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CHAPTER 1

Basic constructions: Mapping properties

In homotopy theory, we often work with—and construct for this purpose—new
objects, built from simpler pieces, according to a characterization of their mapping
properties. We will eventually be working in several contexts, but for starters, let’s
explore some constructions in the familiar setting of the category of sets and their
maps (i.e., functions), denoted Set, and the category of topological spaces and their
maps (i.e., continuous functions), denoted Top. We are intentionally overlapping
with material the reader has already encountered, but with an emphasis on mapping
properties, rather than focusing primarily on the underlying set of elements. This
point of view will have significant payoffs later.

Let’s start our constructions in Set, and then find our way to their analogs in
Top. We will cycle back and forth, from Set to Top, for various examples. This
will begin the development in the reader of some intuition for such constructions;
very soon, working formally with these constructions (e.g., via mapping properties)
will begin to feel quite natural. Once this happens, working in other settings (e.g.,
chain complexes over a ring, simplicial sets, simplicial modules over a ring, various
flavors of spectra, algebras over operads in symmetric spectra, etc...) becomes more
accessible; in other words, you’ve got to start somewhere, and Set and Top are useful
places to begin building intuition and understanding.

1.1. Products

Let X,Y be sets. Classically, the product X ×Y in Set is defined to be the set
of ordered pairs

X × Y := {(x, y)|x ∈ X, y ∈ Y }
There is a diagram of the form

X X × Y
pr0oo

pr1 // Y(1.1)

in Set, defined by pr0(x, y) = x and pr1(x, y) = y (i.e., pr0 and pr1 are the usual
projection maps to X and Y , respectively), which satisfies the following mapping
property; for further reading, see [5, p. 69] and [7, p. 77].

Remark 1.1.1. In homotopy theory, we often start our indexing at 0, rather
than at 1; for instance, when we get to simplicial objects, non-negative chain com-
plexes, cosimplicial objects, and so forth. So we might as well get used to it early
on—hence the subscripts in (1.1) on our projection maps. On the other hand,
the reader should not feel locked into this notation—when working in various sit-
uations, use whatever notation feels right to you. For instance, we could have
denoted (pr0,pr1) by (prX ,prY ), (pr1,pr2), or (pr,pr′), or we simply could have
called it (p, p′), (a, b), or (p′, p′′); as long as your colleagues (or audience) know
what you are talking about.

1



2 1. BASIC CONSTRUCTIONS: MAPPING PROPERTIES

Proposition 1.1.2 (Universal property of products in Set). If X,Y are sets,
then diagram (1.1) is terminal with respect to all such diagrams into X,Y in Set;
i.e., for any set A and diagram of the form

X A
f0oo

f1 // Y

in Set, there exists a unique map f in Set which makes the diagram

X X × Y
pr0oo

pr1 // Y

A
f0

[[

f1

DD

∃! f

OO
(1.2)

commute; i.e., such that pr0 f = f0 and pr1 f = f1.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
f(a) = (f0(a), f1(a)) for each a ∈ A. Existence follows since this is a well-defined
map in Set. □

Remark 1.1.3. The reader should not feel obliged to use the symbol f for the
map induced by f0, f1 in (1.2); for instance, we could have used the symbol f , f ′,
ξ, a1, α, or α, in place of f .

Remark 1.1.4. The upshot is: giving a map f : A→ X × Y in Set is the same

as giving a pair of maps X
f0←− A

f1−→ Y in Set. For this reason, sometimes f is
written as f = (f0, f1).

Remark 1.1.5. The mapping properties in (1.2) characterize the productX×Y
in Set, up to isomorphism. Let’s verify this. Suppose there is a set B together with
a diagram of the form

X B
pr′0oo

pr′1 // Y(1.3)

in Set, which satisfies the universal property in (1.2); i.e., such that diagram (1.3)
is terminal with respect to all such diagrams into X,Y in Set. Let’s verify that
B ∼= X × Y in Set: we want to compare the sets X × Y and B, and the only game
in town is the universal property; so let’s use it. Consider the solid diagram of the
form

X X × Y
pr0oo

pr1 // Y (∗)

(I)

X B
pr′0oo

pr′1 //

∃! p

OO

Y (∗∗)

(II)

X X × Y
pr0oo

id

^^

pr1 //

∃! q

OO

Y

X B
pr′0oo

id

??

pr′1 //

p

OO

Y

(1.4)

in Set. Diagram (∗) is terminal with respect to all such diagrams into X,Y in
Set, hence there exists a unique map p in Set which makes diagram (I) commute.
Diagram (∗∗) is terminal with respect to all such diagrams into X,Y in Set, hence
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there exists a unique map q in Set which makes diagram (II) commute. The identity
map id makes diagram (I) + (II) commute; but pq also makes (I) + (II) commute.
Hence, by uniqueness, pq = id. Similarly, by uniqueness, qp = id. Hence we have
verified (using four applications of the universal property) that B ∼= X × Y in Set.

Conversely, if there is a set B together with an isomorphism p : B
∼=−−→ X × Y in

Set, then it is easy to verify that the diagram of the form (1.3), with pr′0 := pr0 p
and pr′1 := pr1 p satisfies the mapping properties in (1.2); i.e., it is terminal with
respect to all such diagrams into X,Y in Set.

A product diagram in Set is a diagram of the form (1.1) that satisfies the
universal property in (1.2). For instance, if X is a set, then the diagram

X X // ∗

is a product diagram in Set and hence X ∼= X × ∗ in Set.

Remark 1.1.6. A diagram that is naturally isomorphic to a product diagram
in Set, is a product diagram in Set.

What happens if we replace Set with Top in our above discussion? The reader
already knows from their background how to work with products of topological
spaces, but let’s pretend we forgot; this is a good idea since the intuition we develop
here, in this familiar situation, will carry over and guide us in more complicated
ones.

Let X,Y be topological spaces. Classically, the product X×Y in Top is defined
to be X × Y in Set, equipped with an appropriate topology. Let’s follow our noses
to rediscover this topology, called the product topology. The idea is: we want
the same mapping properties in (1.2) to be true, but for Set replaced by Top. In
particular, this means that we need a topology on the set X×Y such that the maps
in (1.1) are continuous; i.e., inverse images of open subsets are open. There are two
extremes. If we give the set X × Y the largest (or finest) topology possible (i.e.,
the most open sets possible, where every subset is open, and hence is the discrete
topology) then the maps pr0,pr1 are certainly continuous, but the set X ×Y (with
this discrete topology) then becomes difficult to map into in Top. The other extreme
is to give the set X × Y the smallest (or coarsest) topology such that pr0,pr1 are
continuous—this is called the topology induced on the set X × Y by the functions
pr0,pr1; for further reading, see [1, pp. 65–66], [4, p. 30], and [8, p. 4].

Proposition 1.1.7. The topology induced on the set X × Y by the functions

X
pr0←−− X × Y

pr1−−→ Y is characterized by the property that if A is a topological
space, a function f : A→ X × Y is continuous if and only if the composites pr0 f ,
pr1 f are continuous.

Proof. Here is the basic idea. The smallest topology on the set X × Y such
that pr0 is continuous, called the topology induced by pr0, is given by the collection
of inverse images

{pr−1
0 (U)|U ⊂ X is open}(1.5)

Similarly, the smallest topology on the set X×Y such that pr1 is continuous, called
the topology induced by pr1, is given by the collection of inverse images

{pr−1
1 (V )|V ⊂ Y is open}(1.6)



4 1. BASIC CONSTRUCTIONS: MAPPING PROPERTIES

The topology induced by pr0,pr1 is the smallest topology on the set X × Y which
contains each of these topologies: it is the topology generated by the union of
these two collections of subsets—it consists of ∅, X × Y , all finite intersections
of the generating subsets, and all arbitrary unions of these finite intersections. In
particular, a function of the form f is continuous if and only if inverse images of the
generating subsets—also called subbasis elements—in (1.5) and (1.6) are open. □

This means that if we give the set X×Y the topology induced by pr0,pr1, then
the desired universal property will be satisfied—this is the product topology on the
set X ×Y . This is the topology we equip the set X ×Y with when we consider the
diagram

X X × Y
pr0oo

pr1 // Y(1.7)

in Top, defined by pr0(x, y) = x and pr1(x, y) = y (i.e., pr0 and pr1 are the usual
projection maps to X and Y , respectively). Notice how we have been naturally led
to the product topology by considering desirable mapping properties. Hence we
have verified that diagram (1.7) satisfies the following mapping property.

Proposition 1.1.8 (Universal property of products in Top). If X,Y are topo-
logical spaces, then diagram (1.7) is terminal with respect to all such diagrams into
X,Y in Top; i.e., for any topological space A and diagram of the form

X A
f0oo

f1 // Y

in Top, there exists a unique map f in Top which makes the diagram

X X × Y
pr0oo

pr1 // Y

A
f0

[[

f1

DD

∃! f

OO
(1.8)

commute; i.e., such that pr0 f = f0 and pr1 f = f1.

Proof. This follows from Propositions 1.1.2 and 1.1.7. □

Remark 1.1.9. The upshot is: giving a map f : A→ X × Y in Top is the same

as giving a pair of maps X
f0←− A

f1−→ Y in Top; for this reason, sometimes f is
written as f = (f0, f1).

For instance, a left-hand diagram of the form

A

i

��

g
// C

(p0,p1)

��

B
(h0,h1)

// X × Y

A

i

��

g
// C

p0

��

B
h0

// X

A

i

��

g
// C

p1

��

B
h1

// Y
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in Top commutes if and only if the corresponding right-hand diagrams in Top com-
mute. Similarly, a left-hand diagram of the form

A

i

��

(g0,g1)
// C ×D

p0×p1

��

B
(h0,h1)

// X × Y

A

i

��

g0 // C

p0

��

B
h0

// X

A

i

��

g1 // D

p1

��

B
h1

// Y

in Top commutes if and only if the corresponding right-hand diagrams in Top com-
mute; here, p0 × p1 denotes the map (of the indicated form) induced by p0, p1.

Remark 1.1.10. In more detail, p0 × p1 is the map induced

C

p0

��

C ×D

∃! p0×p1

��

pr0oo
pr1 // D

p1

��

X X × Y
pr0oo

pr1 // Y

by the outer diagram; i.e., p0 × p1 = (p0 pr0, p1 pr1).

A left-hand diagram of the form

Y

X
H //

f0
33

f1 ++

M

p0

OO

p1

��

X
H //

(f0,f1)

99
M

(p0,p1)
// Y × Y

Y

in Top commutes if and only if the corresponding right-hand diagram in Top com-
mutes; we will be going back and forth between such diagrams when we work with
right homotopies below.

Remark 1.1.11. Arguing as above (Remark 1.1.5), the mapping properties in
(1.8) characterize the product X × Y in Top, up to isomorphism.

A product diagram in Top is a diagram of the form (1.7) that satisfies the
universal property in (1.8). For instance, if X is a topological space, then the
diagram

X X // ∗
is a product diagram in Top and hence X ∼= X × ∗ in Top.

Remark 1.1.12. A diagram that is naturally isomorphic to a product diagram
in Top, is a product diagram in Top.

1.2. Coproducts

If we reverse all the arrows in a product diagram and its mapping properties, we
are naturally led to the mapping properties of a coproduct diagram: let’s develop
this idea. Let X,Y be sets. Classically, the coproduct (or disjoint union) X ⨿ Y in
Set is defined to be the union of disjoint copies of X and Y

X ⨿ Y := X × {0} ∪ Y × {1}(1.9)
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Remark 1.2.1. Note that X ∼= X × {0}, Y ∼= Y × {1} in Set and these iso-
morphisms are simply a formal way to ensure that the union on the right-hand
side of (1.9) is a union of disjoint sets. For instance, X ⨿X is supposed to be the
disjoint union of two copies of X; i.e., if we start with a set X, then we can think
of X × {0} and X × {1} as two disjoint copies of the set X, and hence their union
X×{0} ∪ X×{1} is a union of two disjoint copies of X, which we write as X⨿X.

There is a diagram of the form

X
in0 // X ⨿ Y Y

in1oo(1.10)

in Set, defined by in0(x) = (x, 0) and in1(y) = (y, 1) (i.e., in0 and in1 are the usual
inclusion maps of X and Y , respectively).

Remark 1.2.2. For notational convenience reasons, we usually identify X with
its copy X × {0} and Y with its copy Y × {1}; in this case, the maps in (1.10)
are defined by in0(x) = x and in1(y) = y. For instance, if we are working with
X ⨿X (where Y = X), then we simply have to keep track of which copy of X we
are mapping into; but this is indicated by the subscript on the inclusion map itself.
We do not want to think of the first copy of X as X × {0} and the second copy
of X as X × {1} (this is too messy, notationally), but instead to simply think of
having two disjoint copies of X. In other words, we prefer to keep the notation as
simple as possible—this will not cause any confusion.

Following the notational convention in Remark 1.2.2, we rewrite diagram (1.10)
as a diagram of the form

X
in0 // X ⨿ Y Y

in1oo(1.11)

in Set, defined by in0(x) = x and in1(y) = y (i.e., in0 and in1 are the usual inclusion
maps of X and Y , respectively), which satisfies the following mapping property;
for further reading, see [5, p. 63] and [7, p. 81].

Proposition 1.2.3 (Universal property of coproducts in Set). If X,Y are sets,
then diagram (1.11) is initial with respect to all such diagrams out of X,Y in Set;
i.e., for any set A and diagram of the form

X
f0 // A Y

f1oo

in Set, there exists a unique map f in Set which makes the diagram

X
in0 //

f0 ))

X ⨿ Y

∃! f

��

Y
in1oo

f1uuA

(1.12)

commute; i.e., such that f in0 = f0 and f in1 = f1.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
f(x) = f0(x) for each x ∈ X and f(y) = f1(y) for each y ∈ Y . Existence follows
since this is a well-defined map in Set. □

Remark 1.2.4. Similar to Remark 1.1.3, the reader should not feel obliged to
use the symbol f for the map induced by f0, f1 in (1.12); for instance, we could
have used the symbol f , f ′, ξ, a1, α, or α, in place of f .
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Remark 1.2.5. The upshot is: giving a map f : X ⨿ Y → A in Set is the same

as giving a pair of maps X
f0−→ A

f1←− Y in Set. For this reason, sometimes f is
written as f = (f0, f1).

