩr on pointed spaces S∗ of the form

id
η−→ ΩrΣr (unit), id

ε←− Kr (counit),(27)

ΩrΣrΩrΣr→ΩrΣr (multiplication), KrKr
m←− Kr (comultiplication).

The iterated suspension space ΣrX is naturally equipped with a Kr-coalgebra struc-
ture. Denote by m : Ωr→ΩrKr = ΩrΣrΩr the right Kr-coaction map on Ωr (defined
by m := η id).

Definition 3.3. Let Z be a Kr-coalgebra. The cosimplicial cobar construction
Cr(Z) := Cobar(Ωr,Kr, Z) in (S∗)

∆ looks like

Cr(Z) : ΩrZ
d0 //
d1
// ΩrKrZ

// //// Ω
rKrKrZ · · ·(28)

(showing only the coface maps) and is defined objectwise by Cr(Z)n := Ωr(Kr)
nZ

with the obvious coface and codegeneracy maps; see, for instance, the face and de-
generacy maps in the simplicial bar constructions described in Gugenheim-May [39,
A.1] or May [54, Section 7], and dualize. For instance, in (28) the indicated coface
maps are defined by d0 := m id and d1 := idm. Here, we denote by m : Z→KrZ
the Kr-coaction map on Z. Compare with [20, 3.15].

It will be useful to interpret the cosimplicial Ω̃∞Σ∞-resolution of X in terms of a
cosimplicial cobar construction that naturally arises as a “fattened” version of (25);

this leads to the notion of a homotopy K̃-coalgebra appearing in Blumberg-Riehl
[10] and exploited in Cohn [21].

Definition 3.4. Denote by η : id→F and m : FF→F the unit and multiplication
maps of the simplicial fibrant replacement monad F on ModS (see [10, 6.1], and also

[33] and [58]). It follows that Ω̃∞ := Ω∞F and K̃ := KF are the derived functors

of Ω∞ and K, respectively. The comultiplication m : K̃→K̃K̃ and counit ε : K̃→F
maps are defined by the composites

KF
m id−−−→ KKF = KidKF

id η id id−−−−−→ KFKF(29)

KF
ε id−−→ idF = F(30)

respectively.
Similarly, denote by η : id→Φ and m : ΦΦ→Φ the unit and multiplication maps

of the simplicial fibrant replacement monad Φ on pointed spaces S∗ (see [10, 6.1],

and also [33] and [58]). It follows that Ω̃r := ΩrΦ and K̃r := KrΦ are the derived

functors of Ωr and Kr, respectively. The comultiplication m : K̃r→K̃rK̃r and counit
ε : K̃r→Φ maps are defined by the composites

KrΦ
m id−−−→ KrKrΦ = KridKrΦ

id η id id−−−−−→ KrΦKrΦ(31)

KrΦ
ε id−−→ idΦ = Φ(32)

respectively.
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It is shown in Blumberg-Riehl [10, 4.2, 4.4], and subsequently exploited in Cohn

[21], that the derived functor K̃ := KF of the comonad K is very nearly a comonad

itself with the structure maps m : K̃→K̃K̃ and ε : K̃→F above. For instance, it is
proved in [10] that K̃ defines a comonad on the homotopy category of ModS , which is

a reflection of the the fact that K̃ has the structure of a highly homotopy coherent
comonad (see [10]); in particular, K̃ has a strictly coassociative comultiplication

m : K̃→K̃K̃ and satisfies left and right counit identities up to factors of F ' id.
In more detail, the homotopical comonad K̃ makes the following diagrams

K̃
m //

m

��

K̃K̃

m id

��
K̃K̃

idm
// K̃K̃K̃

F K̃
idm // F K̃K̃

(∗)
��

F K̃ F K̃

K̃
m // K̃K̃

(∗∗)
��

K̃ K̃

commute. Here, the map (∗) is the composite F K̃K̃
id ε id−−−→ FF K̃

m id−−−→ F K̃ and the

map (∗∗) is the composite KF K̃
id id ε−−−→ KFF

idm−−−→ KF ; in other words, the map (∗)
(resp. (∗∗)) simply inserts ε : K→id on the left (resp. right) and multiplies down
the resulting FF term to F .

Similarly, the homotopical comonad K̃r makes the following diagrams

K̃r
m //

m

��

K̃rK̃r

m id

��
K̃rK̃r

idm
// K̃rK̃rK̃r

ΦK̃r
idm // ΦK̃rK̃r

(∗)
��

ΦK̃r ΦK̃r

K̃r
m // K̃rK̃r

(∗∗)
��

K̃r K̃r

commute. Here, the map (∗) is the composite ΦK̃rK̃r
id ε id−−−→ ΦΦK̃r

m id−−−→ ΦK̃r and

the map (∗∗) is the composite KrΦK̃r
id id ε−−−→ KrΦΦ

idm−−−→ KrΦ; in other words, the
map (∗) (resp. (∗∗)) simply inserts ε : Kr→id on the left (resp. right) and multiplies
down the resulting ΦΦ term to Φ.

The following notion of a homotopy K̃-coalgebra appearing in Blumberg-Riehl
[10] and exploited in Cohn [21], captures exactly the left K̃-coaction structure that
stabilization Σ∞X of a pointed space X satisfies; this is precisely the structure
being encoded by the cosimplicial Ω̃∞Σ∞ resolution (17).

Definition 3.5. A homotopy K̃-coalgebra (or K̃-coalgebra, for short) is a Y ∈ ModS
together with a map m : Y→K̃Y in ModS such that the following diagrams

Y
m //

m

��

K̃Y

m id

��
K̃Y

idm
// K̃K̃Y

FY
idm // F K̃Y

(∗)
��

FY FY

(33)

commute. Here, the map (∗) is the composite F K̃Y
id ε id−−−→ FFY

m id−−−→ FY ; in
other words, the map (∗) simply inserts ε : K→id on the left and multiplies down

the resulting FF term to F . We will sometimes refer to a K̃-coalgebra structure on
Y as a left K̃-coaction on Y .
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Similarly, a homotopy K̃r-coalgebra (or K̃r-coalgebra, for short) is a Z ∈ S∗
together with a map m : Z→K̃rZ in S∗ such that the following diagrams

Z
m //

m

��

K̃rZ

m id

��
K̃rZ

idm
// K̃rK̃rZ

ΦZ
idm // ΦK̃rZ

(∗)
��

ΦZ ΦZ

(34)

commute. Here, the map (∗) is the composite ΦK̃rZ
id ε id−−−→ ΦΦZ

m id−−−→ ΦZ; in other
words, the map (∗) simply inserts ε : Kr→id on the left and multiplies down the

resulting ΦΦ term to Φ. We will sometimes refer to a K̃r-coalgebra structure on Z
as a left K̃r-coaction on Z.

Remark 3.6. Associated to the adjunction (Σ∞,Ω∞) is a left K-coaction (or K-
coalgebra structure) m : Σ∞X→KΣ∞X on Σ∞X, defined by m = id η id, for any

X ∈ S∗. This map induces a corresponding left K̃-coaction m : Σ∞X→K̃Σ∞X that
is the composite

Σ∞X
m−→ KΣ∞X = KidΣ∞X

id η id id−−−−−→ KFΣ∞X

Similarly, associated to the adjunction (Σr,Ωr) is a left Kr-coaction (or Kr-coalgebra
structure) m : ΣrX→KrΣ

rX on ΣrX, defined by m = id η id, for any X ∈ S∗. This

map induces a corresponding left K̃r-coaction m : ΣrX→K̃rΣ
rX that is the com-

posite

ΣrX
m−→ KrΣ

rX = KridΣrX
id η id id−−−−−→ KrΦΣrX

Remark 3.7. More generally, every K-coalgebra structure m : Y→KY on Y ∈ ModS
induces a K̃-coalgebra structure m : Y→K̃Y that is the composite Y

m−→ KY =

KidY
id η id−−−−→ KFY . Similarly, every Kr-coalgebra structure m : Z→KrZ on Z ∈ S∗

induces a K̃r-coalgebra structure m : Z→K̃rZ that is the composite Z
m−→ KrZ =

KridZ
id η id−−−−→ KrΦZ.

Remark 3.8. The derived functor Ω̃∞ has a naturally occurring right homotopy
K̃-coaction map (or right K̃-coaction map, for short) m : Ω̃∞→Ω̃∞K̃, defined by
the composite

Ω∞F
m id−−−→ Ω∞KF = Ω∞idKF

id η id id−−−−−→ Ω∞FKF

that makes the following diagrams

Ω̃∞
m //

m

��

Ω̃∞K̃

m id

��
Ω̃∞K̃

idm
// Ω̃∞K̃K̃

Ω̃∞
m // Ω̃∞K̃

(∗∗)
��

Ω̃∞ Ω̃∞

commute. Here, the map (∗∗) is the composite Ω∞F K̃
id id ε−−−→ Ω∞FF

idm−−−→ Ω∞F ;
in other words, the map (∗∗) simply inserts ε : K→id on the right and multiplies
down the resulting FF term to F .
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Similarly, the derived functor Ω̃r has a naturally occurring right homotopy K̃r-
coaction map (or right K̃r-coaction map, for short) m : Ω̃r→Ω̃rK̃r, defined by the
composite

ΩrΦ
m id−−−→ ΩrKrΦ = ΩridKrΦ

id η id id−−−−−→ ΩrΦKrΦ

that makes the following diagrams

Ω̃r
m //

m

��

Ω̃rK̃r

m id

��
Ω̃rK̃r

idm
// Ω̃rK̃rK̃r

Ω̃r
m // Ω̃rK̃r

(∗∗)
��

Ω̃r Ω̃r

commute. Here, the map (∗∗) is the composite ΩrΦK̃r
id id ε−−−→ ΩrΦΦ

idm−−−→ ΩrΦ;
in other words, the map (∗∗) simply inserts ε : Kr→id on the right and multiplies
down the resulting ΦΦ term to Φ.

The following cosimplicial cobar constructions provide a generalization of the
resolutions (17) and (21): this is because the resolution X → C(Σ∞X) is identical
to (17) and the resolution X → Cr(Σ

rX) is identical to (21).

Remark 3.9. In the following definition, it is important to note that the cobar
constructions C(Y ),Cr(Z) are genuinely cosimplicial diagrams (equipped with both
coface and codegeneracy maps satisfying the cosimplicial identities); we have simply
suppressed showing the codegeneracy maps to keep the diagrams (35) and (36)
reasonably sized for typesetting purposes.

Definition 3.10. Let Y be a K̃-coalgebra spectrum. The cosimplicial cobar con-
struction C(Y ) := Cobar(Ω̃∞, K̃, Y ) in (S∗)

∆ looks like

C(Y ) : Ω̃∞Y
d0 //
d1
// Ω̃∞K̃Y

////// Ω̃
∞K̃K̃Y · · ·(35)

(showing only the coface maps) and is defined objectwise by C(Y )n := Ω̃∞K̃nY =
Ω∞F (KF )nY with the obvious coface and codegeneracy maps; for instance, in (35)
the indicated coface maps are defined by d0 := m id and d1 := idm. Compare with
[20, 3.15].

Similarly, Let Z be a K̃r-coalgebra. The cosimplicial cobar construction Cr(Z) :=

Cobar(Ω̃r, K̃r, Z) in (S∗)
∆ looks like

Cr(Z) : Ω̃rZ
d0 //
d1
// Ω̃rK̃rZ

////// Ω̃
rK̃rK̃rZ · · ·(36)

(showing only the coface maps) and is defined objectwise by Cr(Z)n := Ω̃rK̃nrZ =
ΩrΦ(KrΦ)nZ with the obvious coface and codegeneracy maps; for instance, in (36)
the indicated coface maps are defined by d0 := m id and d1 := idm. Compare with
[20, 3.15].

Remark 3.11. It may be helpful to note, when comparing with [10], that the counit
map (30) is identical to the composite

KF = idKF
η id id−−−−→ FKF

id ε id−−−→ F idF = FF
m−→ F
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Similary, the counit map (32) is identical to the composite

KrΦ = idKrΦ
η id id−−−−→ ΦKrΦ

id ε id−−−→ ΦidΦ = ΦΦ
m−→ Φ

3.12. Enrichments, box products, and composition maps. In this section
we setup the homotopy theory of K̃-coalgebras (resp. K̃r-coalgebras) using a tiny
modification of the framework developed in Arone-Ching [1]; it is closely related to
[20], together with the observation in Cohn [21] that this framework extends to the
homotopy coalgebras in Blumberg-Riehl [10].

Definition 3.13. Let Y, Y ′ be K̃-coalgebra spectra (resp. Z,Z ′ be K̃r-coalgebras).

A morphism of K̃-coalgebra spectra from Y to Y ′ is a map f : Y→Y ′ in ModS that
makes the left-hand diagram

Y

f

��

m // K̃Y

id f

��
Y ′

m
// K̃Y ′

Z

g

��

m // K̃rZ

id g

��
Z ′

m
// K̃rZ ′

(37)

in ModS commute. Similarly, a morphism of K̃r-coalgebras from Z to Z ′ is a map
g : Z→Z ′ in S∗ that makes the right-hand diagram in S∗ commute.