Remark 1.2.6. The mapping properties in (1.12) characterize the coproduct
X ⨿ Y in Set, up to isomorphism. Let’s verify this. Suppose there is a set B
together with a diagram of the form

X
in′

0 // B Y
in′

1oo(1.13)

in Set, which satisfies the universal property in (1.12); i.e., such that diagram
(1.13) is initial with respect to all such diagrams out of X,Y in Set. Let’s verify
that B ∼= X ⨿ Y in Set: we want to compare the sets X ⨿ Y and B, and the only
game in town is the universal property; so let’s use it. Consider the solid diagram
of the form

X
in′

0 // B Y
in′

1oo

(I)

X
in0 // X ⨿ Y

∃! p

OO

Y
in1oo (∗)

(II)

X
in′

0 // B

∃! q

OO

id

^^

Y
in′

1oo (∗∗)

X
in0 // X ⨿ Y

p

OO

id

@@

Y
in1oo

(1.14)

in Set. Diagram (∗) is initial with respect to all such diagrams out of X,Y in
Set, hence there exists a unique map p in Set which makes diagram (I) commute.
Diagram (∗∗) is initial with respect to all such diagrams out of X,Y in Set, hence
there exists a unique map q in Set which makes diagram (II) commute. The identity
map id makes diagram (I) + (II) commute; but pq also makes (I) + (II) commute.
Hence, by uniqueness, pq = id. Similarly, by uniqueness, qp = id. Hence we have
verified (using four applications of the universal property) that B ∼= X ⨿ Y in Set.

Conversely, if there is a set B together with an isomorphism p : X ⨿ Y
∼=−−→ B in

Set, then it is easy to verify that the diagram of the form (1.13), with in′0 := p in0
and in′1 := p in1 satisfies the mapping properties in (1.12); i.e., it is initial with
respect to all such diagrams out of X,Y in Set.

A coproduct diagram in Set is a diagram of the form (1.11) that satisfies the
universal property in (1.12). For instance, if X is a set, then the diagram

X X ∅oo

is a coproduct diagram in Set and hence X ∼= X ⨿ ∅ in Set.

Remark 1.2.7. A diagram that is naturally isomorphic to a coproduct diagram
in Set, is a coproduct diagram in Set.

What happens if we replace Set with Top in our above discussion? The reader
already knows from their background how to work with coproducts (or disjoint
unions) of topological spaces, but let’s pretend we forgot; this is a good idea as the
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intuition we develop here, in this familiar situation, will carry over and guide us in
more complicated ones.

Let X,Y be topological spaces. Classically, the coproduct (or disjoint union)
X⨿Y in Top is defined to be X⨿Y in Set, equipped with an appropriate topology.
Let’s follow our noses to rediscover this topology, called the coproduct topology.
The idea is: we want the same mapping properties in (1.12) to be true, but for
Set replaced by Top. In particular, this means that we need a topology on the set
X ⨿ Y such that the maps in (1.11) are continuous; i.e., inverse images of open
subsets are open. There are two extremes. If we give the set X ⨿ Y the smallest
topology possible (i.e., the fewest open sets possible, where only ∅ and X ⨿ Y are
open, and hence is the trivial (or indiscrete) topology) then the maps in0, in1 are
certainly continuous, but the set X ⨿ Y (with this trivial topology) then becomes
difficult to map out of in Top. The other extreme is to give the set X⨿Y the largest
topology such that in0, in1 are continuous—this is called the topology coinduced on
the set X ⨿ Y by the functions in0, in1; for further reading, see [1, pp. 131–132],
[4, p. 29], and [8, pp. 4–5].

Proposition 1.2.8. The topology coinduced on the set X ⨿Y by the functions

X
in0−−→ X⨿Y in1←−− Y is characterized by the property that if A is a topological space,

a function f : X ⨿ Y → A is continuous if and only if the composites f in0, f in1
are continuous.

Proof. Here is the basic idea. The largest topology on the set X⨿Y such that
in0 is continuous, called the topology coinduced by in0, is given by the collection

{W ⊂ X ⨿ Y | in−1
0 (W ) ⊂ X is open}(1.15)

Similarly, the largest topology on the set X ⨿ Y such that in1 is continuous, called
the topology coinduced by in1, is given by the collection

{W ⊂ X ⨿ Y | in−1
1 (W ) ⊂ Y is open}(1.16)

The topology coinduced by in0, in1 is the largest topology on the set X⨿Y which is
contained in each of these topologies: it is the intersection of these two collections
of subsets. □

This means that if we give the set X ⨿ Y the topology coinduced by in0, in1,
then the desired universal property will be satisfied—this is the coproduct topology
on the set X ⨿ Y . This is the topology that we equip the set X ⨿ Y with when we
consider the diagram

X
in0 // X ⨿ Y Y

in1oo(1.17)

in Top, defined by in0(x) = x and in1(y) = y (i.e., in0 and in1 are the usual
inclusion maps of X and Y , respectively). Notice how we have been naturally led
to the coproduct topology by considering desirable mapping properties. Hence we
have verified that diagram (1.17) satisfies the following mapping property.

Proposition 1.2.9 (Universal property of coproducts in Top). If X,Y are
topological spaces, then diagram (1.17) is initial with respect to all such diagrams
out of X,Y in Top; i.e., for any topological space A and diagram of the form

X
f0 // A Y

f1oo
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in Top, there exists a unique map f in Top which makes the diagram

X
in0 //

f0 ))

X ⨿ Y

∃! f

��

Y
in1oo

f1uuA

(1.18)

commute; i.e., such that f in0 = f0 and f in1 = f1.

Proof. This follows from Propositions 1.2.3 and 1.2.8. □

Remark 1.2.10. The upshot is: giving a map f : X ⨿ Y → A in Top is the

same as giving a pair of maps X
f0−→ A

f1←− Y in Top. For this reason, sometimes f
is written as f = (f0, f1).

For instance, a left-hand diagram of the form

X ⨿ Y

(i0,i1)

��

(g0,g1)
// C

p

��

Z
h
// D

X

i0

��

g0 // C

p

��

Z
h
// D

Y

i1

��

g1 // C

p

��

Z
h
// D

in Top commutes if and only if the corresponding right-hand diagrams in Top com-
mute. Similarly, a left-hand diagram of the form

X ⨿ Y

i0⨿i1

��

(g0,g1)
// C

p

��

W ⨿ Z
(h0,h1)

// D

X

i0

��

g0 // C

p

��

W
h0

// D

Y

i1

��

g1 // C

p

��

Z
h1

// D

in Top commutes if and only if the corresponding right-hand diagrams in Top com-
mute; here, i0 ⨿ i1 denotes the map (of the indicated form) induced by i0, i1.

Remark 1.2.11. In more detail, i0 ⨿ i1 is the map induced

X
in0 //

i0

��

X ⨿ Y

∃! i0⨿i1

��

Y
in1oo

i1

��

W
in0 // W ⨿ Z Z

in1oo

by the outer diagram; i.e., i0 ⨿ i1 = (in0 i0, in1 i1).

A left-hand diagram of the form

X

i0

��

f0

!!

C
H // Y X ⨿X

(i0,i1)
//

(f0,f1)

::C
H // Y

X

i1

OO

f1

==

in Top commutes if and only if the corresponding right-hand diagram in Top com-
mutes; we will be going back and forth between such diagrams when we work with
left homotopies below.
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Remark 1.2.12. Arguing as above (Remark 1.2.6), the mapping properties in
(1.18) characterize the coproduct X ⨿ Y in Top, up to isomorphism.

A coproduct diagram in Top is a diagram of the form (1.17) that satisfies the
universal property in (1.18). For instance, if X is a topological space, then the
diagram

X X ∅oo

is a coproduct diagram in Top and hence X ∼= X ⨿ ∅ in Top.

Remark 1.2.13. A diagram that is naturally isomorphic to a coproduct dia-
gram in Top, is a coproduct diagram in Top.

1.3. Subsets and subspaces

Let Y be a set and X ⊂ Y a subset. There is a map of the form i : X → Y in
Set, defined by i(x) = x (i.e., i is the usual inclusion map to Y ), which satisfies the
following mapping property.

Proposition 1.3.1 (Universal property of subsets in Set). If Y is a set and
X ⊂ Y a subset, then the map i is terminal with respect to all maps into Y with
image contained in X in Set; i.e., for any set A and map of the form α : A→ Y in
Set with α(A) ⊂ X, there exists a unique map α in Set which makes the diagram

X
i // Y

A
α

GG

∃! α

OO(1.19)

commute; i.e., such that i α = α.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
α(a) = α(a) for each a ∈ A. Existence follows since this is a well-defined map in
Set. □

Remark 1.3.2. The upshot is: giving a map α : A→ X in Set is the same as
giving a map α : A→ Y in Set with α(A) ⊂ X.

Let’s turn this into a notion that makes sense up to isomorphism. Let i : X → Y
be an injective map in Set. Then i can be written as the composite X ∼= i(X) ⊂ Y
in Set, and hence satisfies the following universal property.

Proposition 1.3.3 (Universal property of injections in Set). If i : X → Y is
an injective map in Set, then i is terminal with respect to all maps into Y with
image contained in i(X) in Set; i.e., for any set A and map of the form α : A→ Y
in Set with α(A) ⊂ i(X), there exists a unique map α in Set which makes the
diagram

X
i // Y

A
α

GG

∃! α

OO(1.20)

commute; i.e., such that i α = α.
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Remark 1.3.4. The upshot is: giving a map α : A→ X in Set is the same as
giving a map α : A→ Y in Set with α(A) ⊂ i(X).

What happens if we replace Set with Top in our above discussion? The reader
already knows from their background how to work with subspaces, but let’s pretend
we forgot. This will help the reader develop their intuition.

Let Y be a topological space and X ⊂ Y a subset. Classically, the set X is
called a subspace of Y when X is equipped with an appropriate topology. Let’s
follow our noses to rediscover this topology, called the subspace topology on X
with respect to Y . The idea is: we want the same mapping properties in (1.19)
to be true, but for Set replaced by Top. In particular, this means that we need a
topology on the set X such that the inclusion function i is continuous; i.e., inverse
images of open subsets are open. There are two extremes. If we give the set X the
largest topology possible (i.e., the most open sets possible, where every subset is
open, and hence is the discrete topology) then the map i is certainly continuous,
but the set X (with this discrete topology) then becomes difficult to map into in
Top. The other extreme is to give the set X the smallest topology such that i is
continuous—this is called the topology induced on the set X by the function i; for
further reading, see [3, p. 49], [4, p. 30], [6, p. 88], and [8, p. 4].

Proposition 1.3.5. The topology induced on the set X by the inclusion func-
tion i : X → Y is characterized by the property that if A is a topological space, a
function α : A→ X is continuous if and only if the composite i α is continuous.

Proof. Here is the basic idea. The smallest topology on the set X such that
i is continuous, called the topology induced by i, is given by the collection

{i−1(U)|U ⊂ Y is open}(1.21)

of inverse images. □

This means that if we give the set X the topology induced by the inclusion
function i : X → Y , then the desired universal property will be satisfied—this is
the subspace topology on the set X with respect to Y . Notice how we have been
naturally led to the subspace topology by considering desirable mapping properties.
This is the topology that we equip the set X with when we regard X ⊂ Y as
a subspace of Y ; in this case, we call the inclusion map i : X → Y , defined by
i(x) = x, a subspace inclusion. Hence we have verified that i : X → Y satisfies the
following mapping property.

Proposition 1.3.6 (Universal property of subspaces in Top). If Y is a topo-
logical space and X ⊂ Y is a subspace, then the subspace inclusion i : X → Y is
terminal with respect to all maps into Y with image contained in X in Top; i.e.,
for any topological space A and map of the form α : A→ Y in Top with α(A) ⊂ X,
there exists a unique map α in Top which makes the diagram

X
i // Y

A
α

GG

∃! α

OO(1.22)

commute; i.e., such that i α = α.
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Remark 1.3.7. The upshot is: giving a map α : A→ X in Top is the same as
giving a map α : A→ Y in Top with α(A) ⊂ X.

Let’s turn this into a notion that makes sense up to isomorphism. Let Y be
a topological space and i : X → Y an injective map in Set. The idea is: we want
the same mapping properties in (1.20) to be true, but for Set replaced by Top.
Reasoning as above, we can give the set X the smallest topology such that i is
continuous—this is called the topology induced on the set X by the function i; for
further reading, see [3, p. 49], [4, p. 30], and [8, p. 4].

Proposition 1.3.8. The topology induced on the set X by the injective map
i : X → Y is characterized by the property that if A is a topological space, a function
α : A→ X is continuous if and only if the composite i α is continuous.

Proof. Here is the basic idea. The smallest topology on the set X such that
i is continuous, called the topology induced by i, is given by the collection

{i−1(U)|U ⊂ Y is open}(1.23)

of inverse images. □

This means that if we give the set X the topology induced by the injective
function i : X → Y , then the desired universal property will be satisfied; in this
case, we call the injection i : X → Y a subspace injection (or simply, a subspace
inclusion, since that’s what it is up to isomorphism). Notice how we have been
naturally led to this topology by considering desirable mapping properties. Hence
we have verified that i : X → Y satisfies the following mapping property.

Proposition 1.3.9 (Universal property of subspace injections in Top). If Y
is a topological space and i : X → Y is a subspace injection, then i is terminal
with respect to all maps into Y with image contained in i(X) in Top; i.e., for any
topological space A and map of the form α : A→ Y in Top with α(A) ⊂ i(X), there
exists a unique map α in Top which makes the diagram

X
i // Y

A
α

GG

∃! α

OO(1.24)

commute; i.e., such that i α = α.

Remark 1.3.10. The upshot is: giving a map α : A→ X in Top is the same
as giving a map α : A→ Y in Top with α(A) ⊂ i(X).

Remark 1.3.11. It’s worth pointing out that i in (1.24) can be written as
the composite X ∼= i(X) ⊂ Y in Top, where i(X) has the subspace topology with
respect to Y .