This motivates the following homotopically meaningful cosimplicial resolution of
K̃-coalgebra (resp. K̃r-coalgebra) maps; for a reminder on the Hom functors, see
Section 6.

Definition 3.14. Let Y, Y ′ be K̃-coalgebra spectra (resp. Z,Z ′ be K̃r-coalgebras).

The cosimplicial object HomModS

(
Y, F K̃•Y ′

)
(resp. HomS∗

(
Z,ΦK̃•rZ

′)) in sSet
looks like (showing only the coface maps)

HomModS (Y, FY ′)
d0 //
d1
// HomModS

(
Y, F K̃Y ′

) ////// HomModS

(
Y, F K̃K̃Y ′

)
· · ·

resp. HomS∗(Z,ΦZ
′)

d0 //
d1
// HomS∗

(
Z,ΦK̃rZ

′) ////// HomS∗

(
Z,ΦK̃rK̃rZ

′) · · ·
and is defined objectwise by

HomModS

(
Y, F K̃•Y ′

)n
:= HomModS

(
Y, F K̃nY ′

)
resp. HomS∗

(
Z,ΦK̃•rZ

′)n := HomS∗

(
Z,ΦK̃nrZ

′)
with the obvious coface and codegeneracy maps (see [1, 1.3]).

Remark 3.15. This is simply the resolution in Arone-Ching [1], but “fattened-up”
by F (resp. Φ). For instance, on the level of hom-sets (simplicial degree 0), let’s
verify that s0d1 = id on HomModS (Y, FY ′). Start with f : Y→FY ′ and consider
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the commutative diagram

Y
f // FY ′

idm // FKFY ′

id ε id2

��
(∗)

��

FFY ′

m id

��
Y

f // FY ′ FY ′

The composite along the upper horizontal and right-hand vertical maps is s0d1f
and the composite along the bottom horizontal maps is f ; the diagram commutes
verifies that s0d1 = id. Similarly, on the level of hom-sets (simplicial degree 0), let’s
verify that s0d0 = id on HomModS (Y, FY ′). Start with f : Y→FY ′ and consider
the commutative diagram

Y
m //

η id

��

KFY
id2f //

η id3

��

KFFY ′
idm id //

η id4

��

KFY ′
η id3

//

η id3

��

FKFY ′

FY
idm // FKFY

id3f //

id ε id2

��
(∗)

��

FKFFY ′
id2m id//

id ε id3

��

FKFY ′

id ε id2

��

FKFY ′

id ε id2

��
FFY

id2f //

m id

��

FFFY ′
idm id //

m id2

��

FFY ′

m id

��

FFY ′

m id

��
FY FY

idf // FFY ′
m id // FY ′ FY ′

Y

η id

OO

f // FY ′

η id2

OO

FY ′

The composite along the upper horizontal and right-hand vertical maps is s0d0f
and the composite along the bottom horizontal maps is f ; the diagram commutes
verifies that s0d0 = id.

Definition 3.16. The realization functor | − | : sSet→CGHaus for simplicial sets is
defined objectwise by the coend X 7→ X ×∆ ∆(−); here, ∆n in CGHaus denotes the
topological standard n-simplex for each n ≥ 0 (see [36, I.1.1]).

Remark 3.17. Recall that if Y, Y ′ ∈ ModS and Z,Z ′ ∈ S∗, then the mapping spaces
MapModS (Y, Y ′) and MapS∗(Z,Z

′) in CGHaus are defined by realization

MapModS (Y, Y ′) := |HomModS (Y, Y ′)| MapS∗(Z,Z
′) := |HomS∗(Z,Z

′)|
of the indicated simplicial sets.

Definition 3.18. Let Y, Y ′ be K̃-coalgebra spectra. The mapping spaces of derived
K̃-coalgebra maps HomcoAlgK̃

(Y, Y ′) in sSet and MapcoAlgK̃
(Y, Y ′) in CGHaus are

defined by the restricted totalizations

HomcoAlgK̃
(Y, Y ′) := Totres HomModS

(
Y, F K̃•Y ′

)
MapcoAlgK̃

(Y, Y ′) := Totres MapModS

(
Y, F K̃•Y ′

)
of the indicated cosimplicial objects.
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Similarly, let Z,Z ′ be K̃r-coalgebras. The mapping spaces of derived K̃r-coalgebra
maps HomcoAlgK̃r

(Z,Z ′) in sSet and MapcoAlgK̃r
(Z,Z ′) in CGHaus are defined by the

restricted totalizations

HomcoAlgK̃r
(Z,Z ′) := Totres HomModS

(
Z,ΦK̃•rZ

′)
MapcoAlgK̃r

(Z,Z ′) := Totres MapModS

(
Z,ΦK̃•rZ

′)
of the indicated cosimplicial objects.

Remark 3.19. Note that there are natural zigzags of weak equivalences

HomcoAlgK̃
(Y, Y ′) ' holim

∆
HomModS

(
Y, F K̃•Y ′

)
HomcoAlgK̃r

(Z,Z ′) ' holim
∆

HomS∗

(
Z,ΦK̃•rZ

′)
The following proposition is proved in [20, 4.9].

Proposition 3.20. If A ∈ (sSet)∆res is objectwise fibrant, then the natural map

|TotresA| '−−→ Totres |A|
in CGHaus is a weak equivalence.

The following proposition allows us to describe certain maps simplicially and
then pass to the topological mapping space via realization.

Proposition 3.21. Let Y, Y ′ be K̃-coalgebra spectra (resp. Z,Z ′ be K̃r-coalgebras).
Then the natural map

|HomcoAlgK̃
(Y, Y ′)| '−−→ MapcoAlgK̃

(Y, Y ′)

resp. |HomcoAlgK̃r
(Z,Z ′)| '−−→ MapcoAlgK̃r

(Z,Z ′)

in CGHaus is a weak equivalence.

Proof. This follows from Proposition 3.20. �

Definition 3.22. Let Y, Y ′ be K̃-coalgebra spectra (resp. Z,Z ′ be K̃r-coalgebras).

A derived K̃-coalgebra map f of the form Y→Y ′ (resp. K̃r-coalgebra map g of the
form Z→Z ′) is any map in (sSet)∆res of the form

f : ∆[−] −→ HomModS

(
Y, F K̃•Y ′

)
resp. g : ∆[−] −→ HomS∗

(
Z,ΦK̃•rZ

′)
A topological derived K̃-coalgebra map h of the form Y→Y ′ (resp. K̃r-coalgebra map
l of the form Z→Z ′) is any map in (CGHaus)∆res of the form

h : ∆• −→ MapModS

(
Y, F K̃•Y ′

)
resp. l : ∆• −→ MapS∗

(
Z,ΦK̃•rZ

′)
The underlying map of a derived K̃-coalgebra map f is the map f0 : Y→FY ′ that
corresponds to the map f0 : ∆[0]→HomModS (Y, FY ′). Similarly, the underlying

map of a derived K̃r-coalgebra map g is the map g0 : Z→ΦZ ′ that corresponds to
the map g0 : ∆[0]→HomS∗(Z,ΦZ

′).

Remark 3.23. Note that every derived K̃-coalgebra map f (resp. K̃r-coalgebra map

g) determines a topological derived K̃-coalgebra map |f | (resp. K̃r-coalgebra map
|g|) by realization.
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Box product pairings on cosimplicial objects can be thought of as encoding, on
the cosimplicial level, pairings that formally look like the cup product pairings on
the singular cochains of a space. These pairings can also encode the composition-
of-loops pairings on based loop spaces. In our context, we use box product pairings
to encode composition of derived K̃-coalgebra (resp. K̃r-coalgebra) maps; see, for
instance, Arone-Ching [1] and Batanin [5]. The following definition of the box
product (and its associated coface and codegeneracy maps) appears in McClure-
Smith [55, 2.1]; it goes back to Batanin [4, 3.2], and earlier to Artin-Mazur [3, III]
in a dual version built for bisimplicial sets. The box product construction (and
associated formulas for the coface and codegeneracy maps) below naturally arises
by studying the cup product structure on the singular cochains of a space [55, (2.1)–
(2.3)]; see Remark 3.26 for a more conceptual interpretation of the box product in
terms of a left Kan extension along concatenation.

Definition 3.24. If X,Y ∈ (sSet)∆ their box product X�Y ∈ (sSet)∆ is defined
objectwise by a coequalizer of the form

(X�Y )n ∼= colim
( ∐
p+q=n

Xp × Y q
∐

r+s=n−1
Xr × Y soooo

)
where the top (resp. bottom) map is induced by id× d0 (resp. dr+1 × id) on each
(r, s) term of the indicated coproduct; note that (X�Y )0 ∼= X0 × Y 0. The coface
maps di : (X�Y )n→(X�Y )n+1 are induced by{

Xp × Y q di×id−−−→ Xp+1 × Y q, if i ≤ p,
Xp × Y q id×di−p

−−−−−→ Xp × Y q+1, if i > p,

and the codegeneracy maps sj : (X�Y )n→(X�Y )n−1 are induced by{
Xp × Y q sj×id−−−−→ Xp−1 × Y q, if j < p,

Xp × Y q id×sj−p

−−−−−→ Xp × Y q−1, if j ≥ p.

If X,Y ∈ CGHaus∆, then their box product X�Y ∈ CGHaus∆ is defined similarly
by replacing (sSet,×) with (CGHaus,×); the box product is defined similarly for
cosimplicial objects in any closed symmetric monoidal category (M,⊗).

Remark 3.25. For instance, (X�Y )1 and (X�Y )2 are naturally isomorphic to the
colimits of the left-hand and right-hand diagrams, respectively,

X0 × Y 1

X0 × Y 0

id×d0
OO

d1×id // X1 × Y 0

X0 × Y 2

X0 × Y 1

id×d0
OO

d1×id // X1 × Y 1

X1 × Y 0

id×d0
OO

d2×id // X2 × Y 0

and so forth. These zigzag diagrams appear in Batanin [4]; we like them because
they provide a useful way of working effectively with box products. Note that the
box product construction is glued together by identifying the first coface maps of the
second object Y with the last coface maps of the first object X, roughly speaking;
this is what one would expect from a concatenation process (Remark 3.26).



HIGHER STABILIZATION AND HIGHER FREUDENTHAL SUSPENSION 17

Remark 3.26. From a conceptual point of view, the box product of cosimplicial ob-
jects can be understood as a left Kan extension that is built to model concatenation
processes. In more detail: if X,Y ∈ (sSet)∆, their box product X�Y ∈ (sSet)∆ is
the left Kan extension of objectwise product

∆×∆
X×Y //

q
��

sSet× sSet
× // sSet

∆
X�Y

left Kan extension
// sSet

along ordinal sum (or concatenation). This is proved in McClure-Smith [55, 2.3];
for an explicit description of the resulting adjunction see [20, 4.16] and [55, 2.4].

Remark 3.27. Let’s illustrate how to use these zigzag diagrams to work effectively
with the box product; this will help the reader to develop a feel for the construction.
For instance, consider the coface and codegeneracy maps for the truncated box
product X�Y diagram of the form

(X�Y )0
d0 //
d1
// (X�Y )1

d0 ////
d2
//

s0

��

(X�Y )2

s1

��
s0

��
(X�Y )0 (X�Y )1

(38)

Let’s unwind from Definition 3.24 exactly how the indicated coface di and code-
generacy sj maps are defined. We will then use the resulting descriptions to verify
several of the cosimplicial identities involving these particular maps.

The map d0 : (X�Y )0→(X�Y )1 is induced by the map (note that i = 0)

X0 × Y 0 d0×id // X1 × Y 0

and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 1

X0 × Y 0

d0×id

33X0 × Y 0

id×d0
OO

d1×id // X1 × Y 0

The map d1 : (X�Y )0→(X�Y )1 is induced by the map (note that i = 1)

X0 × Y 0 id×d1 // X0 × Y 1

and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 1

X0 × Y 0

id×d1
33

X0 × Y 0

id×d0
OO

d1×id // X1 × Y 0
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The map d0 : (X�Y )1→(X�Y )2 is induced by the maps (note that i = 0)

X0 × Y 1 d0×id // X1 × Y 1

X1 × Y 0 d0×id // X2 × Y 0

and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 2

X0 × Y 1
d0×id 22X0 × Y 1

id×d0
OO

d1×id // X1 × Y 1

X0 × Y 0

id×d0
OO

d1×id

//

d0×id

,,
X1 × Y 0

d0×id

22X1 × Y 0

id×d0
OO

d2×id // X2 × Y 0

This diagram commutes (note that d2d0 = d0d1).
The map d1 : (X�Y )1→(X�Y )2 is induced by the maps (note that i = 1)

X0 × Y 1 id×d1 // X0 × Y 2

X1 × Y 0 d1×id // X2 × Y 0

and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 2

X0 × Y 1

id×d1 00

X0 × Y 1

id×d0
OO

d1×id // X1 × Y 1

X0 × Y 0

id×d0
OO

d1×id

//

id×d0 00

d1×id

,,
X1 × Y 0

d1×id

22X1 × Y 0

id×d0
OO

d2×id // X2 × Y 0

This diagram commutes (note that d1d0 = d0d0 and d2d1 = d1d1).
The map d2 : (X�Y )1→(X�Y )2 is induced by the maps (note that i = 2)

X0 × Y 1 id×d2 // X0 × Y 2

X1 × Y 0 id×d1 // X1 × Y 1
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and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 2

X0 × Y 1

id×d2 00

X0 × Y 1

id×d0
OO

d1×id // X1 × Y 1

X0 × Y 0

id×d0
OO

d1×id //

id×d1 00

X1 × Y 0

id×d1
55

X1 × Y 0

id×d0
OO

d2×id // X2 × Y 0

This diagram commutes (note that d2d0 = d0d1).
The map s0 : (X�Y )1→(X�Y )0 is induced by the maps (note that j = 0)

X0 × Y 1 id×s0 // X0 × Y 0

X1 × Y 0 s0×id // X0 × Y 0

and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 1
id×s0

--
X0 × Y 0

X0 × Y 0

id×d0
OO

d1×id // X1 × Y 0
s0×id

>>

This diagram commutes (note that s0d0 = id and s0d1 = id).
The map s0 : (X�Y )2→(X�Y )1 is induced by the maps (note that j = 0)

X0 × Y 2 id×s0 // X0 × Y 1

X1 × Y 1 s0×id // X0 × Y 1

X2 × Y 0 s0×id // X1 × Y 0

and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 2
id×s0

.. X0 × Y 1

X0 × Y 1

id×d0
OO

d1×id // X1 × Y 1

s0×id

22

X0 × Y 0

id×d0
OO

d1×id // X1 × Y 0

X1 × Y 0

id×d0
OO

d2×id

//

s0×id
22

X2 × Y 0
s0×id

66

This diagram commutes (note that s0d0 = id, s0d1 = id, and s0d2 = d1s0).
The map s1 : (X�Y )2→(X�Y )1 is induced by the maps (note that j = 1)

X0 × Y 2 id×s1 // X0 × Y 1

X1 × Y 1 id×s0 // X1 × Y 0

X2 × Y 0 s1×id // X1 × Y 0
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and hence, in terms of zigzag diagrams, is induced by the diagram

X0 × Y 2
id×s1

.. X0 × Y 1

X0 × Y 1

id×d0
OO

d1×id

//

id×s0

,,
X1 × Y 1

id×s0

22X0 × Y 0

id×d0
OO

d1×id // X1 × Y 0

X1 × Y 0

id×d0
OO

d2×id // X2 × Y 0
s1×id

66

This diagram commutes (note that s0d0 = id, s1d2 = id, and s1d0 = d0s0).
Consider diagram (38). Let’s use the descriptions above to verify several of the

cosimplicial identities.
Let’s verify that s0d0 = id in (38). This is because the diagram

X0 × Y 0 d0×id // X1 × Y 0 s0×id // X0 × Y 0

X0 × Y 0 id×id // X0 × Y 0

commutes (note that s0d0 = id).
Let’s verify that s0d1 = id in (38). This is because the diagram

X0 × Y 0 id×d1 // X0 × Y 1 id×s0 // X0 × Y 0

X0 × Y 0 id×id // X0 × Y 0

commutes (note that s0d1 = id).
Let’s verify that d1d0 = d0d0 in (38). This is because the diagram

X0 × Y 0 d0×id // X1 × Y 0 d1×id // X2 × Y 0

X0 × Y 0 d0×id // X1 × Y 0 d0×id // X2 × Y 0

commutes (note that d1d0 = d0d0).
Let’s verify that d2d0 = d0d1 in (38). This is because the diagram

X0 × Y 0 d0×id // X1 × Y 0 id×d1 // X1 × Y 1

X0 × Y 0 id×d1 // X0 × Y 1 d0×id // X1 × Y 1

commutes.
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Let’s verify that d2d1 = d1d1 in (38). This is because the diagram

X0 × Y 0 id×d1 // X0 × Y 1 id×d2 // X0 × Y 2

X0 × Y 0 id×d1 // X0 × Y 1 id×d1 // X0 × Y 2

commutes (note that d2d1 = d1d1).
Let’s verify that s0d2 = d1s0 in (38). This is because the two diagrams

X0 × Y 1 id×d2 // X0 × Y 2 id×s0 // X0 × Y 1

X0 × Y 1 id×s0 // X0 × Y 0 id×d1 // X0 × Y 1

X1 × Y 0 id×d1 // X1 × Y 1 s0×id // X0 × Y 1

X1 × Y 0 s0×id // X0 × Y 0 id×d1 // X0 × Y 1

commute (note that s0d2 = d1s0).
Let’s verify that s1d0 = d0s0 in (38). This is because the two diagrams

X0 × Y 1 d0×id // X1 × Y 1 id×s0 // X1 × Y 0

X0 × Y 1 id×s0 // X0 × Y 0 d0×id // X1 × Y 0

X1 × Y 0 d0×id // X2 × Y 0 s1×id // X1 × Y 0

X1 × Y 0 s0×id // X0 × Y 0 d0×id // X1 × Y 0

commute (note that s1d0 = d0s0).
Let’s verify that s0s0 = s0s1 in (38). This is because the three diagrams

X0 × Y 2 id×s0 // X0 × Y 1 id×s0 // X0 × Y 0

X0 × Y 2 id×s1 // X0 × Y 1 id×s0 // X0 × Y 0

X1 × Y 1 s0×id // X0 × Y 1 id×s0 // X0 × Y 0

X1 × Y 1 id×s0 // X1 × Y 0 s0×id // X0 × Y 0

X2 × Y 0 s0×id // X1 × Y 0 s0×id // X0 × Y 0

X2 × Y 0 s1×id // X1 × Y 0 s0×id // X0 × Y 0

commute (note that s0s0 = s0s1).

The following pairings are exactly what you would expect them to be. The basic
idea is that in cosimplicial degree 0, the composition map µ (below) should send
α : Y→FY ′ and α′ : Y ′→FY ′′ to the composite

Y
α−→ FY ′

idα′−−→ FFY ′′
mid−−→ FY ′′

where m : FF→F is the multiplication on F .

Proposition 3.28. Let Y, Y ′, Y ′′ be K̃-coalgebra spectra (resp. Z,Z ′, Z ′′ be K̃r-
coalgebras). There is a natural map of the form

HomModS

(
Y, F K̃•Y ′

)
�HomModS

(
Y ′, F K̃•Y ′′

) µ−→ HomModS

(
Y, F K̃•Y ′′

)
resp. HomS∗

(
Z,ΦK̃•rZ

′)�HomS∗

(
Z ′,ΦK̃•rZ

′′) µ−→ HomS∗

(
Z,ΦK̃•rZ

′′)
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in (sSet)∆. We sometimes refer to µ as the composition map.

Proof. This is proved exactly as in [1, 1.6]; µ is the map induced by the collection
of composites

HomModS

(
Y, F K̃pY ′

)
×HomModS

(
Y ′, F K̃qY ′′

) id×F K̃p

−−−−−→

HomModS

(
Y, F K̃pY ′

)
×HomModS

(
F K̃pY ′, F K̃pF K̃qY ′′

) comp−−−→

HomModS

(
Y, F K̃pF K̃qY ′′

) '−−→ HomModS

(
Y, F K̃p+qY ′′

)
where p, q ≥ 0; here, the indicated weak equivalence is the map induced by mul-
tiplication FF→F of the simplicial fibrant replacement monad. The other case is
similar. �

Proposition 3.29. Let A,B ∈ (sSet)∆. There is a natural isomorphism of the
form |A�B| ∼= |A|�|B| in (CGHaus)∆.

Proof. This follows from the fact that realization commutes with finite products
and all small colimits [32, 36]. �

Proposition 3.30. Let Y, Y ′, Y ′′ be K̃-coalgebra spectra (resp. Z,Z ′, Z ′′ be K̃r-
coalgebras). There is a natural map of the form

MapModS

(
Y, F K̃•Y ′

)
�MapModS

(
Y ′, F K̃•Y ′′

) µ−→ MapModS

(
Y, F K̃•Y ′′

)
resp. MapS∗

(
Z,ΦK̃•rZ

′)�MapS∗

(
Z ′,ΦK̃•rZ

′′) µ−→ MapS∗

(
Z,ΦK̃•rZ

′′)
in (CGHaus)∆. We sometimes refer to µ as the composition map.

Proof. This follows from Proposition 3.28 by applying realization, together with
Proposition 3.29. �

Definition 3.31. The non-Σ operad A in CGHaus is the coendomorphism operad
of ∆• with respect to the box product � and is defined objectwise by the end
construction ([1, 1.12])

A(n) := Map∆res

(
∆•, (∆•)�n

)
:= Map

(
∆•, (∆•)�n

)∆res

In other words, A(n) is the space of restricted cosimplicial maps from ∆• to (∆•)�n;
in particular, note that A(0) = ∗.

Consider the natural collection of maps ([1, 1.13])

A(n)×MapcoAlgK̃
(Y0, Y1)× · · · ×MapcoAlgK̃

(Yn−1, Yn)(39)

−→ MapcoAlgK̃
(Y0, Yn), n ≥ 0,

resp. A(n)×MapcoAlgK̃r
(Z0, Z1)× · · · ×MapcoAlgK̃r

(Zn−1, Zn)(40)

−→ MapcoAlgK̃r
(Z0, Zn), n ≥ 0,

induced by (iterations of) the composition map µ; in particular, in the case n = 0,
note that (39) (resp. (40)) denotes the unit map

∗ = A(0) −→ MapcoAlgK̃
(Y0, Y0)

resp. ∗ = A(0) −→ MapcoAlgK̃r
(Z0, Z0)

Remark 3.32. The notion of an A∞ composition, and the corresponding notion of
an A∞ category, is studied, for instance, in Batanin [5].
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Proposition 3.33. The collection of maps (39) (resp. (40)) determine a topo-

logical A∞ category with objects the K̃-coalgebra spectra (resp. K̃r-coalgebras) and
morphism spaces the mapping spaces MapcoAlgK̃

(Y, Y ′) (resp. MapcoAlgK̃r
(Z,Z ′)).

Proof. This is proved exactly as in [1, 1.14]. �

Definition 3.34. The homotopy category of K̃-coalgebras (resp. K̃r-coalgebras),

denoted Ho(coAlgK̃) (resp. Ho(coAlgK̃r
)), is the category with objects the K̃-

coalgebra spectra (resp. K̃r-coalgebras) and morphism sets [Y, Y ′]K̃ from Y to
Y ′ (resp. [Z,Z ′]K̃r

from Z to Z ′) the path components

[Y, Y ′]K̃ := π0 MapcoAlgK̃
(Y, Y ′)

resp. [Z,Z ′]K̃r
:= π0 MapcoAlgK̃r

(Z,Z ′)

of the indicated mapping spaces; compare with [1, 1.15].

Definition 3.35. A derived K̃-coalgebra map f of the form Y→Y ′ is a weak equiva-
lence if the underlying map f0 : Y→FY ′ is a weak equivalence. Similarly, a derived
K̃r-coalgebra map g of the form Z→Z ′ is a weak equivalence if the underlying map
g0 : Z→ΦZ ′ is a weak equivalence.

Proposition 3.36. Let Y, Y ′ be K̃-coalgebra spectra (resp. Z,Z ′ be K̃r-coalgebras).

A derived K̃-coalgebra map f of the form Y→Y ′ (resp. K̃r-coalgebra map g of the
form Z→Z ′) is a weak equivalence if and only if it represents an isomorphism in

the homotopy category of K̃-coalgebras (resp. K̃r-coalgebras).

Proof. This is proved exactly as in [1, 1.16]. �

4. The derived unit and counit maps

The purpose of this section is to describe the natural weak equivalences (1) and
(2) appearing in the statement of our main results, together with the derived unit
and counit maps associated with them; for a reminder on the Hom functors, see
Section 6.

Proposition 4.1. Let X be a pointed space and Y a K̃-coalgebra spectrum (resp.

Z a K̃r-coalgebra). The natural isomorphisms associated to the (Σ∞,Ω∞) (resp.
(Σr,Ωr)) adjunction induce well-defined isomorphisms

HomModS

(
Σ∞X,F K̃•Y

) ∼=−−→ HomS∗

(
X, Ω̃∞K̃•Y

)
resp. HomS∗

(
ΣrX,ΦK̃•rZ

) ∼=−−→ HomS∗

(
X, Ω̃rK̃•rZ

)
of cosimplicial objects in sSet, natural in X,Y (resp. X,Z).

Proof. The is because the collection (n ≥ 0) of composite maps

hom(Σ∞(X)⊗̇∆[n], F K̃•Y ) ∼= hom(Σ∞(X⊗̇∆[n]), F K̃•Y )

∼= hom(X⊗̇∆[n], Ω̃∞K̃•Y )

is a well-defined map of cosimplicial objects in Set, natural in X,Y . The other case
is similar. �

The following proposition establishes the natural weak equivalences (1) and (2).
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Proposition 4.2. Let X be a pointed space and Y a K̃-coalgebra spectrum (resp.