1.4. Quotient sets and quotient spaces

If we reverse all the arrows in a subset inclusion (resp. subspace inclusion)
and its mapping properties, we are naturally led to the mapping properties of a
quotient set projection (resp. quotient space projection): let’s develop this idea.
Let X be a set and ∼ an equivalence relation on X. Recall that ∼ partitions the set
X into equivalence classes and denote by X/∼ the corresponding set of equivalence
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classes, called the quotient set of X over the equivalence relation ∼ . If x ∈ X,
denote by [x] ∈ X/∼ the equivalence class containing x; in particular, [x] ⊂ X and
x′ ∈ [x] if and only if x ∼ x′. There is a map of the form p : X → X/∼ in Set,
defined by p(x) = [x] (i.e., p is the usual projection function of X), which satisfies
the following mapping property.

Proposition 1.4.1 (Universal property of quotient sets in Set). If X is a set
and ∼ is an equivalence relation on X, then the map p is initial with respect to all
maps out of X that identify equivalent elements of X in Set; i.e., for any set A and
map of the form α : X → A in Set satisfying α(x) = α(x′) if x ∼ x′, there exists a
unique map α in Set which makes the diagram

X
α //

p

��

A

X/∼
α

∃!

FF(1.25)

commute; i.e., such that αp = α.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
α([x]) = α(x) for each x ∈ X. Existence follows since this is a well-defined map in
Set. □

Remark 1.4.2. The upshot is: giving a map α : X/∼ → A in Set is the same
as giving a map α : X → A in Set satisfying α(x) = α(x′) if x ∼ x′.

Let’s turn this into a notion that makes sense up to isomorphism. Let p : X → Y
be a surjective map in Set. Denote by ∼ the equivalence relation on X associated
to p, defined by x ∼ x′ if and only if p(x) = p(x′). Then p can be written as
the composite X → X/∼ ∼= Y in Set, and hence satisfies the following universal
property.

Proposition 1.4.3 (Universal property of surjections in Set). If p : X → Y is
a surjective map in Set and ∼ denotes the equivalence relation on X associated to
p, then the map p is initial with respect to all maps out of X that identify equivalent
elements of X in Set; i.e., for any set A and map of the form α : X → A in Set
satisfying α(x) = α(x′) if x ∼ x′, there exists a unique map α in Set which makes
the diagram

X
α //

p

��

A

Y
α

∃!

GG(1.26)

commute; i.e., such that αp = α.

Remark 1.4.4. The upshot is: giving a map α : Y → A in Set is the same as
giving a map α : X → A in Set satisfying α(x) = α(x′) if x ∼ x′.

What happens if we replace Set with Top in our above discussion? The reader
already knows from their background how to work with quotient spaces, but let’s
pretend we forgot. This will help the reader develop their own intuition.

Let X be a topological space and ∼ an equivalence relation on X. Classically,
the quotient space X/∼ in Top is defined to be the quotient set X/∼ in Set,
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equipped with an appropriate topology. Let’s follow our noses to rediscover this
topology, called the quotient space topology (or identification topology). The idea
is: we want the same mapping properties in (1.25) to be true, but for Set replaced
by Top. In particular, this means that we need a topology on the set X/∼ such
that the projection function p is continuous; i.e., inverse images of open subsets
are open. There are two extremes. If we give the set X/∼ the smallest topology
possible (i.e., the fewest open sets possible, where only ∅ and X/∼ are open, and
hence is the trivial (or indiscrete) topology) then the map p is certainly continuous,
but the set X/∼ (with this trivial topology) then becomes difficult to map out of
in Top. The other extreme is to give the set X/∼ the largest topology such that p
is continuous—this is called the topology coinduced on the set X/∼ by the function
p; for further reading, see [4, p. 29], [6, p. 138] and [8, pp. 4–5].

Proposition 1.4.5. The topology coinduced on the set X/∼ by the projection
function p : X → X/∼ is characterized by the property that if A is a topological
space, a function α : X/∼ → A is continuous if and only if the composite αp is
continuous.

Proof. Here is the basic idea. The largest topology on the set X/∼ such that
p is continuous, called the topology coinduced by p, is given by the collection

{W ⊂ X/∼ | p−1(W ) ⊂ X is open}(1.27)

of inverse images. □

This means that if we give the setX/∼ the topology coinduced by the projection
function p : X → X/∼, then the desired universal property will be satisfied—this
is the quotient space topology (or identification topology) on the set X/∼. Notice
how we have been naturally led to the quotient space topology by considering
desirable mapping properties. This is the topology that we equip the set X/∼
with when we regard X/∼ as a quotient space of X; in this case, we call the
projection map p : X → X/∼, defined by p(x) = [x], a quotient space projection (or
identification projection). Hence we have verified that p : X → X/∼ satisfies the
following mapping property.

Proposition 1.4.6 (Universal property of quotient spaces in Top). If X is a
topological space and ∼ is an equivalence relation on X, then the quotient space
projection p : X → X/∼ is initial with respect to all maps out of X that identify
equivalent elements of X in Top; i.e., for any topological space A and map of the
form α : X → A in Top satisfying α(x) = α(x′) if x ∼ x′, there exists a unique
map α in Top which makes the diagram

X
α //

p

��

A

X/∼
α

∃!

FF(1.28)

commute; i.e., such that αp = α.

Remark 1.4.7. The upshot is: giving a map α : X/∼ → A in Top is the same
as giving a map α : X → A in Top satisfying α(x) = α(x′) if x ∼ x′.

Let’s turn this into a notion that makes sense up to isomorphism. Let X be
a topological space and p : X → Y a surjective map in Set. The idea is: we want
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the same mapping properties in (1.26) to be true, but for Set replaced by Top.
Reasoning as above, we can give the set Y the largest topology such that p is
continuous—this is called the topology coinduced on the set Y by the function p;
for further reading, see [4, p. 29] and [8, pp. 4–5].

Proposition 1.4.8. The topology coinduced on the set Y by the surjective
function p : X → Y is characterized by the property that if A is a topological space,
a function α : Y → A is continuous if and only if the composite αp is continuous.

Proof. Here is the basic idea. The largest topology on the set Y such that p
is continuous, called the topology coinduced by p, is given by the collection

{W ⊂ Y | p−1(W ) ⊂ X is open}(1.29)

of inverse images. □

This means that if we give the set Y the topology coinduced by the surjective
function p : X → Y , then the desired universal property will be satisfied; in this
case, we call the surjection p : X → Y a quotient space surjection (or identification
surjection, or simply, a quotient space projection or identification projection, since
that’s what it is up to isomorphism). Notice how we have been naturally led to
this topology by considering desirable mapping properties. Hence we have verified
that p : X → Y satisfies the following mapping property.

Proposition 1.4.9 (Universal property of quotient space surjections in Top).
If p : X → Y is a quotient space surjection in Top and ∼ denotes the equivalence
relation on X associated to p, then the map p is initial with respect to all maps out
of X that identify equivalent elements of X in Top; i.e., for any topological space
A and map of the form α : X → A in Top satisfying α(x) = α(x′) if x ∼ x′, there
exists a unique map α in Top which makes the diagram

X
α //

p

��

A

Y
α

∃!

GG(1.30)

commute; i.e., such that αp = α.

Remark 1.4.10. The upshot is: giving a map α : Y → A in Top is the same as
giving a map α : X → A in Top satisfying α(x) = α(x′) if x ∼ x′.

Remark 1.4.11. It’s worth pointing out that p in (1.30) can be written as the
composite X → X/∼ ∼= Y in Top, where X/∼ has the quotient space topology.

1.5. Equalizers

Consider any pair of maps in Set of the form

Y
f
//

f ′
// Z(1.31)

Classically, the equalizer of the pair of maps (1.31) in Set is defined to be the subset
E ⊂ Y given by E := {y ∈ Y | f(y) = f ′(y)}. There is a map i of the form

E
i // Y

f
//

f ′
// Z fi = f ′i(1.32)
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in Set, defined by i(y) = y (i.e., i is the usual inclusion map to Y ), which satisfies
the following universal property; for further reading, see [5, p. 70] and [7, p. 78].

Proposition 1.5.1 (Universal property of equalizers in Set). If f, f ′ is a pair
of maps in Set of the form (1.31), then the map i in (1.32) is terminal with respect
to all maps into Y that equalize f, f ′ in Set; i.e., for any set A and map of the form
α : A→ Y in Set with fα = f ′α, there exists a unique map α in Set which makes
the diagram

E
i // Y

f
//

f ′
// Z fi = f ′i

A

α

HH

∃! α

OO

fα = f ′α

(1.33)

commute; i.e., such that i α = α.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
α(a) = α(a) for each a ∈ A. Existence follows since this is a well-defined map in
Set. □

Remark 1.5.2. The upshot is: giving a map α : A→ E in Set is the same as
giving a map α : A→ Y in Set with fα = f ′α.

Remark 1.5.3. The mapping properties in (1.33) characterize the equalizer E
of f, f ′ in Set, up to isomorphism. Let’s verify this. Suppose there is a set E′

together with a map i′ of the form

E′ i′ // Y
f
//

f ′
// Z fi′ = f ′i′(1.34)

in Set, which satisfies the universal property in (1.33); i.e., such that the map i′ is
terminal with respect to all maps into Y that equalize f, f ′ in Set. Let’s verify that
E′ ∼= E in Set: we want to compare the sets E and E′, and the only game in town
is the universal property; so let’s use it. Consider the solid diagram of the form

E′

i′

��

a // E

i

��

∃!
b // E′

i′

��

∃!
a // E

i

��

Y Y Y Y

(1.35)

in Set. By the universal property of the map i, there exists a unique map a in
Set which makes the right-hand square commute (i.e., such that ia = i′). By the
universal property of the map i′, there exists a unique map b in Set which makes the
middle square commute (i.e., such that i′b = i). The identity map id on E satisfies
i id = i; but ab also satisfies iab = i. Hence, by uniqueness, ab = id. Similarly,
by uniqueness, ba = id. Hence we have verified (using four applications of the
universal property) that E′ ∼= E in Set. Conversely, if there is a set E′ together

with an isomorphism a : E′ ∼=−→ E in Set, then it is easy to verify that the map
i′ := ia satisfies the mapping properties in (1.33); i.e., it is terminal with respect
to all maps into Y that equalize f, f ′ in Set.
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An equalizer diagram in Set is a diagram of the form (1.32) that satisfies the
universal property in (1.33). For instance, if Y is a set, then the diagram

Y Y //
// ∗

is an equalizer diagram in Set.

Remark 1.5.4. A diagram that is naturally isomorphic to an equalizer diagram
in Set, is an equalizer diagram in Set.

What happens if we replace Set with Top in our above discussion? The basic
idea is to calculate the equalizer E in Set, and then equip it with an appropriate
topology. We have already worked out what we need—the subspace topology.
Consider any pair of maps in Top of the form

Y
f
//

f ′
// Z(1.36)

Classically, the equalizer of the pair of maps (1.36) in Top is defined to be the
subspace E ⊂ Y given by E := {y ∈ Y | f(y) = f ′(y)}. There is a map i of the form

E
i // Y

f
//

f ′
// Z fi = f ′i(1.37)

in Top, defined by i(y) = y (i.e., i is the usual inclusion map to Y ), which satisfies
the following universal property.

Proposition 1.5.5 (Universal property of equalizers in Top). If f, f ′ is a pair
of maps in Top of the form (1.36), then the map i in (1.37) is terminal with respect
to all maps into Y that equalize f, f ′ in Top; i.e., for any topological space A and
map of the form α : A→ Y in Top with fα = f ′α, there exists a unique map α in
Top which makes the diagram

E
i // Y

f
//

f ′
// Z fi = f ′i

A

α

HH

∃! α

OO

fα = f ′α

(1.38)

commute; i.e., such that i α = α.

Proof. This follows from easily from above. □

Remark 1.5.6. The upshot is: giving a map α : A→ E in Top is the same as
giving a map α : A→ Y in Top with fα = f ′α.

Remark 1.5.7. Arguing as above (Remark 1.5.3), the mapping properties in
(1.38) characterize the equalizer of f, f ′ in Top, up to isomorphism.

An equalizer diagram in Top is a diagram of the form (1.37) that satisfies the
universal property in (1.38). For instance, if Y is a topological space, then the
diagram Y Y //

//∗ is an equalizer diagram in Top.

Remark 1.5.8. A diagram that is naturally isomorphic to an equalizer diagram
in Top, is an equalizer diagram in Top.
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1.6. Coequalizers

If we reverse all the arrows in an equalizer diagram and its mapping properties,
we are naturally led to the mapping properties of a coequalizer diagram: let’s
develop this idea. Consider any pair of maps in Set of the form

W
g
//

g′
// X(1.39)

Classically, the coequalizer of the pair of maps (1.39) in Set is defined to be the
quotient set Q := X/∼ , where ∼ is the equivalence relation on X generated by
g(w) ∼ g′(w) for each w ∈W . There is a map p of the form

W
g
//

g′
// X

p
// Q pg = pg′(1.40)

in Set, defined by p(x) = [x] (i.e., p is the usual projection map on X), which
satisfies the following universal property; for further reading, see [5, p. 64] and [7,
p. 81].

Proposition 1.6.1 (Universal property of coequalizers in Set). If g, g′ is a pair
of maps in Set of the form (1.39), then the map p in (1.40) is initial with respect
to all maps out of X that coequalize g, g′ in Set; i.e., for any set A and map of
the form α : X → A in Set satisfying αg = αg′, there exists a unique map α in Set
which makes the diagram

W
g
//

g′
// X

p
//

α
''

Q

∃! α

��

pg = pg′

A αg = αg′

(1.41)

commute; i.e., such that αp = α.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
α([x]) = α(x) for each x ∈ X. Existence follows since this is a well-defined map in
Set. □

Remark 1.6.2. The upshot is: giving a map α : Q→ A in Set is the same as
giving a map α : X → A in Set with αg = αg′.

Remark 1.6.3. The mapping properties in (1.41) characterize the coequalizer
of g, g′ in Set, up to isomorphism. Let’s verify this. Suppose there is a set Q′

together with a map p′ of the form

W
g
//

g′
// X

p′
// Q′ p′g = p′g′(1.42)

in Set, which satisfies the universal property in (1.41); i.e., such that the map p′ is
initial with respect to all maps out of X that coequalize g, g′ in Set. Let’s verify
that Q′ ∼= Q in Set: we want to compare the sets Q and Q′, and the only game in
town is the universal property; so let’s use it. Consider the solid diagram of the
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form

X

p

��

X

p′

��

X

p

��

X

p′

��

Q
a
// Q′ ∃!

b
// Q

∃!
a
// Q′

(1.43)

in Set. By the universal property of the map p, there exists a unique map a in
Set which makes the right-hand square commute (i.e., such that ap = p′). By the
universal property of the map p′, there exists a unique map b in Set which makes
the middle square commute (i.e., such that bp′ = p). The identity map id on Q′

satisfies id p′ = p′; but ab also satisfies abp′ = p′. Hence, by uniqueness, ab = id.
Similarly, by uniqueness, ba = id. Hence we have verified (using four applications of
the universal property) that Q ∼= Q′ in Set. Conversely, if there is a set Q′ together

with an isomorphism a : Q
∼=−→ Q′ in Set, then it is easy to verify that the map

p′ := ap satisfies the mapping properties in (1.41); i.e., it is initial with respect to
all maps out of X that coequalize g, g′ in Set.

A coequalizer diagram in Set is a diagram of the form (1.40) that satisfies the
universal property in (1.41). For instance, if X is a set, then the diagram

∅ //
// X X

is a coequalizer diagram in Set.

Remark 1.6.4. A diagram that is naturally isomorphic to a coequalizer dia-
gram in Set, is a coequalizer diagram in Set.

What happens if we replace Set with Top in our above discussion? The basic
idea is to calculate the coequalizer Q in Set, and then equip it with an appropriate
topology. We have already worked out what we need—the quotient space topology.
Consider any pair of maps in Top of the form

W
g
//

g′
// X(1.44)

Classically, the coequalizer of the pair of maps (1.44) in Top is defined to be the
quotient space Q := X/∼ , where ∼ is the equivalence relation on X generated by
g(w) ∼ g′(w) for each w ∈W . There is a map p of the form

W
g
//

g′
// X

p
// Q pg = pg′(1.45)

in Top, defined by p(x) = [x] (i.e., p is the usual projection map on X), which
satisfies the following universal property.

Proposition 1.6.5 (Universal property of coequalizers in Top). If g, g′ is a
pair of maps in Top of the form (1.44), then the map p in (1.45) is initial with
respect to all maps out of X that coequalize g, g′ in Top; i.e., for any topological
space A and map of the form α : X → A in Top satisfying αg = αg′, there exists a
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unique map α in Top which makes the diagram

W
g
//

g′
// X

p
//

α
''

Q

∃! α

��

pg = pg′

A αg = αg′

(1.46)

commute; i.e., such that αp = α.

Proof. This follows from easily from above. □

Remark 1.6.6. The upshot is: giving a map α : Q→ A in Top is the same as
giving a map α : X → A in Top with αg = αg′.

Remark 1.6.7. Arguing as above (Remark 1.6.3), the mapping properties in
(1.46) characterize the coequalizer of g, g′ in Top, up to isomorphism.

A coequalizer diagram in Top is a diagram of the form (1.45) that satisfies the
universal property in (1.46). For instance, if X is a topological space, then the
diagram

∅ //
// X X

is a coequalizer diagram in Top.

Remark 1.6.8. A diagram that is naturally isomorphic to a coequalizer dia-
gram in Top, is a coequalizer diagram in Top.

1.7. Pullbacks

Consider any diagram in Set of the form

Y

f1

��

X
f0

// Z

(1.47)

Classically, the pullback of the pair of maps (1.47) in Set is defined to be the subset
of X × Y given by X ×Z Y := {(x, y) ∈ X × Y | f0(x) = f1(y)}. There is a diagram
of the left-hand form

X ×Z Y

t0

��

t1 // Y

X

X ×Z Y

t0

��

t1 // Y

f1

��

X
f0

// Z

(1.48)

in Set, defined by t0(x, y) = x and t1(x, y) = y, which makes the right-hand diagram
commute (i.e., such that f0t0 = f1t1) and satisfies the following universal property;
for further reading, see [5, p. 71] and [7, pp. 78–80].

Proposition 1.7.1 (Universal property of pullbacks in Set). If f0, f1 is a pair
of maps in Set of the form (1.47), then the left-hand diagram in (1.48) is terminal
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with respect to all such diagrams in Set; i.e., for any set A and maps α0, α1 in Set
which make the outer diagram

A α1

""

α0

%%

∃!
α

##

X ×Z Y

t0

��

t1 // Y

f1

��

X
f0

// Z

(1.49)

commute (i.e., such that f0α0 = f1α1), there exists a unique map α in Set which
makes the diagram commute; i.e, such that t0 α = α0 and t1 α = α1.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
α(a) = (α0(a), α1(a)) for each a ∈ A. Existence follows since this is a well-defined
map in Set. □

Remark 1.7.2. The upshot is: giving a map α : A→ X ×Z Y in Set is the same
as giving maps α0, α1 in Set which make the outer diagram in (1.49) commute. For
this reason, sometimes α is written as α = (α0, α1).

Remark 1.7.3. Arguing as above (e.g., Remark 1.5.3), the mapping properties
in (1.49) characterize the pullback of f0, f1 in Set, up to isomorphism.

A pullback diagram (or cartesian diagram) in Set is a commutative diagram of
the right-hand form in (1.48) that satisfies the universal property in (1.49). In this
case, t0 (resp. t1) is called a pullback of f1 along f0 (resp. f0 along f1).

Remark 1.7.4. A diagram that is naturally isomorphic to a pullback diagram
in Set, is a pullback diagram in Set. The pullback of an isomorphism in Set, is an
isomorphism in Set; i.e., if f0 (resp. f1) in (1.49) is an isomorphism in Set, then so
is t1 (resp. t0).

For instance, if X is a set and A,B ⊂ X are subsets, then the left-hand and
middle diagrams

A ∩B

��

// B

��

A // A ∪B

A ∩B

��

// B

��

A // X

F

��

// X

p

��

∗
y
// Y

of inclusion maps are pullback diagrams in Set. If we consider their universal
properties only, the middle diagram encodes the same information as the left-hand
diagram, but is less efficient at the task (at least when X ̸= A ∪B); i.e., the lower
right-hand set in the middle diagram is larger than it needs to be. If p : X → Y
is a map in Set and y ∈ Y , then the right-hand diagram is a pullback diagram in
Set; here, F := p−1({y}) ⊂ X, the upper horizontal map is an inclusion, and the
bottom horizontal map picks out the point y ∈ Y . The resulting sequence of maps
F → X → Y is called a fiber sequence in Set and F is called the fiber of p over the
point y.



22 1. BASIC CONSTRUCTIONS: MAPPING PROPERTIES

Let’s look at a few more examples. Consider any sets X,Y and map g : X → Y
in Set, then the commutative diagrams

X × Y

pr0

��

pr1 // Y

��
X // ∗

X
g
// Y

X
g
// Y

are pullback diagrams in Set. Consider any pair of left-hand pullback diagrams of
the form

A

��

// C

��

B // D

A′

��

// C ′

��

B′ // D′

A×A′

��

// C × C ′

��

B ×B′ // D ×D′

(1.50)

in Set. Then the corresponding right-hand diagram is a pullback diagram in Set.

Remark 1.7.5. Notice how we have not labeled the arrows above. This is a
good idea, as it is less distracting, and furthermore, will get the reader in the habit
of coming up with their own notation for the arrows when working with various
diagrams. In other words, we will want to add our own labels for the arrows when
verifying the above assertions—this is easily done in each case by verifying the
universal property.

For instance, consider any set X and pullback diagram of the left-hand form

A

��

// C

��

B // D

A×X

��

// C

��

B ×X // D

X // ∗

X // ∗

(1.51)

in Set. Then the corresponding middle diagram is a pullback diagram in Set; this is
because the right-hand diagram is a pullback diagram in Set, together with (1.50).
Similarly, consider any pullback diagram of the left-hand form in (1.51). If B → X
is a map in Set, then the corresponding diagram of the form

A

��

// C ×X

��

B // D ×X

is a pullback diagram in Set; this is because verifying the universal property of
pullbacks reduces to verifying it for the left-hand diagram in (1.51).

Any commutative diagram of the form

X

∼=
��

// Y

∼=
��

X ′ // Y ′

in Set is a pullback diagram in Set. The following is a useful observation.
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Proposition 1.7.6. Consider any commutative diagram of the form

A

��

//

(I)

C

��

//

(II)

E

��

B // D // F

in Set and denote by (I) + (II) the outer diagram.

(a) If (I) and (II) are pullback diagrams in Set, then so is (I) + (II).
(b) If (II) and (I) + (II) are pullback diagrams in Set, then so is (I).

Proof. Each part follows by checking the universal property of the desired
pullback diagram, by using the universal property of the two known pullback di-
agrams; for instance, first verify existence of the desired map, and then check its
uniqueness. □

What happens if we replace Set with Top in our above discussion? The basic
idea is to calculate the pullbackX×ZY in Set, and then equip it with an appropriate
topology. We have already worked out what we need—the product topology and
the subspace topology. Consider any diagram in Top of the form

Y

f1

��

X
f0

// Z

(1.52)

Classically, the pullback of the pair of maps (1.52) in Top is defined to be the
subspace of X × Y given by X ×Z Y := {(x, y) ∈ X × Y | f0(x) = f1(y)}. There is
a diagram of the left-hand form

X ×Z Y

t0

��

t1 // Y

X

X ×Z Y

t0

��

t1 // Y

f1

��

X
f0

// Z

(1.53)

in Top, defined by t0(x, y) = x and t1(x, y) = y, which makes the right-hand
diagram commute (i.e., such that f0t0 = f1t1); it satisfies the following universal
property.

Proposition 1.7.7 (Universal property of pullbacks in Top). If f0, f1 is a pair
of maps in Top of the form (1.52), then the left-hand diagram in (1.53) is terminal
with respect to all such diagrams in Top; i.e., for any topological space A and maps
α0, α1 in Top which make the outer diagram

A α1

""

α0

%%

∃!
α

##

X ×Z Y

t0

��

t1 // Y

f1

��

X
f0

// Z

(1.54)
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commute (i.e., such that f0α0 = f1α1), there exists a unique map α in Top which
makes the diagram commute; i.e, such that t0 α = α0 and t1 α = α1.

Proof. This follows from easily from above. □

Remark 1.7.8. The upshot is: giving a map α : A→ X ×Z Y in Top is the
same as giving maps α0, α1 in Top which make the outer diagram in (1.54) commute.
For this reason, sometimes α is written as α = (α0, α1).

For instance, consider any maps (p0, p1) and (h0, h1) of the indicated left-hand
form in (1.55); i.e., such that f0p0 = f1p1 and f0h0 = f1h1. Then the left-hand
diagram of the form

A

i

��

g
// C

(p0,p1)

��

B
(h0,h1)

// X ×Z Y

A

i

��

g
// C

p0

��

B
h0

// X

A

i

��

g
// C

p1

��

B
h1

// Y

(1.55)

in Top commutes if and only if the corresponding right-hand diagrams in Top com-
mute.

Remark 1.7.9. Arguing as above (e.g., Remark 1.5.3), the mapping properties
in (1.54) characterize the pullback of f0, f1 in Top, up to isomorphism.

A pullback diagram (or cartesian diagram) in Top is a commutative diagram of
the right-hand form in (1.53) that satisfies the universal property in (1.54). In this
case, t0 (resp. t1) is called a pullback of f1 along f0 (resp. f0 along f1).

Remark 1.7.10. A diagram that is naturally isomorphic to a pullback diagram
in Top, is a pullback diagram in Top. The pullback of an isomorphism in Top, is an
isomorphism in Top.

Remark 1.7.11. Let’s reformulate our approach to showing the existence of
pullback diagrams in Top (resp. Set), in terms of products and equalizers. Suppose
we start off with the diagram in (1.52) (resp. in (1.47)). We want to build its
pullback diagram, but perhaps we don’t remember how it works. Here is a useful
approach: as a first step, look for something that has naturally occurring maps into
both X and Y ; we already know of such a construction, it is the product X × Y .
Giving this a try, we get a diagram of the left-hand form

X × Y

pr0

��

pr1 // Y

f1

��

X
f0

// Z

E
i

##

t0=pr0 i

%%

t1=pr1 i

!!

X × Y

pr0

��

pr1 // Y

f1

��

X
f0

// Z

There is no reason for the left-hand diagram to commute, in general. So as a
second step, the idea is to force it to commute by restricting to the equalizer E
of the pair of maps f0 pr0, f1 pr1. This leads us to the right-hand outer diagram
which commutes (we just forced it to); this right-hand outer diagram is a pullback
diagram. It is easy to check that E ∼= X ×Z Y : we could either use the classical
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constructions of product and equalizer to recover the description in (1.53) (resp.
(1.48)), or we could work directly with the universal properties of product diagrams
and equalizer diagrams. Conceptually, this means that once we know products and
equalizers exist in Top (resp. Set), we know that pullbacks exist in Top (resp. Set).

1.8. Pushouts

If we reverse all the arrows in a pullback diagram and its mapping properties,
we are naturally led to the mapping properties of a pushout diagram: let’s develop
this idea. Consider any diagram in Set of the form

W

g0

��

g1 // Y

X

(1.56)

Classically, the pushout of the pair of maps (1.56) in Set is defined to be the quotient
set given by X ⨿W Y := (X ⨿Y )/∼ , where ∼ is the equivalence relation on X ⨿Y
generated by g0(w) ∼ g1(w) for each w ∈ W . There is a diagram of the left-hand
form

Y

i1

��

X
i0
// X ⨿W Y

W

g0

��

g1 // Y

i1

��

X
i0
// X ⨿W Y

(1.57)

in Set, defined by i0(x) = [x] and i1(y) = [y], which makes the right-hand diagram
commute (i.e., such that i0g0 = i1g1) and satisfies the following universal property;
for further reading, see [5, pp. 65–66] and [7, p. 81].

Proposition 1.8.1 (Universal property of pushouts in Set). If g0, g1 is a pair
of maps in Set of the form (1.56), then the left-hand diagram in (1.57) is initial
with respect to all such diagrams in Set; i.e., for any set A and maps α0, α1 in Set
which make the outer diagram

W

g0

��

g1 // Y

i1

�� α1

��

X
i0
//

α0 //

X ⨿W Y

∃!
α

$$
A

(1.58)

commute (i.e., such that α0g0 = α1g1), there exists a unique map α in Set which
makes the diagram commute; i.e, such that α i0 = α0 and α i1 = α1.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
α([x]) = α0(x) for each x ∈ X and α([y]) = α1(y) for each y ∈ Y . Existence follows
since this is a well-defined map in Set. □

Remark 1.8.2. The upshot is: giving a map α : X ⨿W Y → A in Set is the
same as giving maps α0, α1 in Set which make the outer diagram in (1.58) commute.
For this reason, sometimes α is written as α = (α0, α1).
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Remark 1.8.3. Arguing as above, the mapping properties in (1.58) characterize
the pushout of g0, g1 in Set, up to isomorphism.