Z a K̃r-coalgebra). There are natural zigzags of weak equivalences

MapcoAlgK̃
(Σ∞X,Y ) ' MapS∗(X,holim∆ C(Y ))(41)

resp. MapcoAlgK̃r
(ΣrX,Z) ' MapS∗(X,holim∆ Cr(Z))(42)

in CGHaus; applying π0 gives the natural isomorphism [Σ∞X,Y ]K̃
∼= [X,holim∆ C(Y )]

(resp [ΣrX,Z]K̃r

∼= [X,holim∆ Cr(Z)]).

Proof. There are natural zigzags of weak equivalences of the form

HomS∗(X,holim∆ C(Y )) ' HomS∗

(
X,Totres C(Y )

)
∼= Totres HomS∗

(
X, Ω̃∞K̃•Y

)
∼= Totres HomModS

(
Σ∞X,F K̃•Y

)
∼= HomcoAlgK̃

(Σ∞X,Y )

in sSet; applying realization finishes the proof. The other case is similar. �

Definition 4.3. The derived unit map associated to the natural zigzag of weak
equivalences in (41) (resp. (42)) is the map of the form X → holim∆ C(Σ∞X)
(resp. X → holim∆ Cr(Σ

rX)) in pointed spaces with representing map

X → Totres C(Σ∞X)(43)

resp. X → Totres Cr(Σ
rX)(44)

corresponding to the identity map id: Σ∞X→Σ∞X (resp. id : ΣrX→ΣrX) in
coAlgK̃ (resp. coAlgK̃r

).

Remark 4.4. If X is a pointed space, then there is a zigzag of weak equivalences

X∧
Ω̃∞Σ∞

' holim∆ C(Σ∞X) ' Totres C(Σ∞X)

resp. X∧
Ω̃rΣr ' holim∆ Cr(Σ

rX) ' Totres Cr(Σ
rX)

in S∗, natural with respect to all such X; this is because C(Σ∞X) (resp. Cr(Σ
rX))

is objectwise fibrant. In particular, the derived unit map (43) is tautologically the

Ω̃∞Σ∞-completion map X→X∧
Ω̃∞Σ∞

studied in Carlsson [16] and subsequently in

Arone-Kankaanrinta [2]. Similarly, the derived unit map (44) is tautologically the

Ω̃rΣr-completion map X→X∧
Ω̃rΣr studied by Bousfield [11] and Hopkins (see [11]).

Definition 4.5. The derived counit map associated to the natural zigzag of weak
equivalences in (41) (resp. (42)) is the derived K̃-coalgebra (resp. K̃r-coalgebra)
map of the form Σ∞ holim∆ C(Y ) → Y (resp. Σr holim∆ Cr(Z) → Z) with under-
lying map

Σ∞ Totres C(Y ) −→ FY(45)

resp. Σr Totres Cr(Z) −→ ΦZ(46)

corresponding to the identity map

id: Totres C(Y )→Totres C(Y )(47)

resp. id : Totres Cr(Z)→Totres Cr(Z)(48)
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in S∗, via the adjunctions [9, 5.4] and (Σ∞,Ω∞) (resp. (Σr,Ωr)). In more detail,

the derived counit map is the derived K̃-coalgebra (resp. K̃r-coalgebra) map defined
by the composite

∆[−]
(∗)−−→HomS∗

(
Totres C(Y ),C(Y )

)
(49)

∼= HomModS

(
Σ∞ Totres C(Y ), F K̃•Y

)
resp. ∆[−]

(∗)−−→HomS∗

(
Totres Cr(Z),Cr(Z)

)
(50)

∼= HomS∗

(
Σr Totres Cr(Z),ΦK̃•rZ

)
in (sSet)∆res , where (∗) corresponds to the map (47) (resp. (48)).

Remark 4.6. Let X,X ′ be pointed spaces. If X ′ is fibrant and the natural coaug-
mentation X ′ ' X ′∧

Ω̃∞Σ∞
(resp. X ′ ' X ′∧

Ω̃rΣr ) is a weak equivalence, then there is
a natural zigzag

Σ∞ : MapS∗(X,X
′)
'−−→ MapcoAlgK̃

(Σ∞X,Σ∞X ′)

resp. Σr : MapS∗(X,X
′)
'−−→ MapcoAlgK̃r

(ΣrX,ΣrX ′)

of weak equivalences; applying π0 gives the map [f ] 7→ [Σ∞f ] (resp. [f ] 7→ [Σrf ]).
This follows from the natural zigzags

MapS∗(X,X
′) ' MapS∗(X,X

′∧
Ω̃∞Σ∞)

' MapS∗

(
X,holim∆ C(Σ∞X ′)

)
' MapcoAlgK

(Σ∞X,Σ∞X ′)

of weak equivalences; see [1, 2.15] and [40, 5.5]. The other case is similar.

5. Homotopical analysis

The purpose of this section is to prove Theorems 1.7 and 1.8; we will then use
these to prove Theorems 2.3 and 2.1 (Section 5.30). The following definitions appear
in [37, Section 1, 1.12] in the context of spaces.

Definition 5.1. Let W be a finite set and M a category.

• Denote by P(W ) the poset of all subsets of W , ordered by inclusion ⊂ of
sets. We will often regard P(W ) as the category associated to this partial
order in the usual way; the objects are the elements of P(W ), and there is
a morphism U→V if and only if U ⊂ V .
• Denote by P0(W ) ⊂ P(W ) the poset of all nonempty subsets of W ; it is the

full subcategory of P(W ) containing all objects except the initial object ∅.
• Denote by P1(W ) ⊂ P(W ) the poset of all subsets of W not equal to W ; it

is the full subcategory of P(W ) containing all objects except the terminal
object W .
• A W -cube X in M is a P(W )-shaped diagram X in M; in other words, a

functor X : P(W )→M.

Remark 5.2. If X is a W -cube in M where |W | = n, we will sometimes refer to X

simply as an n-cube in M. In particular, a 0-cube is an object in M and a 1-cube is
a morphism in M.
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Definition 5.3. Let W be a finite set and M a category. Let X be a W -cube in M
and consider any subsets U ⊂ V ⊂ W . Denote by ∂VUX the (V − U)-cube defined
objectwise by

T 7→ (∂VUX)T := XT∪U , T ⊂ V − U.

In other words, ∂VUX is the (V −U)-cube formed by all maps in X between XU and
XV . We say that ∂VUX is a face of X of dimension |V − U |.

Definition 5.4. Let W be a finite set. Let X be a W -cube in ModS (resp. S∗) and
k ∈ Z.

• X is a cofibration cube if the map colimP1(V ) X→ colimP(V ) X ∼= XV is a
cofibration for each V ⊂W ; in particular, each XV is cofibrant.

• X is k-cocartesian if the map hocolimP1(W ) X→hocolimP(W ) X ' XW is
k-connected.

• X is ∞-cocartesian if the map hocolimP1(W ) X→hocolimP(W ) X ' XW is a
weak equivalence.

• X is a fibration cube if the map XV ∼= limP(W−V ) ∂
W
V X→ limP0(W−V ) ∂

W
V X

is a fibration for each V ⊂W ; in particular, each XV is fibrant.
• X is k-cartesian if the map X∅ ' holimP(W ) X→ holimP0(W ) X is k-connected.
• X is ∞-cartesian if the map X∅ ' holimP(W ) X→holimP0(W ) X is a weak

equivalence.

Remark 5.5. In particular, a 1-cube X (e.g., a W -cube with W = {1}) is k-cartesian
if the map X∅ → X{1} is k-connected and a 0-cube Y is k-cartesian if the map
Y∅ → ∗ is k-connected. Similarly, a 1-cube X is k-cocartesian if the map X∅ → X{1}
is k-connected and a 0-cube Y is k-cocartesian if the map ∗ → Y∅ is k-connected.

The following definitions appear in [24, Section 2], [25, A.8.0.1, A.8.3.1].

Definition 5.6. Let T,W be finite sets such that |T | ≤ |W | and M a category. Let
X be a W -cube in M. A T -subcube of X is a T -cube resulting from the precomposite
of X along an injection ξ : P(T )→P(W ) satisfying that if U, V ⊂ T , then ξ(U∩V ) =
ξ(U) ∩ ξ(V ) and ξ(U ∪ V ) = ξ(U) ∪ ξ(V ). If |T | = d, we will often refer to a T -
subcube of X simply as a d-subcube of X.

Remark 5.7. In general, not all subcubes of X are faces of X. For instance, consider
a 2-cube X of the form (e.g, X is a W -cube with W = {1, 2})

X∅ //

��

X{1}

��
X{2} //X{1,2}

(51)

Then the composite X∅ → X{1,2} is a 1-subcube of X, but is not a 1-dimensional
face of X. There are exactly four 1-dimensional faces of X, the maps indicated in
(51), and exactly five 1-subcubes of X.

Definition 5.8. Let f : N→N be a function and W a finite set. A W -cube X is
f -cartesian (resp. f -cocartesian) if each d-subcube of X is f(d)-cartesian (resp.
f(d)-cocartesian); here, N denotes the non-negative integers.
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5.9. Higher Freudenthal suspension and higher stabilization. The purpose
of this section is to prove Theorems 1.7 and 1.8, that play a key role in the proofs of
our main results (Section 5.30). The strategy of attack developed in this section is
motivated by Dundas [24, 2.6]; see also Dundas-Goodwillie-McCarthy [25, A.8.3].

The cartesian-ness estimates in higher Freudenthal suspension (Theorem 1.8)
arise by homotopically analyzing what happens when we iteratively apply the
Freudenthal suspension map id → Ω̃Σ to go from a pointed space X (i.e., a 0-
cube), to a 1-cube, to a 2-cube, to a 3-cube, and so forth.

Remark 5.10 (Freudenthal suspension and stabilization). Let k ≥ 1. Suppose X is
a 0-cube in pointed spaces and X∅ is k-connected. We know by Freudenthal suspen-
sion, which can be understood as a consequence of the higher Blakers-Massey theo-
rem (see, for instance, [25, A.8.2]), that the map X∅→Ω̃ΣX∅ is (2k+ 1)-connected.
More generally, it follows by repeated application of Freudenthal suspension that
the map X∅→Ω̃rΣrX∅ (resp. X∅→Ω̃∞Σ∞X∅) is a (2k+ 1)-connected map between
k-connected spaces.

Suppose X is 1-connected and let X be the 1-cube X → Ω̃ΣX. Then we know
by Remark 5.10 that each 0-subcube of X is 2-cartesian and the 1-subcube of X

is 3-cartesian. In other words, the 1-cube X is (id + 2)-cartesian. Now let’s study
what happens when we apply the Freudenthal suspension map to X itself.

Suppose X is a 1-cube of pointed spaces (e.g., X is a W -cube with W = {1})
and X is (id + 2)-cartesian. Let’s verify that the 2-cube X→ Ω̃ΣX is also (id + 2)-
cartesian. It suffices to assume that X is a cofibration W -cube. Consider the 2-cube
of the form

X :

��

X∅ //

��

X{1}

��
Ω̃ΣX : Ω̃ΣX∅ //Ω̃ΣX{1}

We already know by Remark 5.10 that each 0-subcube is 2-cartesian and each
1-subcube is 3-cartesian. Hence it suffices to analyze the cartesian-ness of the 2-
subcube X→ Ω̃ΣX. It is difficult to analyze the cartesian-ness directly, so we take
an indirect attack as follows. Let C be the homotopy cofiber of X and C the 1-cube
∗ → C. Then the associated 2-cube X→ C is ∞-cocartesian and has the form

X :

��

X∅ //

��

X{1}

��
C : ∗ //C

Since the 0-subcubes of X are 2-cartesian, we know that the vertical maps are 2-
connected. Since the upper horizontal map is 3-connected, we know the bottom
horizontal map is 3-connected.

Since it is difficult to analyze the cartesian-ness of X→ Ω̃ΣX directly, we consider
the following commutative diagram of 2-cubes

X

(∗)
��

(#) //C

(#)′′

��
Ω̃ΣX

(#)′ //Ω̃ΣC

(52)
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We take an indirect attack and analyze first the cartesian-ness of (#), (#)′, (#)′′.
Consider the case of (#). We want to estimate the cartesian-ness of X → C. To
carry this out, the idea is to use Goodwillie’s higher Blakers-Massey theorem [37,
2.5], which we recall here for the convenience of the reader.

Proposition 5.11 (Higher Blakers-Massey theorem). Let W be a nonempty finite
set. Let X be a W -cube of pointed spaces. Suppose that

(i) for each nonempty subset V ⊂W , the V -cube ∂V∅ X (formed by all maps in
X between X∅ and XV ) is kV -cocartesian,

(ii) kU ≤ kV for each U ⊂ V .

Then X is k-cartesian, where k is the minimum of 1 − |W | +
∑
V ∈λ kV over all

partitions λ of W by nonempty sets.