A pushout diagram (or cocartesian diagram) in Set is a commutative diagram
of the right-hand form in (1.57) that satisfies the universal property in (1.58). In
this case, i0 (resp. i1) is called a pushout of g1 along g0 (resp. g0 along g1).

Remark 1.8.4. A diagram that is naturally isomorphic to a pushout diagram
in Set, is a pushout diagram in Set. The pushout of an isomorphism in Set is an
isomorphism in Set; i.e., if g0 (resp. g1) in (1.58) is an isomorphism in Set, then so
is i1 (resp. i0).

For instance, if X is a set and A,B ⊂ X are subsets, then the left-hand diagram

A ∩B

��

// B

��

A // A ∪B

(A ∩B)⨿ (A ∩B)

��

// B

��

A // A ∪B

W

��

g
// X

��

∗ // X/g(W )

of inclusion maps is a pushout diagram in Set. Similarly, the middle diagram of
inclusion maps and maps induced by inclusions, is a pushout diagram in Set. If
we consider their universal properties only, the middle diagram encodes the same
information as the left-hand diagram, but is less efficient at the task (at least when
A ∩ B ̸= ∅); i.e., the upper left-hand set in the middle diagram is larger than it
needs to be. If g : W → X is a map in Set and a ∈W , then the right-hand diagram
is a pushout diagram in Set; here, X/g(W ) := X/∼, where ∼ is the equivalence
relation on X generated by g(a) ∼ g(w) for each w ∈W . The resulting sequence of
maps W → X → X/g(W ) is called a cofiber sequence in Set and X/g(W ) is called
the cofiber of g. The bottom horizontal map picks out the point [g(a)] ∈ X/g(W )
that the subset g(W ) was collapsed to.

Let’s look at a few more examples. Consider any sets X,Y and map g : X → Y
in Set, then the commutative diagrams

∅

��

// Y

in1

��

X
in0

// X ⨿ Y

X
g
// Y

X
g
// Y

are pushout diagrams in Set. Consider any pair of left-hand pushout diagrams of
the form

A

��

// C

��

B // D

A′

��

// C ′

��

B′ // D′

A⨿A′

��

// C ⨿ C ′

��

B ⨿B′ // D ⨿D′

(1.59)

in Set. Then the corresponding right-hand diagram is a pushout diagram in Set.

Remark 1.8.5. Notice how we have not labeled the arrows above. This is a
good idea, as it is less distracting, and furthermore, will get the reader in the habit
of coming up with their own notation for the arrows when working with various
diagrams. In other words, we will want to add our own labels for the arrows when
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verifying the above assertions—this is easily done in each case by verifying the
universal property.

For instance, consider any set X and pushout diagram of the left-hand form

A

��

// C

��

B // D

A

��

// C ⨿X

��

B // D ⨿X

∅ // X

∅ // X

(1.60)

in Set. Then the corresponding middle diagram is a pushout diagram in Set; this is
because the right-hand diagram is a pushout diagram in Set, together with (1.59).
Similarly, consider any pushout diagram of the left-hand form in (1.60). If X → C
is a map in Set, then the corresponding diagram of the form

A⨿X

��

// C

��

B ⨿X // D

is a pushout diagram in Set; this is because verifying the universal property of
pushouts reduces to verifying it for the left-hand diagram in (1.60).

Any commutative diagram of the form

X

∼=
��

// Y

∼=
��

X ′ // Y ′

in Set is a pushout diagram in Set. The following is a useful observation.

Proposition 1.8.6. Consider any commutative diagram of the form

A

��

//

(I)

C

��

//

(II)

E

��

B // D // F

in Set and denote by (I) + (II) the outer diagram.

(a) If (I) and (II) are pushout diagrams in Set, then so is (I) + (II).
(b) If (I) and (I) + (II) are pushout diagrams in Set, then so is (II).

Proof. Each part follows by checking the universal property of the desired
pushout diagram, by using the universal property of the two known pushout di-
agrams; for instance, first verify existence of the desired map, and then check its
uniqueness. □

What happens if we replace Set with Top in our above discussion? We have
already worked out what we need. Consider any diagram in Top of the form

W

g0

��

g1 // Y

X

(1.61)
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Classically, the pushout of the pair of maps in (1.61) (in Top) is defined to be the
quotient space given by X⨿W Y := (X⨿Y )/∼ , where ∼ is the equivalence relation
on X ⨿ Y generated by g0(w) ∼ g1(w) for each w ∈ W . There is a diagram of the
left-hand form

Y

i1

��

X
i0
// X ⨿W Y

W

g0

��

g1 // Y

i1

��

X
i0
// X ⨿W Y

(1.62)

in Top, defined by i0(x) = [x] and i1(y) = [y], which makes the right-hand diagram
commute (i.e., such that i0g0 = i1g1); it satisfies the following universal property.

Proposition 1.8.7 (Universal property of pushouts in Top). If g0, g1 is a pair
of maps in Top of the form (1.61), then the left-hand diagram in (1.62) is initial
with respect to all such diagrams in Top; i.e., for any topological space A and maps
α0, α1 in Top which make the outer diagram

W

g0

��

g1 // Y

i1

�� α1

��

X
i0
//

α0 //

X ⨿W Y

∃!
α

$$
A

(1.63)

commute (i.e., such that α0g0 = α1g1), there exists a unique map α in Top which
makes the diagram commute; i.e, such that α i0 = α0 and α i1 = α1.

Proof. This follows from easily from above. □

Remark 1.8.8. The upshot is: giving a map α : X ⨿W Y → A in Top is the
same as giving maps α0, α1 in Top which make the outer diagram in (1.63) commute.
For this reason, sometimes α is written as α = (α0, α1).

For instance, consider any maps (k0, k1) and (n0, n1) of the indicated left-hand
form in (1.64); i.e., such that k0g0 = k1g1 and n0g0 = n1g1. Then the left-hand
diagram of the form

X ⨿W Y

(k0,k1)

��

(n0,n1)
// C

p

��

Z
h

// D

X

k0

��

n0 // C

p

��

Z
h
// D

Y

k1

��

n1 // C

p

��

Z
h
// D

(1.64)

in Top commutes if and only if the corresponding right-hand diagrams in Top com-
mute.

Remark 1.8.9. Arguing as above, the mapping properties in (1.63) characterize
the pushout of g0, g1 in Top, up to isomorphism.

A pushout diagram (or cocartesian diagram) in Top is a commutative diagram
of the right-hand form in (1.62) that satisfies the universal property in (1.63). In
this case, i0 (resp. i1) is called a pushout of g1 along g0 (resp. g0 along g1).
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Remark 1.8.10. A diagram that is naturally isomorphic to a pushout diagram
in Top, is a pushout diagram in Top. The pushout of an isomorphism in Top, is an
isomorphism in Top.

Remark 1.8.11. Let’s reformulate our approach to showing the existence of
pushout diagrams in Top (resp. Set)—in terms of coproducts and coequalizers.
Suppose we start off with the diagram in (1.61) (resp. in (1.56)). We want to build
its pushout diagram, but perhaps we don’t remember how it works. Here is a useful
approach: as a first step, look for something that receives naturally occurring maps
out of both X and Y ; we already know of such a construction, it is the coproduct
X ⨿ Y . Giving this a try, we get a diagram of the left-hand form

W

g0

��

g1 // Y

in1

��

X
in0

// X ⨿ Y

W

g0

��

g1 // Y

in1

�� i1=p in1

��

X
in0

//

i0=p in0 //

X ⨿ Y
p

##
Q

There is no reason for the left-hand diagram to commute, in general. So as a second
step, the idea is to force it to commute by mapping to the coequalizerQ of the pair of
maps in0 g0, in1 g1. This leads us to the right-hand outer diagram which commutes
(we just forced it to); this right-hand outer diagram is a pushout diagram. It is
easy to check that Q ∼= X ⨿W Y : we could either use the classical constructions
of coproduct and coequalizer to recover the description in (1.62) (resp. (1.57)), or
we could work directly with the universal properties of coproduct diagrams and
coequalizer diagrams. Conceptually, this means that once we know coproducts and
coequalizers exist in Top (resp. Set), we know that pushouts exist in Top (resp.
Set).

1.9. Small products: Products indexed over a set

Let {B0, . . . , Bn} be a collection of sets, indexed on the set {0, . . . , n}, for
some n ≥ 0, and denote by B the union of the sets Bi for each 0 ≤ i ≤ n.
Recall that an (n+ 1)-tuple (b0, . . . , bn) of elements of B is a function of the form
b : {0, . . . , n} → B; we usually denote the value of b at i by bi, instead of b(i), and
we usually denote the (n+1)-tuple b by (b0, . . . , bn). In particular, a 2-tuple (b0, b1)
is the same as an ordered pair (b0, b1). Classically, the product B0 × · · · × Bn in
Set is defined to be the set of (n+ 1)-tuples

B0 × · · · ×Bn := {(b0, . . . , bn)| b0 ∈ B0, . . . , bn ∈ Bn}(1.65)

There are maps of the form

Bi B0 × · · · ×Bn

prioo 0 ≤ i ≤ n(1.66)

in Set, defined by pri(b0, . . . , bn) = bi, 0 ≤ i ≤ n (i.e., each map pri is the usual
projection map to Bi), which satisfies the following mapping property; for further
reading, see [5, p. 69], [6, p. 113] and [7, p. 77].
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Proposition 1.9.1 (Universal property of finite products in Set). Let n ≥ 0.
If B0, . . . , Bn are sets, then diagram (1.66) is terminal with respect to all such
diagrams into Bi, 0 ≤ i ≤ n, in Set; i.e., for any set A and diagram of the form

Bi A
fioo 0 ≤ i ≤ n

in Set, there exists a unique map f in Set which makes the diagram

Bi B0 × · · · ×Bn

prioo

A
fi

``

∃! f

OO

0 ≤ i ≤ n

(1.67)

commute; i.e., such that pri f = fi for each 0 ≤ i ≤ n.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
f(a) = (f0(a), . . . , fn(a)) for each a ∈ A. Existence follows since this is a well-
defined map in Set. □

Remark 1.9.2. The upshot is: giving a map f : A→ B0 × · · · ×Bn in Set is
the same as giving maps fi : A→ Bi, 0 ≤ i ≤ n, in Set. For this reason, sometimes
f is written as f = (f0, . . . , fn).

WE NEED TO SAY SOMETHING ABOUT THE EMPTY INDEX SET...

More generally, let {Bα}α∈I be a collection of sets, indexed on a set I, and
denote by B the union of the sets Bα for each α ∈ I. Recall that an I-tuple
(bα)α∈I of elements of B is a function of the form b : I → B; we usually denote
the value of b at α by bα, instead of b(α), and we usually denote the I-tuple b
by (bα)α∈I , or simply (bα), when the index set I is clear. Classically, the product∏

α∈I Bα in Set is defined to be the set of I-tuples∏
α∈I

Bα := {(bα)α∈I | bα ∈ Bα for each α ∈ I}(1.68)

There are maps of the form

Bα

∏
α∈I Bα

prαoo α ∈ I(1.69)

in Set, defined by prα′

(
(bα)α∈I

)
= bα′ for each α′ ∈ I (i.e., each map prα is the

usual projection map to Bα), which satisfies the following mapping property; for
further reading, see [5, p. 69], [6, p. 113] and [7, p. 77].

Proposition 1.9.3 (Universal property of products in Set). Let {Bα}α∈I be a
collection of sets, indexed on a set I. Then diagram (1.69) is terminal with respect
to all such diagrams into Bα, α ∈ I, in Set; i.e., for any set A and diagram of the
form

Bα A
fαoo α ∈ I
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in Set, there exists a unique map f in Set which makes the diagram

Bα

∏
α∈I Bα

prαoo

A
fα

]]

∃! f

OO

α ∈ I

(1.70)

commute; i.e., such that prα f = fα for each α ∈ I.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
f(a) = (fα(a))α∈I for each a ∈ A. Existence follows since this is a well-defined
map in Set. □

Remark 1.9.4. The upshot is: giving a map f : A→
∏

α∈I Bα in Set is the

same as giving maps fα : A→ Bα, α ∈ I, in Set. For this reason, sometimes f is
written as f = (fα)α∈I or simply f = (fα)

Remark 1.9.5. Arguing as above, the mapping properties in (1.70) characterize
the product

∏
α∈I Bα in Set, up to isomorphism.

A product diagram in Set is a diagram of the form (1.69) that satisfies the
universal property in (1.70). For instance, if I = {0, . . . , n} for some n ≥ 0, then
diagram (1.66) is a product diagram in Set and B0 × · · · ×Bn =

∏
α∈I Bα in Set.

What happens if we replace Set with Top in our above discussion? The reader
already knows from their background how to work with products of topological
spaces, but let’s pretend we forgot; this is a good idea as the intuition we develop
here, in this familiar situation, will carry over and guide us in more complicated
ones.

Let {Bα}α∈I be a collection of topological spaces, indexed on a set I. Classi-
cally, the product

∏
α∈I Bα in Top is defined to be

∏
α∈I Bα in Set, equipped with

an appropriate topology. Let’s follow our noses to rediscover this topology, called
the product topology. The idea is: we want the same mapping properties in (1.70)
to be true, but for Set replaced by Top. In particular, this means that we need
a topology on the set

∏
α∈I Bα such that the maps in (1.69) are continuous; i.e.,

inverse images of open subsets are open. There are two extremes. If we give the
set

∏
α∈I Bα the largest topology possible (i.e., the most open sets possible, where

every subset is open, and hence is the discrete topology) then the maps in (1.69)
are certainly continuous, but the set

∏
α∈I Bα (with this discrete topology) then

becomes difficult to map into in Top. The other extreme is to give the set
∏

α∈I Bα

the smallest topology such that the maps in (1.69) are continuous—this is called
the topology induced on the set

∏
α∈I Bα by the functions prα, α ∈ I.