By higher Blakers-Massey (Proposition 5.11), the 2-cube X → C is k-cartesian,
where k + 1 is the minimum of

k{1} + k{2} = 3 + 2

k{1,2} =∞

Hence k = 4 and we have calculated that X → C is 4-cartesian. Consider the case
of (#)′. The 2-cube ΣX→ ΣC is ∞-cocartesian and has the form

ΣX :

��

ΣX∅ //

��

ΣX{1}

��
ΣC : Σ∗ //ΣC

We know the vertical maps are 3-connected and the horizontal maps are 4-connected.
By higher Blakers-Massey (Proposition 5.11), the 2-cube ΣX→ ΣC is k-cartesian,
where k + 1 is the minimum of

k{1} + k{2} = 4 + 3

k{1,2} =∞

Hence k = 6 and we have calculated that ΣX → ΣC is 6-cartesian; therefore
Ω̃ΣX→ Ω̃ΣC is 5-cartesian. Consider the case of (#)′′. The 2-cube C→ Ω̃ΣC has
the form

C :

��

∗ //

��

C

��
Ω̃ΣC : Ω̃Σ∗ //Ω̃ΣC

We know from above that C is 3-connected, hence by Remark 5.10 the right-hand
vertical map is 7-connected. Taking homotopy fibers horizontally gives the map
Ω̃C → Ω̃Ω̃ΣC which is Ω̃ applied to the right-hand vertical map. Hence we have
calculated that C → Ω̃ΣC is 6-cartesian ([37, 1.18]). Putting it all together, it

follows from diagram (52) and [37, 1.8] that X → Ω̃ΣX is 4-cartesian. Hence we

have shown that the 2-cube X→ Ω̃ΣX satisfies: each 0-subcube is 2-cartesian, each
1-subcube is 3-cartesian, each 2-subcube is 4-cartesian. Hence we have verified that
the 2-cube X→ Ω̃ΣX is (id + 2)-cartesian.

Suppose X is a 2-cube of pointed spaces (e.g., X is a W -cube with W = {1, 2})
and X is (id + 2)-cartesian. Let’s verify that the 3-cube X→ Ω̃ΣX is also (id + 2)-
cartesian. It suffices to assume that X is a cofibration W -cube. Consider the 3-cube
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of the form X → Ω̃ΣX. It is difficult to analyze the cartesian-ness directly, so we
take an indirect attack as follows. Let C be the iterated homotopy cofiber of X and
C the 2-cube of form

∗ //

��

∗

��
∗ //C

(53)

Then the associated 3-cube X→ C is ∞-cocartesian and has the form

X∅ //

��

��

X{1}
��

��

X{2} //

��

X{1,2}

��

∗
��

// ∗
��

∗ // C

(54)

Let’s analyze the connectivity of C. It suffices to estimate the cocartesian-ness of
X. To carry this out, the idea is to use Goodwillie’s higher dual Blakers-Massey
theorem [37, 2.6], which we recall here for the convenience of the reader.

Proposition 5.12 (Higher dual Blakers-Massey theorem). Let W be a nonempty
finite set. Let X be a W -cube of pointed spaces. Suppose that

(i) for each nonempty subset V ⊂W , the V -cube ∂WW−V X (formed by all maps
in X between XW−V and XW ) is kV -cartesian,

(ii) kU ≤ kV for each U ⊂ V .

Then X is k-cocartesian, where k is the minimum of |W | − 1 +
∑
V ∈λ kV over all

partitions λ of W by nonempty sets.

By higher dual Blakers-Massey (Proposition 5.12), the 2-cube X is k-cocartesian,
where k − 1 is the minimum of

k{1} + k{2} = 3 + 3

k{1,2} = 4

Hence k = 5 and we have calculated that X is 5-cocartesian. Therefore C is 5-
connected, and hence the two maps of the form ∗ → C in (54) are 5-connected.
Furthermore, since the 0-subcubes of X are 2-cartesian, we know that the vertical
maps in (54) are 2-connected.

Remark 5.13. It is worth pointing out that the 2-cube X, which was assumed to
be (id + 2)-cartesian, satisfies: each 0-subcube is 1-cocartesian, each 1-subcube is
3-cocartesian, and each 2-subcube is 5-cocartesian. Hence the 2-cube X is (2id+1)-
cocartesian. Conversely, by higher Blakers-Massey (Proposition 5.11), if a 2-cube
X is (2id + 1)-cocartesian, then X is also (id + 2)-cartesian. A more general version
of this uniformity correspondence is described below (Proposition 5.14).
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Since it is difficult to analyze the cartesian-ness of X→ Ω̃ΣX directly, we consider
the following commutative diagram of 3-cubes

X

(∗)
��

(#) //C

(#)′′

��
Ω̃ΣX

(#)′ //Ω̃ΣC

(55)

We take an indirect attack and analyze first the cartesian-ness of (#), (#)′, (#)′′.
Consider the case of (#). By higher Blakers-Massey (Proposition 5.11), the 3-cube
X→ C is k-cartesian, where k + 2 is the minimum of

k{1} + k{2} + k{3} = 3 + 3 + 2

k{1} + k{2,3} = 3 + 4

k{2} + k{1,3} = 3 + 4

k{3} + k{1,2} = 2 + 5

k{1,2,3} =∞

Hence k = 5 and we have calculated that X → C is 5-cartesian. Consider the
case of (#)′. The 3-cube ΣX → ΣC is ∞-cocartesian. Noting that Σ shifts the
cocartesian-ness estimates by +1: By higher Blakers-Massey (Proposition 5.11),
the 3-cube ΣX→ ΣC is k-cartesian, where k + 2 is the minimum of

k{1} + k{2} + k{3} = 4 + 4 + 3

k{1} + k{2,3} = 4 + 5

k{2} + k{1,3} = 4 + 5

k{3} + k{1,2} = 3 + 6

k{1,2,3} =∞

Hence k = 7 and we have calculated that ΣX → ΣC is 7-cartesian; therefore
Ω̃ΣX→ Ω̃ΣC is 6-cartesian. Consider the case of (#)′′. The 3-cube C→ Ω̃ΣC has
the form

∗ //

��

��

∗
��

��
∗ //

��

C

��
Ω̃Σ∗

��

// Ω̃Σ∗
��

Ω̃Σ∗ // Ω̃ΣC

We know from above that C is 5-connected, hence by Remark 5.10 the right-hand
vertical map of the form C → Ω̃ΣC is 11-connected. Taking homotopy fibers
horizontally and then “into the page” gives the map (Ω̃)2C → (Ω̃)2Ω̃ΣC which is

(Ω̃)2 applied to the right-hand vertical map C → Ω̃ΣC. Hence we have calculated

that C → Ω̃ΣC is 9-cartesian ([37, 1.18]). Putting it all together, it follows from

diagram (55) and [37, 1.8] that X→ Ω̃ΣX is 5-cartesian. What about the subcubes

of X→ Ω̃ΣX? We have nearly all the cartesian-ness estimates we need, except for
the 2-subcube Ω̃ΣX. We know from Remark 5.13 that X is (2id+1)-cocartesian, and
hence ΣX is (2id + 2)-cocartesian. By higher Blakers-Massey (Proposition 5.11),
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the 2-cube ΣX is k-cartesian, where k + 1 is the minimum of

k{1} + k{2} = 4 + 4

k{1,2} = 6

Hence k = 5 and we have calculated that ΣX is 5-cartesian; therefore Ω̃ΣX is
4-cartesian. Hence we have shown that the 3-cube X → Ω̃ΣX satisfies: each 0-
subcube is 2-cartesian, each 1-subcube is 3-cartesian, each 2-subcube is 4-cartesian,
each 3-subcube is 5-cartesian. Hence we have verified that the 3-cube X→ Ω̃ΣX is
(id + 2)-cartesian.

A more general version of these cartesian-ness estimates are worked out below in
Theorem 5.16. First it will be useful to observe the following uniformity correspon-
dence; compare with [25, A.8.3]. A special case of this correspondence was worked
out in Remark 5.13.

Proposition 5.14 (Uniformity correspondence). Let k ≥ 1 and W a finite set. A
W -cube of pointed spaces is (k(id+1)+1)-cartesian if and only if it is ((k+1)(id+
1)− 1)-cocartesian.

Remark 5.15. Note that a W -cube X is (k(id + 1) + 1)-cartesian means that X

satisfies: each 0-subcube is (k + 1)-cartesian, each 1-subcube is (2k + 1)-cartesian,
each 2-subcube is (3k + 1)-cartesian, each 3-subcube is (4k + 1)-cartesian, and so
forth.

Similarly, note that a W -cube X is ((k + 1)(id + 1)− 1)-cocartesian means that
X satisfies: each 0-subcube is k-cocartesian, each 1-subcube is (2k+ 1)-cocartesian,
each 2-subcube is (3k+ 2)-cocartesian, each 3-subcube is (4k+ 3)-cocartesian, and
so forth.

Proof of Proposition 5.14. This is tautologically true for |W | = 0, 1. Let n ≥ 2.
Assume the statement is true for all |W | < n; let’s verify it is true for |W | = n.
Let W = {1, · · · , n} and suppose X is a W -cube of pointed spaces. Assume that X

is (k(id + 1) + 1)-cartesian; let’s verify X is ((k + 1)(id + 1) − 1)-cocartesian. By
the induction hypothesis, it suffices to verify that X is (k(n + 1) + n)-cocartesian;
this follows easily from higher dual Blakers-Massey (Proposition 5.12). Conversely,
assume that X is ((k + 1)(id + 1)− 1)-cocartesian; let’s verify X is (k(id + 1) + 1)-
cartesian. By the induction hypothesis, it suffices to verify that X is (k(n+ 1) + 1)-
cartesian; this follows easily from higher Blakers-Massey (Proposition 5.11). �

Theorem 5.16 (Higher Freudenthal suspension: Theorem 1.8 restated). Let k ≥ 1,
W a finite set, and X a W -cube of pointed spaces. If X is (k(id + 1) + 1)-cartesian,

then so is X→Ω̃rΣrX.

Proof. Consider the case |W | = 0. This is recalled in Remark 5.10. Consider the
case |W | ≥ 1. Suppose X is a W -cube and X is (k(id+1)+1)-cartesian. Let’s verify

that X→Ω̃rΣrX is a (k(id + 1) + 1)-cartesian (|W |+ 1)-cube. It suffices to assume
that X is a cofibration W -cube; see [37, 1.13]. Let C be the iterated homotopy
cofiber of X and C the W -cube defined objectwise by CV = ∗ for V 6= W and
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CW = C. Then X→C is ∞-cocartesian. Consider the commutative diagram

X //

(∗)
��

C

��
Ω̃rΣrX // Ω̃rΣrC

(56)

of |W |-cubes.
Let’s verify that (∗) is (k(|W |+ 2) + 1)-cartesian as a (|W |+ 1)-cube of pointed

spaces. We know that X is ((k + 1)(id + 1) − 1)-cocartesian by the uniformity
correspondence in Proposition 5.14, and in particular, C is ((k + 1)(|W |+ 1)− 1)-
connected. For d < |W |, any (d+1) dimensional subcube of X is ((k+1)(d+2)−1) =
((k+1)(d+1)+k)-cocartesian and any d dimensional subcube of X is ((k+1)(d+1)−
1)-cocartesian. So if X|T is some d-subcube of X with T not containing the terminal
set W , then X|T→C|T = ∗ is (k + 1)(d+ 1)-cocartesian by [37, 1.7]. Furthermore,
even if T contains the terminal set W , we know that X|T→C|T is still (k+1)(d+1)-
cocartesian by [37, 1.7]; this is because (k + 1)(d+ 1) < (k + 1)(|W |+ 1)− 1 since
k ≥ 1 and d < |W |. Hence X|T→C|T is (k + 1)(d + 1)-cocartesian for any d-
subcube X|T of X. It follows easily from higher Blakers-Massey (Proposition 5.11)
that X→C is (k(|W | + 2) + 1)-cartesian. Similarly, it follows that ΣrX→ΣrC is

(k(|W |+ 2) + 1 + 2r)-cartesian and hence Ω̃rΣrX→Ω̃rΣrC is (k(|W |+ 2) + 1 + r)-

cartesian. Also, C→Ω̃rΣrC is at least (k(|W |+2)+1)-cartesian since C→Ω̃rΣrC is
(2[(k+1)(|W |+1)−1]+1)-connected by Remark 5.10; this is because the cartesian-

ness of C→Ω̃rΣrC is the same as the connectivity of the map Ω̃|W |C→Ω̃|W |Ω̃rΣrC
(by considering iterated homotopy fibers, together with [37, 1.18]).

Putting it all together, it follows from diagram (56) and [37, 1.8] that the map
(∗) is (k(|W |+2)+1)-cartesian; this is because k(|W |+2)+1 < k(|W |+2)+1+ r.
Doing this also on all subcubes gives the result. �

The proof of the following is similar.

Theorem 5.17 (Higher stabilization: Theorem 1.7 restated). Let k ≥ 1, W a
finite set, and X a W -cube of pointed spaces. If X is (k(id + 1) + 1)-cartesian, then

so is X→Ω̃∞Σ∞X.

Proof. Consider the case |W | = 0. This is recalled in Remark 5.10. Consider the
case |W | ≥ 1. Suppose X is a W -cube and X is (k(id + 1) + 1)-cartesian. Let’s

verify that X→Ω̃∞Σ∞X is a (k(id + 1) + 1)-cartesian (|W | + 1)-cube. It suffices
to assume that X is a cofibration W -cube; see [37, 1.13]. Let C be the iterated
homotopy cofiber of X and C the W -cube defined objectwise by CV = ∗ for V 6= W
and CW = C. Then X→C is ∞-cocartesian. Consider the commutative diagram

X //

(∗)
��

C

��
Ω̃∞Σ∞X // Ω̃∞Σ∞C

(57)

of |W |-cubes.
Let’s verify that (∗) is (k(|W |+ 2) + 1)-cartesian as a (|W |+ 1)-cube of pointed

spaces. We know that X is ((k + 1)(id + 1) − 1)-cocartesian by the uniformity
correspondence in Proposition 5.14, and in particular, C is ((k + 1)(|W |+ 1)− 1)-
connected. For d < |W |, any (d+1) dimensional subcube of X is ((k+1)(d+2)−1) =
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((k+1)(d+1)+k)-cocartesian and any d dimensional subcube of X is ((k+1)(d+1)−
1)-cocartesian. So if X|T is some d-subcube of X with T not containing the terminal
set W , then X|T→C|T = ∗ is (k + 1)(d+ 1)-cocartesian by [37, 1.7]. Furthermore,
even if T contains the terminal set W , we know that X|T→C|T is still (k+1)(d+1)-
cocartesian by [37, 1.7]; this is because (k + 1)(d+ 1) < (k + 1)(|W |+ 1)− 1 since
k ≥ 1 and d < |W |. Hence X|T→C|T is (k+1)(d+1)-cocartesian for any d-subcube
X|T of X. It follows easily from higher Blakers-Massey (Proposition 5.11) that X→C

is (k(|W |+ 2) + 1)-cartesian.
We know that Σ∞X→Σ∞C is ∞-cocartesian and hence ∞-cartesian; therefore

Ω̃∞Σ∞X→Ω̃∞Σ∞C is ∞-cartesian. Also, C→Ω̃∞Σ∞C is at least (k(|W |+ 2) + 1)-

cartesian since C→Ω̃∞Σ∞C is (2[(k+1)(|W |+1)−1]+1)-connected by Remark 5.10;

this is because the cartesian-ness of C→Ω̃∞Σ∞C is the same as the connectivity of
the map Ω̃|W |C→Ω̃|W |Ω̃∞Σ∞C (by considering iterated homotopy fibers, together
with [37, 1.18]).

Putting it all together, it follows from diagram (57) and [37, 1.8] that the map
(∗) is (k(|W |+2)+1)-cartesian. Doing this also on all subcubes gives the result. �

5.18. Completion with respect to Ω̃∞Σ∞ and Ω̃rΣr. In this section we explain
how Theorems 1.7 and 1.8 provide new proofs (with strong estimates) of the stabi-
lization and iterated loop-suspension completion results of Carlsson [16] (and the
subsequent work of Arone-Kankaanrinta [2]), and Bousfield [11] and Hopkins (see
[11]), respectively, for 1-connected spaces. Along the way, we recall the notion of
coface n-cubes and certain cofinality statements needed in the proofs of Theorems
2.3 and 2.1 (Section 5.30).

Definition 5.19. A cosimplicial pointed space Z is coaugmented if it comes with a
map d0 : Z−1→Z0 of pointed spaces such that d0d0 = d1d0 : Z−1→Z1; in this case,
it follows easily from the cosimplicial identities ([36, I.1]) that d0 induces a map
Z−1→Z of ∆-shaped diagrams in S∗, where Z−1 denotes the constant cosimplicial
object with value Z−1; i.e., via the inclusion Z−1 ∈ S∗ ⊂ S∆

∗ of constant diagrams.

Definition 5.20. Let n ≥ −1 and suppose Z is a cosimplicial pointed space coaug-
mented by d0 : Z−1→Z0. The coface (n + 1)-cube, denoted Xn+1, associated to
the coaugmented cosimplicial pointed space Z−1→Z, is the canonical (n+ 1)-cube
built from the coface relations [36, I.1] djdi = didj−1, if i < j, associated to the
coface maps of the n-truncation

Z−1 d0 //Z0

d1
//

d0 //Z1 · · · Zn

of Z−1→Z; in particular, X0 is the pointed space (or 0-cube) Z−1.

Remark 5.21. For instance, the coface 1-cube X1 has the left-hand form

Z−1 d0 //Z0 Z−1 d0 //

d0

��

Z0

d0

��
Z0 d1 //Z1

Z−1 d0 //

d0

��

d0

��
Z0

d0

��

d1��
Z0 d1 //

d1��

Z1

d2

��
Z0

d0
��

d0 // Z1
d0

��
Z1 d1 // Z2
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the coface 2-cube X2 has the indicated middle form, and the coface 3-cube X3 has
the indicated right-hand form.

Definition 5.22. Let n ≥ 0. Denote by ∆≤n ⊂ ∆ the full subcategory of objects
[m] such that m ≤ n.

The functor in the following definition, appearing in [61, 6.3], plays a key role in
the homotopical analysis of this paper; see also [56, 9.4.1].

Definition 5.23. Define the totally ordered sets [n] := {0, 1, . . . , n} for each n ≥ 0,
and given their natural ordering. The functor P0([n])→ ∆≤n is defined objectwise
by U 7→ [|U | − 1], and which sends U ⊂ V in P0([n]) to the composite

[|U | − 1] ∼= U ⊂ V ∼= [|V | − 1]

where the indicated isomorphisms are the unique isomorphisms of totally ordered
sets.

Remark 5.24. For instance, the punctured 2-cube P0([1]) −→ ∆≤1 has the left-hand
form

{1}

d0

��
{0} d1 //{0, 1}

{1}
d0

��

d1��
{0} d

1
//

d1��

{0, 1}

d2

��
{2}

d0
��

d0 // {1, 2}
d0

��
{0, 2} d1 // {0, 1, 2}

and the punctured 3-cube P0([2]) −→ ∆≤2 has the indicated right-hand form. It
may be helpful to note that di is the inclusion that “misses the i-th element in its
codomain”, where position count starts from 0; e.g., the 0-th element in {1, 2} is 1
and the 1-st element in {1, 2} is 2.

The following proposition is proved in [14, XI.9.2].

Proposition 5.25. Let α : D′→D be a functor between small categories. If Z is
a D-shaped diagram in pointed spaces and α is left cofinal [14, XI.9.1], then the

induced map holimD′ Z
'←−− holimD Z is a weak equivalence.

The following proposition, proved in [61, 6.7], explains the homotopical signifi-
cance of the punctured n-cube appearing in Definition 5.23; see also [17, 6.1–6.4]
and [23, 18.7]. It was exploited early on in [42]; see also [25] and [56].

Proposition 5.26. Let n ≥ 0. The functor P0([n]) → ∆≤n is left cofinal; hence,
if Z is a cosimplicial pointed space, then the induced map

holimP0([n]) Z
'←−− holim∆≤n Z

is a weak equivalence.

Remark 5.27. We follow the conventions and definitions in [9, 5.11] for our model
of homotopy limit; e.g., if the diagram is objectwise fibrant, it is the Bousfield-Kan
homotopy limit formula defined as the totalization of the cosimplicial replacement.
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Remark 5.28 (Higher stabilization implies X ' X∧
Ω̃∞Σ∞

). Assume that X is a 1-

connected pointed space. A result in Carlsson [16], and in the subsequent work of
Arone-Kankaanrinta [2], is that the completion map X ' X∧

Ω̃∞Σ∞
is a weak equiv-

alence. It is worth pointing out that higher stabilization (Theorem 1.7) provides a
new proof, with strong estimates, of this result as follows.

To verify that the completion map X ' X∧
Ω̃∞Σ∞

is a weak equivalence, it suffices
to verify that the map

X → holim∆≤n C(Σ∞X)(58)

into the n-th stage of the homotopy limit tower has connectivity strictly increasing
with n. By Proposition 5.26, the map (58) can be built, up to weak equivalence,
from the coface (n + 1)-cube Xn+1 (Defintion 5.20) associated to the cosimplicial
resolution (17). In more detail: The map (58) can be described as the map X →
holimP0([n]) Xn+1; the connectivity of this map is the same as the cartesian-ness
of the coface (n+1)-cube Xn+1, but this is the same as the cartesian-ness of the

(n+1)-cube Xn → Ω̃∞Σ∞Xn, for each n ≥ 0.
Since X is a 1-connected pointed space, the map X → ∗ is 2-connected, and

hence the 0-cube X0 is (id + 2)-cartesian. Hence by higher stabilization (Theorem
1.7) we know that X1 is (id + 2)-cartesian, and therefore another application of
Theorem 1.7 gives that X2 is (id + 2)-cartesian, and so forth. In a similar way, the
coface (n + 1) cube Xn+1 is (id + 2)-cartesian for each n ≥ 0; hence Theorem 1.7
has provided us with strong estimates for the uniform cartesian-ness of cubes built
by iterations of the stabilization map. In particular, we know that the (n+ 1)-cube
Xn+1 is (n + 1 + 2)-cartesian for each n ≥ 0, which means that the map (58) is
(n + 3)-connected for each n ≥ 0. Therefore, these connectivity estimates imply
that the map

X → holimn holim∆≤n C(Σ∞X) ' holim∆ C(Σ∞X) ' X∧
Ω̃∞Σ∞

is a weak equivalence; since this is the desired completion map, we have recovered
the result in [2, 16] that X ' X∧

Ω̃∞Σ∞
.

Remark 5.29 (Higher Freudenthal suspension implies X ' X∧
Ω̃rΣr ). Assume that

X is a 1-connected pointed space. A result of Bousfield [11] and Hopkins (see [11]),
is that the completion map X ' X∧

Ω̃rΣr is a weak equivalence. Similar to above, it

is worth pointing out that higher Freudenthal suspension (Theorem 1.8) provides
a new proof, with strong estimates, of this result as follows.

To verify that the completion map X ' X∧
Ω̃rΣr is a weak equivalence, it suffices

to verify that the map

X → holim∆≤n Cr(Σ
rX)(59)

into the n-th stage of the homotopy limit tower has connectivity strictly increasing
with n. By Proposition 5.26, the map (59) can be built, up to weak equivalence,
from the coface (n + 1)-cube Xn+1 (Defintion 5.20) associated to the cosimplicial
resolution (21). Arguing as in Remark 5.28, the coface (n+1) cube Xn+1 is (id+2)-
cartesian for each n ≥ 0; hence Theorem 1.8 has provided us with strong estimates
for the uniform cartesian-ness of cubes built by iterations of the higher Freudenthal
suspension map. In particular, we know that the (n+ 1)-cube Xn+1 is (n+ 1 + 2)-
cartesian for each n ≥ 0, which means that the map (59) is (n + 3)-connected for
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each n ≥ 0. Therefore, these connectivity estimates imply that the map

X → holimn holim∆≤n Cr(Σ
rX) ' holim∆ Cr(Σ

rX) ' X∧
Ω̃rΣr

is a weak equivalence; since this is the desired completion map, we have recovered
the result in [11] that X ' X∧

Ω̃rΣr .

5.30. Proofs of the main results. Here we prove Theorems 2.1 and 2.3.

Definition 5.31. Let Z be a cosimplicial pointed space and n ≥ 0. Assume that
Z is objectwise fibrant. Denote by Z : P0([n])→S∗ the corresponding composite
diagram

P0([n])→ ∆≤n ⊂ ∆
Z−→ S∗

The associated ∞-cartesian (n + 1)-cube built from Z, denoted Z̃ : P([n])→S∗, is
defined objectwise by

Z̃V :=

{
holimT 6=∅ ZT , for V = ∅,

ZV , for V 6= ∅.

In other words, the Z̃ construction is simply “filling in” the punctured (n+1)-cube

Z : P0([n])→S∗ with value Z̃∅ = holimP0([n]) Z ' holim∆≤n Z at the initial vertex
to turn it into an (n+ 1)-cube that is ∞-cartesian.

Remark 5.32. For instance, in the case n = 1 the Z̃ construction produces the
∞-cartesian 2-cube of the left-hand form

holim∆≤1 Z //

��

Z0

d0

��
Z0 d1 //Z1

holim∆≤2 Z //

��

��
Z0

d0

��

d1��
Z0 d1 //

d1��

Z1

d2

��
Z0

d0
��

d0 // Z1
d0

��
Z1 d1 // Z2

and in the case n = 2 the Z̃ construction produces the ∞-cartesian 3-cube of the
indicated right-hand form.