Proposition 1.9.6. The topology induced on the set
∏

α∈I Bα by the functions
prα, α ∈ I, is characterized by the property that if A is a topological space, a
function f : A→

∏
α∈I Bα is continuous if and only if the composites prα f , α ∈ I,

are continuous.

Proof. Here is the basic idea. Consider any α′ ∈ I. The smallest topology on
the set

∏
α∈I Bα such that prα′ is continuous, called the topology induced by prα′ ,

is given by the collection of inverse images

{pr−1
α′ (U)|U ⊂ Xα′ is open}(1.71)
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The topology induced by the collection of functions prα, α ∈ I, is the smallest
topology on the set

∏
α∈I Bα which contains the topology (1.71) for each α′ ∈ I: it

is the topology generated by the union of these I-indexed collections of subsets—it
consists of ∅,

∏
α∈I Bα, all finite intersections of the generating subsets, and all

arbitrary unions of these finite intersections. In particular, a function of the form
f is continuous if and only if inverse images of the generating subsets—also called
subbasis elements—in (1.71) are open for each α′ ∈ I. □

This means that if we give the set
∏

α∈I Bα the topology induced by the func-
tions prα, α ∈ I, then the desired universal property will be satisfied—this is the
product topology on the set

∏
α∈I Bα. This is the topology we equip the set

∏
α∈I Bα

with when we consider the diagram

Bα

∏
α∈I Bα

prαoo α ∈ I(1.72)

in Top, defined by prα′

(
(bα)α∈I

)
= bα′ for each α′ ∈ I (i.e., each map prα is the

usual projection map to Bα). Notice how we have been naturally led to the product
topology by considering desirable mapping properties. Hence we have verified that
diagram (1.72) satisfies the following mapping property.

Proposition 1.9.7 (Universal property of products in Top). Let {Bα}α∈I be a
collection of sets, indexed on a set I. Then diagram (1.72) is terminal with respect
to all such diagrams into Bα, α ∈ I, in Top; i.e., for any topological space A and
diagram of the form

Bα A
fαoo α ∈ I

in Top, there exists a unique map f in Top which makes the diagram

Bα

∏
α∈I Bα

prαoo

A
fα

]]

∃! f

OO

α ∈ I

(1.73)

commute; i.e., such that prα f = fα for each α ∈ I.

Proof. This follows from easily from above. □

Remark 1.9.8. The upshot is: giving a map f : A→
∏

α∈I Bα in Top is the

same as giving maps fα : A→ Bα, α ∈ I, in Top. For this reason, sometimes f is
written as f = (fα)α∈I or simply f = (fα).

Remark 1.9.9. Arguing as above, the mapping properties in (1.73) characterize
the product

∏
α∈I Bα in Top, up to isomorphism.

A product diagram in Top is a diagram of the form (1.72) that satisfies the
universal property in (1.73). If I = {0, . . . , n}, for some n ≥ 0, then we sometimes
write diagram (1.72) in Top using the notation

Bi B0 × · · · ×Bn

prioo 0 ≤ i ≤ n(1.74)

defined by pri(b0, . . . , bn) = bi, 0 ≤ i ≤ n (i.e., each map pri is the usual projection
map to Bi). In particular, (1.74) is a product diagram in Top and in this notation
B0 × · · · ×Bn

∼=
∏

α∈I Bα in Top.
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Remark 1.9.10. A diagram that is naturally isomorphic to a product diagram
in Top (resp. Set), is a product diagram in Top (resp. Set).

1.10. Small coproducts: Coproducts indexed over a set

If we reverse all the arrows in a product diagram and its mapping properties, we
are naturally led to the mapping properties of a coproduct diagram: let’s develop
this idea. Let {Bα}α∈I be a collection of sets, indexed on a set I. Classically, the
coproduct (or disjoint union)

∐
α∈I Bα in Set is defined to be the union of disjoint

copies of Bα, α ∈ I, ∐
α∈I

Bα :=
⋃
α∈I

Bα × {α}(1.75)

Remark 1.10.1. Note that Bα
∼= Bα × {α}, for each α ∈ I, in Set and these

isomorphisms are simply a formal way to ensure that the union on the right-hand
side of (1.75) is a union of disjoint sets. For instance, if X is a set, then

∐
α∈I X

is supposed to be the disjoint union of copies of X, indexed on the set I; i.e., if we
start with a set X, then we can think of X × {α}, α ∈ I, as a collection of disjoint
copies of the set X, and hence their union

⋃
α∈I X × {α} is a union of disjoint

copies of X, indexed on the set I, which we write as
∐

α∈I X.

There are maps of the form

Bα
inα //

∐
α∈I Bα α ∈ I(1.76)

in Set, defined by inα(b) = (b, α) for each α ∈ I (i.e., each map inα is the usual
inclusion map of Bα).

Remark 1.10.2. For notational convenience reasons, we usually identify X
with its copy X × {α} for each α ∈ I; in this case, the maps in (1.76) are defined
by inα(x) = x. For instance, if we are working with

∐
α∈I X (where Bα = X for

each α ∈ I), then we simply have to keep track of which copy of X we are mapping
into; but this is indicated by the subscript on the inclusion map itself. We do not
want to think of the α-indexed copy of X as X × {α} for each α ∈ I (this is too
messy, notationally), but instead to simply think of having an I-indexed collection
of disjoint copies of X. In other words, we prefer to keep the notation as simple as
possible—this will not cause any confusion.

WE NEED TO SAY SOMETHING ABOUT THE EMPTY INDEX SET...

Following the notational convention in Remark 1.10.2, we rewrite the maps in
(1.76) as maps of the form

Bα
inα //

∐
α∈I Bα α ∈ I(1.77)

in Set, defined by inα(b) = b for each α ∈ I (i.e., each map inα is the usual inclusion
map of Bα), which satisfies the following mapping property; for further reading,
see [5, p. 63] and [7, p. 81].

Proposition 1.10.3 (Universal property of coproducts in Set). Let {Bα}α∈I be
a collection of sets, indexed on a set I. Then diagram (1.77) is initial with respect
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to all such diagrams out of Bα, α ∈ I, in Set; i.e., for any set A and diagram of
the form

Bα
fα // A α ∈ I

in Set, there exists a unique map f in Set which makes the diagram

Bα
inα //

fα **

∐
α∈I Bα

∃! f

��

A α ∈ I

(1.78)

commute; i.e., such that f inα = fα for each α ∈ I.

Proof. Uniqueness is forced on us, since the diagram commutes implies that
f(b) = fα(b) for each b ∈ Bα and α ∈ I. Existence follows since this is a well-defined
map in Set. □

Remark 1.10.4. The upshot is: giving a map f :
∐

α∈I Bα → A in Set is the

same as giving maps fα : Bα → A, α ∈ I, in Set. For this reason, sometimes f is
written as f = (fα)α∈I or simply f = (fα).

Remark 1.10.5. Arguing as above, the mapping properties in (1.78) charac-
terize the coproduct

∐
α∈I Bα in Set, up to isomorphism.

A coproduct diagram in Set is a diagram of the form (1.77) that satisfies the
universal property in (1.78). If I = {0, . . . , n}, for some n ≥ 0, then we sometimes
write diagram (1.77) in Set using the notation

Bi
ini // B0 ⨿ · · · ⨿Bn 0 ≤ i ≤ n(1.79)

defined by ini(b) = b, 0 ≤ i ≤ n (i.e., each map ini is the usual inclusion map
of Bi). In particular, (1.79) is a coproduct diagram in Set and in this notation
B0 ⨿ · · · ⨿Bn

∼=
∐

α∈I Bα in Set.
What happens if we replace Set with Top in our above discussion? The reader

already knows from their background how to work with coproducts (or disjoint
unions) of topological spaces, but let’s pretend we forgot; this is a good idea as the
intuition we develop here, in this familiar situation, will carry over and guide us in
more complicated ones.

Let {Bα}α∈I be a collection of topological spaces, indexed on a set I. Classi-
cally, the coproduct

∐
α∈I Bα in Top is defined to be

∐
α∈I Bα in Set, equipped with

an appropriate topology. Let’s follow our noses to rediscover this topology, called
the coproduct topology. The idea is: we want the same mapping properties in (1.78)
to be true, but for Set replaced by Top. In particular, this means that we need a
topology on the set

∐
α∈I Bα such that the maps in (1.77) are continuous; i.e.,

inverse images of open subsets are open. There are two extremes. If we give the set∐
α∈I Bα the smallest topology possible (i.e., the fewest open sets possible, where

only ∅ and
∐

α∈I Bα are open, and hence is the trivial topology) then the maps in
(1.77) are certainly continuous, but the set

∐
α∈I Bα (with this trivial topology)

then becomes difficult to map out of in Top. The other extreme is to give the set∐
α∈I Bα the largest topology such that the maps in (1.77) are continuous—this is

called the topology coinduced on the set
∐

α∈I Bα by the functions inα, α ∈ I.
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Proposition 1.10.6. The topology coinduced on the set
∐

α∈I Bα by the func-
tions inα, α ∈ I, is characterized by the property that if A is a topological space, a
function f :

∐
α∈I Bα → A is continuous if and only if the composites f inα, α ∈ I,

are continuous.

Proof. Here is the basic idea. Consider any α′ ∈ I. The largest topology
on the set

∐
α∈I Bα such that inα′ is continuous, called the topology coinduced by

inα′ , is given by the collection

{W ⊂
∐

α∈I
Bα| in−1

α′ (W ) ⊂ Bα′ is open}(1.80)

The topology coinduced by the collection of functions inα, α ∈ I, is the largest
topology on the set

∐
α∈I Bα which is contained in the topology (1.80), for each

α′ ∈ I: it is the intersection of these I-indexed collections of subsets. □

This means that if we give the set
∐

α∈I Bα the topology coinduced by the
functions inα, α ∈ I, then the desired universal property will be satisfied—this is
the coproduct topology on the set

∐
α∈I Bα. This is the topology we equip the set∐

α∈I Bα with when we consider the diagram

Bα
inα //

∐
α∈I Bα α ∈ I(1.81)

in Top, defined by inα(b) = b for each α ∈ I (i.e., each map inα is the usual inclusion
map of Bα). Notice how we have been naturally led to the coproduct topology by
considering desirable mapping properties. Hence we have verified that diagram
(1.81) satisfies the following mapping property.

Proposition 1.10.7 (Universal property of coproducts in Top). Let {Bα}α∈I

be a collection of topological spaces, indexed on a set I. Then diagram (1.81) is
initial with respect to all such diagrams out of Bα, α ∈ I, in Top; i.e., for any
topological space A and diagram of the form

Bα
fα // A α ∈ I

in Top, there exists a unique map f in Top which makes the diagram

Bα
inα //

fα **

∐
α∈I Bα

∃! f

��

A α ∈ I

(1.82)

commute; i.e., such that f inα = fα for each α ∈ I.

Proof. This follows from easily from above. □

Remark 1.10.8. The upshot is: giving a map f :
∐

α∈I Bα → A in Top is the

same as giving maps fα : Bα → A, α ∈ I, in Top. For this reason, sometimes f is
written as f = (fα)α∈I or simply f = (fα).

Remark 1.10.9. Arguing as above, the mapping properties in (1.82) charac-
terize the coproduct

∐
α∈I Bα in Top, up to isomorphism.
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A coproduct diagram in Top is a diagram of the form (1.81) that satisfies the
universal property in (1.82). If I = {0, . . . , n}, for some n ≥ 0, then we sometimes
write diagram (1.81) in Top using the notation

Bi
ini // B0 ⨿ · · · ⨿Bn 0 ≤ i ≤ n(1.83)

defined by ini(b) = b, 0 ≤ i ≤ n (i.e., each map ini is the usual inclusion map
of Bi). In particular, (1.83) is a coproduct diagram in Top and in this notation
B0 ⨿ · · · ⨿Bn

∼=
∐

α∈I Bα in Top.

Remark 1.10.10. A diagram that is naturally isomorphic to a coproduct dia-
gram in Top (resp. Set), is a coproduct diagram in Top (resp. Set).

1.11. Limits and colimits

Products, equalizers, and pullbacks (resp. coproducts, coequalizers, and pushouts)
are particular examples of limits (resp. colimits). Before we get to these, it will be
useful to have in mind some language for diagrams, together with several examples
of diagrams that we can easily draw.

A D-shaped diagram in Set is a functor X : D→ Set; here, D is a category
which we sometimes call the indexing category for the diagram X. For instance, if
D is the empty category (no objects and no arrows), then a diagram X : D→ Set is
the empty diagram in Set (no objects and no arrows). If D is the discrete category
(no non-identity arrows) with objects the four integers

0 1 2 3

then a diagram X : D→ Set has the form

X(0) X(1) X(2) X(3)(1.84)

in Set. It consists of sets (1.84) indexed on the set of integers {0, 1, 2, 3}.

Remark 1.11.1. For notational convenience reasons, we usually use the sub-
script notation when working with diagrams, instead of the parentheses notation,
to denote a diagram X evaluated on an object i; i.e., we usually write Xi in place
of X(i); often we find that writing X(i) takes up too much space, notationally. For
instance, we usually write a diagram of the form (1.84), in subscript notation, as

X0 X1 X2 X3

which feels a little more compact and easy to look at.