Definition 5.33. Let Z be a cosimplicial pointed space and n ≥ 0. The codegen-
eracy n-cube, denoted Yn, associated to Z, is the canonical n-cube built from the
codegeneracy relations [36, I.1] sjsi = sisj+1, if i ≤ j, associated to the codegener-
acy maps of the n-truncation

Z0 Z1s0oo Z2 · · · Zn
s0oo
s1
oo

of Z; in particular, Y0 is the pointed space (or 0-cube) Z0.
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Remark 5.34. For instance, the codegeneracy 1-cube Y1 has the left-hand form

Z1 s0 //Z0 Z2 s1 //

s0

��

Z1

s0

��
Z1 s0 //Z0

Z3 s1 //

s0

��

s2��
Z2

s1

��

s0��
Z2 s1 //

s0��

Z1

s0

��
Z2

s1
��

s0 // Z1
s0

��
Z1 s0 // Z0

the codegeneracy 2-cube Y2 has the indicated middle form, and the codegeneracy
3-cube Y3 has the indicated right-hand form.

Remark 5.35. It is important to note that the total homotopy fiber of an n-cube
of pointed spaces is weakly equivalent to its iterated homotopy fiber [37, Section
1], and in this paper we use the terms interchangeably; we use the convention that
the iterated homotopy fiber of a 0-cube Y (or object Y∅) is the homotopy fiber of
the unique map Y∅→∗ and hence is weakly equivalent to Y∅; see also [56, 5.5.4].

The following is proved in [56, 3.4.8].

Proposition 5.36. Consider any 2-cube X of the form

A
d //B

s

��
A A

in S∗; in other words, suppose s is a retraction of d. There are natural weak
equivalences hofib(d) ' Ω̃ hofib(s).

Remark 5.37. Let’s develop some of the low dimensional versions of Theorem 2.3 for
the special case r = 1; for intuition purposes, we will follow (as closely as possible)
the analogous development for integral chains worked out in [9, after 3.25].

Let Z be a 2-connected K̃1-coalgebra. We want to estimate the connectivity of
the map

Σ holim∆≤n C1(Z)→ holim∆≤n ΣC1(Z)(60)

for each n ≥ 0. In the case n = 0 this is the identity map ΣΩ̃Z → ΣΩ̃Z and hence

a weak equivalence. Consider the case n = 1. Let’s build C̃1(Z), the ∞-cartesian
2-cube of the left-hand form

holim∆≤1 C1(Z) //

��

C1(Z)0

d0

��
C1(Z)0 d1 //C1(Z)1

Σ holim∆≤1 C1(Z) //

��

ΣC1(Z)0

Σd0

��
ΣC1(Z)0 Σd1 //ΣC1(Z)1

Applying Σ gives the 2-cube ΣC̃1(Z) of the indicated right-hand form. The con-
nectivity of the map

Σ holim∆≤1 C1(Z)→ holim∆≤1 ΣC1(Z)(61)

is the same as the cartesian-ness of the 2-cube ΣC̃1(Z). The idea is to (i) estimate

the cocartesian-ness of the 2-cube C̃1(Z) (and its subcubes), (ii) applying Σ will
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increase cocartesian-ness estimates by 1, (iii) ΣC̃1(Z) is a 2-cube in S∗ and we will
be able to use higher Blakers-Massey (Proposition 5.11) to obtain a cartesian-ness

estimate of ΣC̃1(Z). To carry this out, the idea is to use higher dual Blakers-Massey

(Proposition 5.12) to estimate the cocartesian-ness of the 2-cube C̃1(Z).

Taking W = {0, 1} since C̃1(Z) is a 2-cube, the input to Proposition 5.12 requires
that we estimate the cartesian-ness of each of the faces

∂WW−V C̃1(Z), ∅ 6= V ⊂W.

Hence we need to estimate the cartesian-ness of the two 1-faces indicated in the
left-hand diagram

C1(Z)0

d0

��
C1(Z)0 d1 //C1(Z)1

Ω̃Z

d0

��
Ω̃Z

d1 //Ω̃ΣΩ̃Z

which have the form in the indicated right-hand diagram. We know that d0 = m id
is the Freudenthal suspension map on Ω̃Z, and since Ω̃Z is 1-connected we know
that d0 is a 3-connected map and hence a 3-cartesian 1-cube. What about the
map d1 = idm involving the K̃1-coaction map on Z? The key observation is that
the cosimplicial identities force a certain “uniformity of faces” behavior as follows.
Consider the commutative diagrams (or 2-cubes) of the form

Ω̃Z
d0 //Ω̃ΣΩ̃Z

s0

��
Ω̃Z Ω̃Z

Ω̃Z
d1 //Ω̃ΣΩ̃Z

s0

��
Ω̃Z Ω̃Z

(62)

coming from the cosimplicial identities [36, I.1]. Then by Proposition 5.36 we know

hofib(d0) ' Ω̃ hofib(s0), hofib(d1) ' Ω̃ hofib(s0),

and hence hofib(d0) ' hofib(d1). Therefore, by this uniformity we know that d1 is
also a 3-connected map and hence a 3-cartesian 1-cube. Since we know that the

2-face of C̃1(Z) is ∞-cartesian (by construction), it follows from Proposition 5.12

that C̃1(Z) is k-cocartesian, where k − 1 is the minimum of

k{0,1} =∞, k{0} + k{1} = 3 + 3 = 6.

Hence k = 7 and we have calculated that C̃1(Z) is a 7-cocartesian 2-cube in S∗,

hence ΣC̃1(Z) is an 8-cocartesian 2-cube in S∗. Furthermore, since C̃1(Z) is ∞-
cartesian and d0, d1 are 3-connected, we know by [37, 1.6] that the other two 1-
faces are also 3-connected. Putting it all together, we have shown that the 2-cube

C̃1(Z) in S∗ is (2id + 1)-cocartesian and 7-cocartesian. Hence ΣC̃1(Z) is (2id + 2)-

cocartesian and 8-cocartesian. It follows from Proposition 5.11 that ΣC̃1(Z) is
k-cartesian, where k + 1 is the minimum of

k{0,1} = 8, k{0} + k{1} = 4 + 4 = 8.
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Hence k = 7 and we have calculated that ΣC̃1(Z) is a 7-cartesian 2-cube in S∗. The

upshot is that ΣC̃1(Z) is 7-cartesian and hence we have calculated that the map
(61) is 7-connected.

Consider the case n = 2. Let’s build the ∞-cartesian 3-cube C̃1(Z). Applying Σ

gives the 3-cube ΣC̃1(Z) and the connectivity of the map

Σ holim∆≤2 C1(Z)→ holim∆≤2 ΣC1(Z)(63)

is the same as the cartesian-ness of ΣC̃1(Z). The idea is to (i) estimate the

cocartesian-ness of the 3-cube C̃1(Z) (and its subcubes), (ii) applying Σ will in-

crease cocartesian-ness estimates by 1, (iii) ΣC̃1(Z) is a 3-cube in S∗ and we will
be able to use higher Blakers-Massey (Proposition 5.11) to obtain a cartesian-ness

estimate of ΣC̃1(Z). To carry this out, the idea is to use higher dual Blakers-Massey

(Proposition 5.12) to estimate the cocartesian-ness of the 3-cube C̃1(Z).

Taking W = {0, 1, 2} since C̃1(Z) is a 3-cube, the input to Proposition 5.12

requires that we estimate the cartesian-ness of each of the faces ∂WW−V C̃1(Z), ∅ 6=
V ⊂ W . Hence we need to estimate the cartesian-ness of three 2-faces and three
1-faces (or maps). The key observation is that exactly one of these 2-faces does not

involve the K̃1-coaction map on Z; furthermore, this particular 2-face is precisely the
coface 2-cube X2 in Remark 5.29 when taking X = Ω̃Z. Since Ω̃Z is 1-connected, we
know by higher Freudenthal suspension (Theorem 1.8) and Remark 5.29 that X2 is
an (id + 2)-cartesian 2-cube; in particular, X2 is 4-cartesian. What about the other

two 2-faces involving the K̃1-coaction map on Z? The key observation is that the
cosimplicial identities force a certain “uniformity of faces” behavior as follows. For
ease of notational purposes, let A = C1(Z) and consider the commutative diagrams
of the form

A0

d0

��

d0 //

(F1)

A1

d1

��
A1

s0

��

d0 //A2

s1

��

s0 //A1

s0

��
A0 d0 //A1 s0 //A0

A0

d1

��

d1 //

(F2)

A1

d2

��

s0 //A0

d1

��
A1 d1 //A2

s1

��

s0 //A1

s0

��
A1 s0 //A0

A0

d1

��

d0 //

(F3)

A1

d2

��

s0 //A0

d1

��
A1 d0 //A2

s1

��

s0 //A1

s0

��
A1 s0 //A0

(64)

coming from the cosimplicial identities [36, I.1]. The upper left-hand square (F1)
is the coface 2-cube X2 which is (id + 2)-cartesian by above. The upper left-hand
squares (F2) and (F3) are the remaining two 2-faces that we need cartesian-ness
estimates for. The key observation is that the lower right-hand squares are each
a copy of the codegeneracy 2-cube Y2 associated to A, and that furthermore, the
indicated vertical and horizontal composites are the identity maps by the cosim-
plicial identities [36, I.1]; then by repeated application of Proposition 5.36 to these
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composites in (64), we know that

(iterated hofib)(F1) ' Ω̃2(iterated hofib)Y2

(iterated hofib)(F2) ' Ω̃2(iterated hofib)Y2

(iterated hofib)(F3) ' Ω̃2(iterated hofib)Y2

and hence (iterated hofib)(F1) ' (iterated hofib)(F2) ' (iterated hofib)(F3). There-
fore, by this uniformity we know that (F2) and (F3) are also 4-cartesian 2-cubes.
Similarly, we know that the three 1-faces (or maps) with codomain A2 are 3-

cartesian. It follows from [37, 1.6] that for C̃1(Z) the 2-subcubes are 4-cartesian,
the 1-subcubes are 3-cartesian, and the 0-subcubes are 2-cartesian. Putting it all

together, we have shown that the 3-cube C̃1(Z) in S∗ is (id + 2)-cartesian. Since

we know that the 3-face of C̃1(Z) is ∞-cartesian (by construction), it follows from

Proposition 5.12 that C̃1(Z) is k-cocartesian, where k − 2 is the minimum of

k{0,1,2} =∞, k{0} + k{1,2} = 3 + 4 = 7, k{0} + k{1} + k{2} = 3 + 3 + 3 = 9.

Note that by the “uniformity of faces” behavior, we get nothing new from the other
partitions of W ; this is why we have not written them out here. Hence k = 9 and

we have calculated that C̃1(Z) is a 9-cocartesian 3-cube in S∗. Furthermore, since
each 2-subcube is (id + 2)-cartesian, then each 2-subcube is (2id + 1)-cocartesian

(Remark 5.13 and Proposition 5.14). Hence ΣC̃1(Z) is (2id + 2)-cocartesian and

10-cocartesian. It follows from Proposition 5.11 that ΣC̃1(Z) is k-cartesian, where
k + 2 is the minimum of

k{0,1,2} = 10, k{0} + k{1,2} = 4 + 6 = 10, k{0} + k{1} + k{2} = 4 + 4 + 4 = 12.

Hence k = 8 and we have calculated that ΣC̃1(Z) is an 8-cartesian 3-cube in S∗.

The upshot is that ΣC̃1(Z) is 8-cartesian and hence we have calculated that the
map (63) is 8-connected.

Note that there is more information in the argument above. Since the 2-face
(F1) is 4-cartesian, its total homotopy fiber is 3-connected, hence the indicated
homotopy fiber (see [14, X.6.3]; compare with [56, 5.5.7])

hofib(holim∆≤2 C1(Z)→holim∆≤1 C1(Z)) ' Ω2(iterated hofib)Y2

is 3-connected and therefore the map holim∆≤2 C1(Z)→holim∆≤1 C1(Z) is 4-connected.
Also, since Ω2(iterated hofib)Y2 is 3-connected, then (iterated hofib)Y2 is 5-connected.

In a similar way, for each n ≥ 3, the connectivity of the map

Σ holim∆≤n C1(Z)→ holim∆≤n ΣC1(Z)

is the same as the cartesian-ness of the (n+1)-cube ΣC̃1(Z). We can organize our
argument as follows, exactly as in the above cases for n = 1, 2.

The following calculation is proved in [14, X.6.3] for the Tot tower of a Reedy
fibrant cosimplicial pointed space; compare with [56, 5.5.7]. The connectivity as-
sumptions on Y (resp. Z) ensure that all spaces in sight (e.g., including the iterated
homotopy fibers) are 1-connected; this is elaborated, for instance, in Remark 5.42.
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Proposition 5.38. Let Y (resp. Z) be a K̃-coalgebra (resp. K̃r-coalgebra) and
n ≥ 0. If Y (resp. Z) is 1-connected (resp. (1 + r)-connected), then there are
natural zigzags of weak equivalences

hofib(holim∆≤n C(Y )→holim∆≤n−1 C(Y )) ' Ω̃n(iterated hofib)Yn

resp. hofib(holim∆≤n Cr(Z)→holim∆≤n−1 Cr(Z)) ' Ω̃n(iterated hofib)Yn

where Yn denotes the codegeneracy n-cube associated to C(Y ) (resp. Cr(Z)).