If D is the category of the form

b // d coo

(
resp. b aoo // c

)
(with exactly three objects and two non-identity arrows of the indicated form), then
a diagram X : D→ Set has the form

Xb
// Xd Xc
oo

(
resp. Xb Xa

oo // Xc

)
in Set. If D is the category of the left-hand form

0 //
// 1 X0

//
// X1
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(with exactly two objects and two non-identity arrows of the indicated form), then
a diagram X : D→ Set has the right-hand form in Set. If D is the category of the
form

0 1oo 2oo 3oo 4oo · · ·oo(
resp. 0 // 1 // 2 // 3 // 4 // · · ·

)
with objects the non-negative integers and a single morphism i ← j (resp. i → j)
for each i ≤ j, then a diagram X : D→ Set has the form

X0 X1
oo X2

oo X3
oo X4

oo · · ·oo(
resp. X0

// X1
// X2

// X3
// X4

// · · ·
)

in Set. Define the sets n := {1, 2, . . . , n} for each n ≥ 0; we use the convention
that 0 = ∅ is the empty set. Denote by P(n) the poset (i.e., partially ordered set)
of all subsets of n, ordered by inclusion ⊂ of sets. We will often regard P(n) as
the category associated to this partial order in the usual way; the objects are the
elements of P(n), and there is a morphism U → V if and only if U ⊂ V . For
instance, if D = P(3), then it is the category of the left-hand form

∅ //

��

��

{1}
��

��

{2} //

��

{1, 2}

��

{3}
��

// {1, 3}
��

{2, 3} // {1, 2, 3}

X∅ //

��

��

X{1}

��

��

X{2} //

��

X{1,2}

��

X{3}

��

// X{1,3}

��

X{2,3} // X{1,2,3}

and a diagram X : D→ Set has the indicated right-hand form in Set; i.e., X has
the form of a 3-cube in Set. Denote by P0(n) ⊂ P(n) the poset of all nonempty
subsets of n; it is the full subcategory of P(n) containing all objects except the
initial object ∅. For instance, if D = P0(3), then it is the category of the left-hand
form

{1}
��

��

{2} //

��

{1, 2}

��

{3}
��

// {1, 3}
��

{2, 3} // {1, 2, 3}

X{1}

��

��

X{2} //

��

X{1,2}

��

X{3}

��

// X{1,3}

��

X{2,3} // X{1,2,3}

and a diagram X : D→ Set has the indicated right-hand form in Set. Denote by
P1(n) ⊂ P(n) the poset of all subsets of n not equal to n; it is the full subcategory of
P(n) containing all objects except the terminal object n. For instance, if D = P1(3),
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then it is the category of the left-hand form

∅ //

��

��

{1}
��

��

{2} //

��

{1, 2}

{3}
��

// {1, 3}

{2, 3}

X∅ //

��

��

X{1}

��

��

X{2} //

��

X{1,2}

X{3}

��

// X{1,3}

X{2,3}

and a diagram X : D→ Set has the indicated right-hand form in Set.
Let X : D→ Set be a diagram. A limit of X, denoted limD X, is a set with the

following mapping properties: (i) (Cone): there is a collection {td} of maps

td : limD X → Xd d ∈ D

in Set, indexed on the objects d ∈ D, which make the middle diagram

Xd

α∗=X(α)

��

A

fd

//

fd′ //

∃!

f
// limD X

td

55

td′
((
Xd′

Xd

α∗=X(α)

��

d

α

��

limD X

td

55

td′
((
Xd′ d′

(1.85)

commute (i.e., such that α∗ td = td′) for each arrow α in D (such a collection {td}
is sometimes called a cone into X) and (ii) (Universal property): the cone {td} is
terminal with respect to all such cones into X; i.e., for any set A and collection
{fd} of maps

fd : A→ Xd d ∈ D

in Set, indexed on the objects d ∈ D, which make the left-hand outer diagram
commute (i.e., such that α∗ fd = fd′) for each arrow α in D, there exists a unique
map f in Set which makes the diagram commute; i.e., such that td f = fd for each
d ∈ D. We call the cone {td} the limiting cone of X (or the terminal cone into X).

Remark 1.11.2. In other words, property (ii) states that every cone {fd} into
X factors uniquely through the limiting cone {td} of X.

Remark 1.11.3. The upshot is: giving a map f : A→ limD X in Set is the
same as giving a cone {fd} into X. For this reason, sometimes f is written as
f = (fd)d∈D or simply f = (fd)

To work effectively with the limit limD X of the diagram X, we need to under-
stand how to verify that a pair of maps into it are identical.

Proposition 1.11.4. Let X : D→ Set be a diagram. Assume that its limit
limD X (1.85) exists. Consider any pair of maps of the form

A
f
//

g
// limD X

in Set. Then f and g are identical if and only if their corresponding cones into X
are identical; i.e., in other words, f = g if and only if td f = td g for each d ∈ D.
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Proof. This follows from the universal property of limits. □

Here is an equivalent way to formulate this observation; note how the change
in notation makes the statement even more obvious.

Proposition 1.11.5. Let X : D→ Set be a diagram. Assume that its limit
limD X (1.85) exists. Consider any pair of maps of the form

A
(fd)
//

(gd)
// limD X

in Set. Then (fd) and (gd) are identical if and only if their corresponding cones
into X are identical; i.e., in other words, (fd) = (gd) if and only if fd = gd for each
d ∈ D.

For instance, consider any cones {pd} and {hd} into X of the indicated left-
hand form in (1.85); i.e., such that α∗ pd = pd′ and α∗ hd = hd′ for each arrow α in
D. Then the left-hand diagram of the form

A

i

��

g
// C

(pd)

��

B
(hd)
// limD X

A

i

��

g
// C

pd

��

B
hd

// Xd

(1.86)

in Set commutes if and only if the corresponding right-hand diagram in Set com-
mutes for each d ∈ D.

Remark 1.11.6. Arguing as above, the mapping properties in (1.85) charac-
terize the limit limD X, up to isomorphism, provided that it exists.

A limit diagram in Set is a commutative diagram of the middle form (involving
each arrow α in D) in (1.85) in Set, that satisfies the universal property of the
left-hand form in (1.85).

Remark 1.11.7. A diagram that is naturally isomorphic to a limit diagram in
Set, is a limit diagram in Set.

If we reverse all the arrows in a limit diagram and its mapping properties, we
are naturally led to the mapping properties of a colimit diagram: let’s develop this
idea. Let X : D→ Set be a diagram. A colimit of X, denoted colimD X, is a set
with the following mapping properties: (i) (Cone): there is a collection {id} of maps

id : Xd → colimD X d ∈ D

in Set, indexed on the objects d ∈ D, which make the middle diagram

d

α

��

Xd

α∗=X(α)

��

id

��

colimD X

d′ Xd′

id′

AA

Xd

α∗=X(α)

��

id

��

fd

""
colimD X

∃!

f
// A

Xd′

id′

@@

fd′

<<

(1.87)
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commute (i.e., such that id′ α∗ = id) for each arrow α in D (such a collection {id}
is sometimes called a cone out of X) and (ii) (Universal property): the cone {id}
is initial with respect to all such cones out of X; i.e., for any set A and collection
{fd} of maps

fd : Xd → A d ∈ D

in Set, indexed on the objects d ∈ D, which make the right-hand outer diagram
commute (i.e., such that fd′ α∗ = fd) for each arrow α in D, there exists a unique
map f in Set which makes the diagram commute; i.e., such that f id = fd for each
d ∈ D. We call the cone {id} the colimiting cone of X (or the initial cone out of
X).

Remark 1.11.8. In other words, property (ii) states that every cone {fd} out
of X factors uniquely through the colimiting cone {id} of X.

Remark 1.11.9. The upshot is: giving a map f : colimD X → A in Set is the
same as giving a cone {fd} out of X. For this reason, sometimes f is written as
f = (fd)d∈D or simply f = (fd)

To work effectively with the colimit colimD X of the diagram X, we need to
understand how to verify that a pair of maps out of it are identical.

Proposition 1.11.10. Let X : D→ Set be a diagram. Assume that its colimit
colimD X (1.87) exists. Consider any pair of maps of the form

colimD X
f
//

g
// A

in Set. Then f and g are identical if and only if their corresponding cones out of
X are identical; i.e., in other words, f = g if and only if f id = g id for each d ∈ D.

Proof. This follows from the universal property of colimits. □

Here is an equivalent way to formulate this observation; note how the change
in notation makes the statement even more obvious.

Proposition 1.11.11. Let X : D→ Set be a diagram. Assume that its colimit
colimD X (1.87) exists. Consider any pair of maps of the form

colimD X
(fd)
//

(gd)
// A

in Set. Then (fd) and (gd) are identical if and only if their corresponding cones out
of X are identical; i.e., in other words, (fd) = (gd) if and only if fd = gd for each
d ∈ D.

For instance, consider any cones (kd) and (nd) out of X of the indicated right-
hand form in (1.87); i.e., such that kd′ α∗ = kd and nd′ α∗ = nd for each arrow α in
D. Then the left-hand diagram of the form

colimD X

(kd)

��

(nd)
// C

p

��

Z
h

// D

Xd

kd

��

nd // C

p

��

Z
h
// D

(1.88)
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in Set commutes if and only if the corresponding right-hand diagram in Set com-
mutes for each d ∈ D.

Remark 1.11.12. Arguing as above, the mapping properties in (1.87) charac-
terize the colimit colimD X, up to isomorphism, provided that it exists.

A colimit diagram in Set is a commutative diagram of the middle form (involv-
ing each arrow α in D) in (1.87) in Set, that satisfies the universal property of the
right-hand form in (1.87).

Remark 1.11.13. A diagram that is naturally isomorphic to a colimit diagram
in Set, is a colimit diagram in Set.

A category D is small if its collection of objects forms a set, and finite if (i)
its collection of objects forms a finite set and (ii) D has only a finite number of
morphisms between any pair of objects. A diagram X : D→ Set is small (resp.
finite) if the indexing category D is small (resp. finite). It turns out that every
small diagram in Set has a limit and a colimit. Before we give a construction of
these, let’s make a few observations and also recognize several examples from above
as particular instances of limits and colimits.

Before getting to some examples, it is worth pointing out, that the following is
often the easiest way to verify that a particular set is isomorphic to the limit of a
diagram in Set; it also verifies existence of the limit, if we didn’t know that already.

Proposition 1.11.14. Let X : D→ Set be a diagram. If Z is a set, then
Z ∼= limD X in Set if there exists a collection {αd} of maps

αd : Z → Xd d ∈ D

in Set indexed on the objects d ∈ D, such that {αd} is a cone into X which is
terminal with respect to all such cones into X.

Proof. Since {αd} is a terminal cone into X, we know from (1.85) that Z is a
limit of X; furthermore, given any limit limD X of X, it follows from the universal
property of limits that Z ∼= limD X in Set. □

Similarly, the following is often the easiest way to verify that a particular set
is isomorphic to the colimit of a diagram in Set; it also verifies existence of the
colimit, if we didn’t know that already.

Proposition 1.11.15. Let X : D→ Set be a diagram. If Z is a set, then
Z ∼= colimD X in Set if there exists a collection {αd} of maps

αd : Xd → Z d ∈ D

in Set indexed on the objects d ∈ D, such that {αd} is a cone out of X which is
initial with respect to all such cones out of X.

Proof. Since {αd} is an initial cone out of X, we know from (1.87) that Z is
a colimit of X; furthermore, given any colimit colimD X of X, it follows from the
universal property of limits that Z ∼= colimD X in Set. □

If D is the empty category, then there exists a unique diagram X : D→ Set
(the empty diagram, with no sets and no maps). In this case, the limit limD X ∼= ∗
is the terminal object in Set (i.e., a one-point set), which we usually refer to as
the terminal object in Set (because it sounds better), even though there are many
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one-point sets; this will not cause any confusion. The colimit colimD X ∼= ∅ is the
initial object in Set (i.e., the empty set).

If D is a discrete category with a set of objects (i.e., D is a small discrete
category), then a diagram X : D→ Set has the form of a collection of sets Xd,
d ∈ D. In this case, the limit limD X ∼=

∏
d∈D Xd is the product of the collection of

sets. The colimit colimD X ∼=
∐

d∈D Xd is the coproduct (or disjoint union) of the
collection of sets.

Let X : D→ Set be a diagram of the left-hand form

Xc

��

Xb
// Xd

limD X

tb

��

tc // Xc

��

Xb
// Xd

in Set. In this case, the limit limD X ∼= Xb ×Xd
Xc is the pullback of the left-hand

diagram; the right-hand limit diagram of X is a pullback diagram in Set. The
colimit colimD X ∼= Xd is the terminal object in the left-hand diagram.

Let X : D→ Set be a diagram of the left-hand form

Xa

��

// Xc

Xb

Xa

��

// Xc

ic

��

Xb
ib
// colimD X

in Set. In this case, the limit limD X ∼= Xa is the initial object in the left-hand dia-
gram. The colimit colimD X ∼= Xb⨿Xa

Xc is the pushout of the left-hand diagram;
the right-hand colimit diagram of X is a pushout diagram in Set.

Let X : D→ Set be a diagram of the left-hand form

X0

g
//

h
// X1 limD X

t0 // X0

g
//

h
// X1 X0

g
//

h
// X1

i1 // colimD X

in Set. In this case, the limit limD X ∼= {x ∈ X0| g(x) = h(x)} is the equalizer of
the left-hand diagram. The colimit colimD X ∼= X1/∼ is the coequalizer of the left-
hand diagram, where ∼ is the equivalence relation on X1 generated by g(x) ∼ h(x)
for each x ∈ X1.

Let X : D→ Set be a diagram of the form

X0 X1
⊃
oo X2

⊃
oo X3

⊃
oo X4

⊃
oo · · ·⊃

oo

in Set. Assume that each of the maps is an inclusion. In this case, the limit
limD X ∼=

⋂
i≥0 Xi is the intersection of the indicated sets. The colimit colimD X ∼= X0

is the terminal object in the diagram; this remains true, even without the inclusions
assumption.

Let X : D→ Set be a diagram of the form

X0
⊂
// X1

⊂
// X2

⊂
// X3

⊂
// X4

⊂
// · · ·

in Set. Assume that each of the maps is an inclusion. In this case, the limit
limD X ∼= X0 is the initial object in the diagram; this remains true, even without
the inclusions assumption. The colimit colimD X ∼=

⋃
i≥0 Xi is the union of the

indicated sets.
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Let X : D→ Set be a diagram of the form

X∅ //

��

��

X{1}

��

��

X{2} //

��

X{1,2}

��

X{3}

��

// X{1,3}

��

X{2,3} // X{1,2,3}

in Set. In this case, the limit limD X ∼= X∅ is the initial object in the diagram and
the colimit colimD X ∼= X{1,2,3} is the terminal object in the diagram.

Let X : D→ Set be a diagram of the form

X{1}

��

��

X{2} //

��

X{1,2}

��

X{3}

��

// X{1,3}

��

X{2,3} // X{1,2,3}

in Set. In this case, the limit limD X is the pullback of the induced diagram of the
left-hand form

X{2} ×X{1,2} X{1}

��

X{3} // X{2,3} ×X{1,2,3} X{1,3}

limD X

��

// X{2} ×X{1,2} X{1}

��

X{3} // X{2,3} ×X{1,2,3} X{1,3}

(1.89)

in Set; i.e., the limit limD X fits into a pullback diagram of the right-hand form.
The colimit colimD X ∼= X{1,2,3} is the terminal object in the diagram.