First we recall the following closely related proposition, which appears in [20,
6.27]. It can be proved by arguing exactly as in [56, 5.5.7]; see also Remark 5.37.

Proposition 5.39 (Uniformity of faces). Let Y (resp. Z) be a K̃-coalgebra (resp.

K̃r-coalgebra) and n ≥ 0. Let ∅ 6= T ⊂ [n] and t ∈ T . If Y (resp. Z) is 1-connected
(resp. (1 + r)-connected), then there is a weak equivalence

(iterated hofib)∂T{t}C̃(Y ) ' Ω̃|T |−1(iterated hofib)Y|T |−1

resp. (iterated hofib)∂T{t}C̃r(Z) ' Ω̃|T |−1(iterated hofib)Y|T |−1

where Y|T |−1 denotes the codegeneracy (|T | − 1)-cube associated to C(Y ) (resp.
Cr(Z)).

Proof. This is proved in [20] (compare [38, 3.4] and [61, 7.2]); the connectivity
assumptions on Y (resp. Z) ensure that all spaces in sight (e.g., including the
iterated homotopy fibers) are 1-connected. �

Theorem 5.40. Let Y be a K̃-coalgebra and n ≥ 1. Consider the ∞-cartesian

(n + 1)-cube C̃(Y ) (Definition 5.31) of pointed spaces built from C(Y ). If Y is
1-connected, then

(a) the cube C̃(Y ) is (2n+ 5)-cocartesian,

(b) the cube Σ∞C̃(Y ) is (2n+ 5)-cocartesian, and

(c) the cube Σ∞C̃(Y ) is (n+ 5)-cartesian.

Proof. Consider part (a). Taking W = {0, 1, . . . , n} since C̃(Y ) is an (n+ 1)-cube,
our strategy is to use higher dual Blakers-Massey (Proposition 5.12) to estimate

how close the W -cube C̃(Y ) in S∗ is to being cocartesian; the input to Proposition
5.12 requires that we estimate the cartesian-ness of each of the faces

∂WW−V C̃(Y ), ∅ 6= V ⊂W(65)

Here is the key observation: for exactly one w ∈W , the n-face ∂W{w}C̃(Y ) does not

involve the K̃-coaction map on Y ; furthermore, this particular n-face is precisely
the coface n-cube Xn (Definition 5.20) associated to the cosimplicial resolution (17)

when taking X = Ω̃∞Y . Since Ω̃∞Y is 1-connected, we know by higher stabilization

(Theorem 1.7) that Xn = ∂W{w}C̃(Y ) is an (id + 2)-cartesian n-cube. Furthermore,

now that we have uniform cartesian-ness estimates for this particular n-face, we
have the same uniform cartesian-ness estimates for the other desired faces in (65)—
this is because of the “uniformity of faces” property enforced by the cosimplicial
identities and summarized in Proposition 5.39. Hence we have verified that for each

nonempty subset V ⊂ W , the V -cube ∂WW−V C̃(Y ) is (|V |+ 2)-cartesian; since it is
∞-cartesian by construction when V = W , it follows immediately from higher dual
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Blakers-Massey (Proposition 5.12) that C̃(Y ) is (2n + 5)-cocartesian in S∗, which
finishes the proof of part (a). Part (b) follows from the fact that Σ∞ : S∗→ModS is
a left Quillen functor together with the property that Σ∞ preserves connectivity of
maps between 1-connected spaces. Part (c) follows easily from [19, 3.10]; in other

words, that Σ∞C̃(Y ) is k-cocartesian if and only if it is (k − n)-cartesian. Taking
k = (2n+ 5) from part (b) finishes the proof. �

The proof of the following is similar; however, in addition to estimating the

cocartesian-ness of C̃r(Z), we will also require estimates on the subcubes as well.

Theorem 5.41. Let Z be a K̃r-coalgebra and n ≥ 1. Consider the ∞-cartesian

(n + 1)-cube C̃r(Z) (Definition 5.31) of pointed spaces built from Cr(Z). If Z is
(1 + r)-connected, then

(a) the cube C̃r(Z) is (2n+ 5)-cocartesian and (2 · id + 1)-cocartesian,

(b) the cube ΣrC̃r(Z) is (2n+ 5 + r)-cocartesian and (2 · id + 1 + r)-cocartesian,
and

(c) the cube ΣrC̃r(Z) is (n+ 5 + r)-cartesian.

Proof. Consider part (a). Taking W = {0, 1, . . . , n} since C̃r(Z) is an (n+ 1)-cube,
our strategy is to use higher dual Blakers-Massey (Proposition 5.12) to estimate

how close the W -cube C̃r(Z) and its subcubes are to being cocartesian; the input
to Proposition 5.12 requires that we estimate the cartesian-ness of each of the faces

∂WW−V C̃r(Z), ∅ 6= V ⊂W.

We know from higher Freudenthal suspension (Theorem 1.8) on iterations of the

Freudenthal suspension map applied to Ω̃rZ, together with the “uniformity of
faces” property enforced by the cosimplicial identities and summarized in Propo-

sition 5.39, that for each nonempty subset V ⊂ W , the V -cube ∂WW−V C̃r(Z) is
(|V | + 2)-cartesian; since it is ∞-cartesian by construction when V = W , it fol-

lows immediately from higher dual Blakers-Massey (Proposition 5.12) that C̃r(Z)

is (2n + 5)-cocartesian. Similarly, it follows that C̃r(Z) is (id + 2)-cartesian, and

hence by the uniformity correspondence in Proposition 5.14 we know that C̃r(Z) is
(2 · id + 1)-cocartesian which finishes the proof of part (a). Part (b) follows from
the fact that Σr : S∗→S∗ is a left Quillen functor together with the property that
Σr increases the connectivity of maps between 1-connected spaces by r. Part (c)
follows immediately from higher Blakers-Massey (Proposition 5.11) together with
the cocartesian-ness estimates in part (b). �

Proof of Theorem 2.3. We want to estimate how connected the comparison map

Σ∞ holim∆≤n C(Y ) −→ holim∆≤n Σ∞ C(Y )

is, which is equivalent to estimating how cartesian Σ∞C̃(Y ) is, and Theorem 5.40(c)
completes the proof. The other case is similar using Theorem 5.41(c). �

Remark 5.42. There is more information in the proof of Theorem 5.40 above. We

know that for exactly one w ∈ W , the n-face ∂W{w}C̃(Y ) (i.e., the unique n-face of

this form not involving the K̃-coaction map on Y ) in the proof of Theorem 5.40
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is precisely the coface n-cube Xn (Definition 5.20) associated to the cosimplicial

resolution (17) when taking X = Ω̃∞Y . Since Ω̃∞Y is 1-connected, we know
that Xn is an (id + 2)-cartesian n-cube by higher stabilization (Theorem 1.7); in

particular, this n-face ∂W{w}C̃(Y ) is (n+ 2)-cartesian and hence its total homotopy

fiber is (n+ 1)-connected. By Proposition 5.39, we know

(iterated hofib)∂W{w}C̃(Y ) ' Ω̃(n+1)−1(iterated hofib)Y(n+1)−1

and hence by Proposition 5.38 we know that

hofib(holim∆≤n C(Y )→holim∆≤n−1 C(Y )) ' Ω̃n(iterated hofib)Yn

is (n+ 1)-connected; therefore the map holim∆≤n C(Y )→holim∆≤n−1 C(Y ) is (n+

2)-connected. Also, since Ω̃n(iterated hofib)Yn is (n+1)-connected, then we know
(iterated hofib)Yn is (2n+1)-connected. The upshot is that we have just proved
Proposition 5.43 and the first part of Theorem 2.1.

Proposition 5.43. Let Y be a K̃-coalgebra and n ≥ 1. Denote by Yn the codegen-
eracy n-cube associated to the cosimplicial cobar construction C(Y ) of Y . If Y is
1-connected, then the total homotopy fiber of Yn is (2n+ 1)-connected.

Proof. This is proved in Remark 5.42. �

Proposition 5.44. Let Z be a K̃r-coalgebra space and n ≥ 1. Denote by Yn the
codegeneracy n-cube associated to the cosimplicial cobar construction Cr(Z) of Z.
If Z is (1 + r)-connected, then the total homotopy fiber of Yn is (2n+ 1)-connected.

Proof. This is proved as in Remark 5.42 using C̃r(Z) in place of C̃(Y ). �

Proof of Theorem 2.1. The homotopy fiber of holim∆≤n C(Y ) → holim∆≤n−1 C(Y )

is weakly equivalent to Ω̃n of the total homotopy fiber of the codegeneracy n-cube
Yn associated to C(Y ) by Proposition 5.38, hence by Proposition 5.43 this map is
(n+ 2)-connected. The other case is similar using Proposition 5.44. �

6. Appendix: Simplicial structures

In this background section, we recall the simplicial structures and adjunctions
on pointed spaces and S-modules that are used throughout the paper; the expert
may wish to skim through, or skip entirely, this background section. Our aim here
is to be clear in our notation for various hom-objects and to point out Propositions
6.4 and 6.6 which are used throughout Section 4, for instance.

Definition 6.1. Let X,X ′ be pointed spaces and K a simplicial set. The ten-
sor product X⊗̇K in S∗, mapping object homS∗(K,X) in S∗, and mapping space
HomS∗(X,X

′) in sSet are defined by

X⊗̇K := X ∧K+

homS∗(K,X
′) := hom∗(K+, X

′)

HomS∗(X,X
′)n := homS∗(X⊗̇∆[n], X ′)

where the pointed mapping space hom∗(X,X
′) in S∗ is HomS∗(X,X

′) pointed by
the constant map; see [36, II.3].
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Definition 6.2. Let Y, Y ′ be S-modules and K a simplicial set. The tensor prod-
uct Y ⊗̇K in ModS , mapping object homModS (K,Y ) in ModS , and mapping space
HomModS (Y, Y ′) in sSet are defined by

Y ⊗̇K := Y ∧K+

homModS (K,Y ′) := Map(K+, Y
′)

HomModS (Y, Y ′)n := homModS (Y ⊗̇∆[n], Y ′)

where Map(K+, Y
′) denotes the function S-module; see [44, 2.2.9].

We sometimes drop the S∗ and ModS decorations from the notation and simply
write Hom and hom.

Proposition 6.3. With the above definitions of mapping object, tensor product,
and mapping space the categories of pointed spaces S∗ and S-modules ModS are
simplicial model categories.

Proof. This is proved, for instance, in [36, II.3] and [44]. �

Recall that the adjunction (Σ∞,Ω∞) in (23) is a Quillen adjunction with left
adjoint on top; in particular, for X,Y ∈ S∗ there is an isomorphism

hom(Σ∞X,Y ) ∼= hom(X,Ω∞Y )(66)

in Set, natural in X,Y . The following proposition, which follows from [36, II.2.9],
verifies that this adjunction meshes nicely with the simplicial structure.

Proposition 6.4. Let X be a pointed space, Y an S-module, and K,L simplicial
sets. Then

(a) there is a natural isomorphism σ : Σ∞(X)⊗̇K
∼=−−→ Σ∞(X⊗̇K);

(b) there is an isomorphism

Hom(Σ∞X,Y ) ∼= Hom(X,Ω∞Y )

in sSet, natural in X,Y , that extends the adjunction isomorphism in (66);
(c) there is an isomorphism

Ω∞ hom(K,Y ) ∼= hom(K,Ω∞Y )

in S∗, natural in K,Y .
(d) there is a natural map σ : Ω∞(Y )⊗̇K→Ω∞(Y ⊗̇K) induced by Ω∞.
(e) the functors Σ∞ and Ω∞ are simplicial functors (Remark 6.5) with the

structure maps σ of (a) and (d), respectively.

Remark 6.5. For a useful reference on simplicial functors in the context of homotopy
theory, see Hirschhorn [41, 9.8.5].

Similarly, recall that the adjunction (Σr,Ωr) in (26) is a Quillen adjunction with
left adjoint on top; in particular, for X,X ′ ∈ S∗ there is an isomorphism

hom(ΣrX,X ′) ∼= hom(X,ΩrX ′)(67)

in Set, natural in X,X ′. The following proposition follows from [36, II.2.9].

Proposition 6.6. Let X,Y be pointed spaces and K,L simplicial sets. Then

(a) there is a natural isomorphism σ : Σr(X)⊗̇K
∼=−−→ Σr(X⊗̇K);
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(b) there is an isomorphism

Hom(ΣrX,Y ) ∼= Hom(X,ΩrY )

in sSet, natural in X,Y , that extends the adjunction isomorphism in (67);
(c) there is an isomorphism

Ωr hom(K,Y ) ∼= hom(K,ΩrY )

in S∗, natural in K,Y .
(d) there is a natural map σ : Ωr(Y )⊗̇K→Ωr(Y ⊗̇K) induced by Ωr.
(e) the functors Σr and Ωr are simplicial functors (Remark 6.5) with the struc-

ture maps σ of (a) and (d), respectively.
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