There is a pattern underlying this example which is worth pointing out now.
Consider the indexing poset (or category) D for X of the left-hand form

{1}
��

��

{2} //

��

{1, 2}

��

{3}
��

// {1, 3}
��

{2, 3} // {1, 2, 3}

{3}
��

// {1, 3}
��

{2, 3} // {1, 2, 3}

{1}
��

��

{2} //

��

{1, 2}

��

{1, 3}
��

{2, 3} // {1, 2, 3}

Denote by A ⊂ D the indicated middle poset (or subcategory of D) and by B ⊂ D
the indicated right-hand poset (or subcategory of D). Then the poset (or category)
D = A ∪B and the right-hand pullback diagram in (1.89) has the form

limA∪B X

��

// limB X

��

limA X // limA∩B X
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This is a special case of the following useful observation. Define the sets n :=
{1, . . . , n} for each n ≥ 0, where 0 := ∅ denotes the empty set. Denote by P(n)
the poset of all subsets of n, ordered by inclusion ⊂ of sets. We will often regard
P(n) as the category associated to this partial order in the usual way; the objects
are the elements of P(n), and there is a morphism U → V if and only if U ⊂ V .

Let n ≥ 1 and consider any subset B ⊂ P(n). A subset A ⊂ B is concave if
every element of B which is greater than an element of A is in A. The following is
proved in [2, pp. 317–318].

Proposition 1.11.16. Let n ≥ 1. Consider the indexing poset (or category)
D = P(n) and let X : D→ Set be a diagram. For any concave subsets A,B of P(n),
the diagram

limA∪B X

��

// limB X

��

limA X // limA∩B X

is a pullback diagram in Set.

Let X : D→ Set be a diagram of the form

X∅ //

��

��

X{1}

��

��

X{2} //

��

X{1,2}

X{3}

��

// X{1,3}

X{2,3}

In this case, the limit limD X ∼= X∅ is the initial object in the diagram. The colimit
colimD X is the pushout of the induced diagram of the left-hand form

X{2} ⨿X∅ X{1}

��

// X{1,2}

X{2,3} ⨿X{3} X{1,3}

X{2} ⨿X∅ X{1}

��

// X{1,2}

��

X{2,3} ⨿X{3} X{1,3} // colimD X

(1.90)

in Set; i.e., the colimit colimD X fits into a pushout diagram of the right-hand form.
There is a pattern underlying this example which is worth pointing out now;

we will further develop this later: consider the indexing poset (or category) D for
X of the left-hand form

∅ //

��

��

{1}
��

��

{2} //

��

{1, 2}

{3}
��

// {1, 3}

{2, 3}

∅ //

��

��

{1}

��

{2}

��

{3}
��

// {1, 3}

{2, 3}

∅ //

��

{1}
��

{2} // {1, 2}
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Denote by A ⊂ D the indicated middle poset (or subcategory of D) and by B ⊂ D
the indicated right-hand poset (or subcategory of D). Then the poset (or category)
D = A ∪B and the right-hand pullback diagram in (1.90) has the form

colimA∩B X

��

// colimB X

��

colimA X // colimA∪B X

This is a special case of the following useful observation. Let n ≥ 1 and consider
any subset B ⊂ P(n). A subset A ⊂ B is convex if every element of B which is less
than an element of A is in A. The following is proved in [2, pp. 314–315].

Proposition 1.11.17. Let n ≥ 1. Consider the indexing poset (or category)
D = P(n) and let X : D→ Set be a diagram. For any convex subsets A,B of P(n),
the diagram

colimA∩B X

��

// colimB X

��

colimA X // colimA∪B X

is a pushout diagram in Set.

Proposition 1.11.18. Let D be a small category and X : D→ Set a diagram.
Then the limit limD X exists. In other words, Set has all small limits.

Proof. Here is the classical way to build the limit limD X. As a first step,
we look for something that has naturally occurring maps into Xd, for each object
d ∈ D; we already know of such a construction, it is the product

∏
d∈D Xd. This

product exists since D has a set of objects. Giving this a try, we get a diagram of
the middle form

Xd

α∗=X(α)

��

E
i

⊂
//

td=prd i
//

td′=prd′ i
//

∏
d∈D Xd

prd

55

prd′

))
Xd′

Xd

α∗=X(α)

��

d

α

��

∏
d∈D Xd

prd

55

prd′

))
Xd′ d′

for each arrow α in D. There is no reason for the middle diagram to commute,
in general, for each arrow α in D. So as a second step, the idea is to force it
to commute by restricting to the subset E ⊂

∏
d∈D Xd of elements where this is

satisfied. Define E := {e ∈
∏

d∈D Xd|α∗ prd(e) = prd′(e) for each arrow α in D}.
This leads us to the left-hand outer diagram which commutes (we just forced it to);
this left-hand outer diagram (involving each arrow α in D) is a limit diagram of X.
It is easy to check that E ∼= limD X: we could either use the classical constructions
of products and subsets to verify the universal property of limits in (1.85), or we
could work directly with the universal properties of products and subsets to verify
(1.85). □



46 1. BASIC CONSTRUCTIONS: MAPPING PROPERTIES

Remark 1.11.19. Let’s reformulate this argument in terms of products and
equalizers. Consider a pair of maps of the form∏

d∈D Xd

g
//

g′
//
∏

α :d→d′

inD
Xd′

in Set. Consider the middle diagram above (which does not commute, in general);
we want to force it to commute by restricting along an appropriate equalizer. Let’s
define the map g so that, for each arrow α in D, it picks out the bottom part of
the middle diagram above (i.e., the map prd′). Similarly, let’s define the map g′ so
that, for each arrow α in D, it picks out the other part of the middle diagram above
(i.e., the composite α∗ prd). Remember, giving a map into a product of the right-
hand form is the same as giving, for each arrow α : d→ d′ in D, a map into X ′

d.
Hence we can describe g and g′ as induced by the following diagram—start with
the projections on the right-hand side, then work towards the left-hand projections.
The projections pointing up define g and the projections pointing down define g′.

Xd′ Xd′

∏
d∈D Xd

g
//

g′
//

prd′

OO

prd

��

∏
α :d→d′

inD
Xd′

prα :d→d′

OO

prα :d→d′

��

Xd α∗
// Xd′

Think of g as induced on each projection map prα :d→d′ via the map that “misses”
or “removes” the object d in the arrow α : d→ d′; if we start with the arrow d→ d′

and miss or remove the object d, then we are left with the object d′ (hence the map
prd′). Similarly, think of g′ as induced on each projection map prα :d→d′ via the
map that “misses” or “removes” the object d′ in the arrow α : d→ d′; if we start
with the arrow d→ d′ and miss or remove the object d′, then we are left with the
object d (hence the map prd), and to get from Xd to Xd′ we compose with the
induced map α∗ : Xd → Xd′ . It is easy to check that limD X can be constructed as
the equalizer

limD X ∼= lim
( ∏

d∈D Xd

g
//

g′
//
∏

α :d→d′

inD
Xd′

)
of the pair of maps g, g′: we could either use the classical constructions of products
and equalizers to recover the description of E above, or we could work directly with
the universal properties of products and equalizers. Conceptually, this means that
once we know all equalizers and small products exist in Set, then we know that all
small limits exist in Set. There is a pattern underlying this construction which is
worth remarking on now; we will further develop this later: the pair of maps g, g′

is the beginning part of a cosimplicial resolution associated to limD X, that will be
useful later when we construct the Bousfield-Kan homotopy limit functor.

Proposition 1.11.20. Let D be a small category and X : D→ Set a diagram.
Then the colimit colimD X exists. In other words, Set has all small colimits.

Proof. Here is the classical way to build the colimit colimD X. As a first step,
we look for something that has naturally occurring maps out of Xd, for each object



1.11. LIMITS AND COLIMITS 47

d ∈ D; we already know of such a construction, it is the coproduct
∐

d∈D Xd. This
coproduct exists since D has a set of objects. Giving this a try, we get a diagram
of the middle form

d

α

��

Xd

α∗=X(α)

��

ind

��∐
d∈D Xd

d′ Xd′

ind′

AA

Xd

α∗=X(α)

��

ind

��

id=p ind

""∐
d∈D Xd

p
// Q

Xd′

ind′

AA

id′=p ind′

<<

for each arrow α in D. There is no reason for the middle diagram to commute, in
general, for each arrow α in D. So as a second step, the idea is to force it to com-
mute by mapping to the quotient set Q of

∐
d∈D Xd where this is satisfied. Define

Q :=
(∐

d∈D Xd

)
/∼ , where ∼ is the equivalence relation on

∐
d∈D Xd generated by

ind(x) ∼ ind′ α∗(x) for each arrow α in D and x ∈ Xd. This leads us to the right-
hand outer diagram which commutes (we just forced it to); this right-hand outer
diagram (involving each arrow α in D) is a colimit diagram of X. It is easy to check
that Q ∼= colimD X: we could either use the classical constructions of coproducts
and quotient sets to verify the universal property of colimits in (1.87), or we could
work directly with the universal properties of coproducts and quotient sets to verify
(1.87). □

Remark 1.11.21. Let’s reformulate this argument in terms of coproducts and
coequalizers. Consider a pair of maps of the form

∐
d∈D Xd

∐
α :d→d′

inD
Xd

h′
oo

hoo

in Set. Consider the middle diagram above (which does not commute, in general);
we want to force it to commute by mapping to an appropriate coequalizer. Let’s
define the map h so that, for each arrow α in D, it picks out the bottom part of the
middle diagram above (i.e., the composite ind′ α∗). Similarly, let’s define the map
h′ so that, for each arrow α in D, it picks out the other part of the middle diagram
above (i.e., the map ind). Remember, giving a map out of a coproduct of the right-
hand form is the same as giving, for each arrow α : d→ d′ in D, a map out of Xd.
Hence we can describe h and h′ as induced by the following diagram—start with
the inclusions on the right-hand side, then work towards the left-hand inclusions.
The inclusions pointing down define h and the inclusions pointing up define h′.

Xd′

ind′

��

Xd
α∗oo

inα :d→d′

��∐
d∈D Xd

∐
α :d→d′

inD
Xd

h′
oo

hoo

Xd

ind

OO

Xd

inα :d→d′

OO
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Think of h as induced on each inclusion map inα :d→d′ via the map that “misses” or
“removes” the object d in the arrow α : d→ d′; if we start with the arrow d → d′

and miss or remove the object d, then we are left with the object d′ (hence the map
ind′), and to get from Xd to Xd′ we compose with the induced map α∗ : Xd → Xd′ .
Similarly, think of h′ as induced on each inclusion map inα :d→d′ via the map that
“misses” or “removes” the object d′ in the arrow α : d→ d′; if we start with the
arrow d → d′ and miss or remove the object d′, then we are left with the object d
(hence the map ind). It is easy to check that colimD X can be constructed as the
coequalizer

colimD X ∼= colim
( ∐

d∈D Xd

∐
α :d→d′

inD
Xd

h′
oo

hoo
)

of the pair of maps h, h′: we could either use the classical constructions of co-
products and coequalizers to recover the description of Q above, or we could work
directly with the universal properties of coproducts and coequalizers. Conceptually,
this means that once we know all coequalizers and small coproducts exist in Set,
then we know that all small colimits exist in Set. There is a pattern underlying this
construction which is worth remarking on now; we will further develop this later:
the pair of maps h, h′ is the beginning part of a simplicial resolution associated to
colimD X, that will be useful later when we construct the Bousfield-Kan homotopy
colimit functor.

What happens if we replace Set with Top in our above discussion? We have
already worked out what we need. Let M be a category; the reader should be
thinking of the special case M = Top, for now, in which case the phrase “an object
in M” can be replaced with the phrase “a topological space”.

A D-shaped diagram in M is a functor X : D→ M; here, D is a category which
we sometimes call the indexing category for the diagram X. Let X : D→ M be
a diagram. A limit of X, denoted limD X, is an object in M with the following
mapping properties: (i) (Cone): there is a collection {td} of maps

td : limD X → Xd d ∈ D

in M, indexed on the objects d ∈ D, which make the middle diagram

Xd

α∗=X(α)

��

A

fd

//

fd′ //

∃!

f
// limD X

td

55

td′
((
Xd′

Xd

α∗=X(α)

��

d

α

��

limD X

td

55

td′
((
Xd′ d′

(1.91)

commute (i.e., such that α∗ td = td′) for each arrow α in D (such a collection {td}
is sometimes called a cone into X) and (ii) (Universal property): the cone {td}
is terminal with respect to all such cones into X; i.e., for any object A in M and
collection {fd} of maps

fd : A→ Xd d ∈ D

in M, indexed on the objects d ∈ D, which make the left-hand outer diagram
commute (i.e., such that α∗ fd = fd′) for each arrow α in D, there exists a unique
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map f in M which makes the diagram commute; i.e., such that td f = fd for each
d ∈ D. We call the cone {td} the limiting cone of X (or the terminal cone into X).

Remark 1.11.22. In other words, property (ii) states that every cone {fd} into
X factors uniquely through the limiting cone {td} of X.

Remark 1.11.23. The upshot is: giving a map f : A→ limD X in M is the
same as giving a cone {fd} into X. For this reason, sometimes f is written as
f = (fd)d∈D or simply f = (fd).

Remark 1.11.24. Arguing as above, the mapping properties in (1.91) charac-
terize the limit limD X, up to isomorphism, provided that it exists.

A limit diagram in M is a commutative diagram of the middle form (involving
each arrow α in D) in (1.91) in M, that satisfies the universal property of the
left-hand form in (1.91).

Remark 1.11.25. A diagram that is naturally isomorphic to a limit diagram
in M, is a limit diagram in M.

Proposition 1.11.26. Let D be a small category and X : D→ Top a diagram.
Then the limit limD X exists. In other words, Top has all small limits.

Proof. We already know that Top has all equalizers and small products.
Hence the argument in Remark 1.11.19, with Set replaced by Top, shows that
limD X can be constructed as the equalizer

limD X ∼= lim
( ∏

d∈D Xd

g
//

g′
//
∏

α :d→d′

inD
Xd′

)
of the pair of maps g, g′. □

Proposition 1.11.27. Let M be a category with all equalizers and small (resp.
finite) products. Let X : D→ M a small (resp. finite) diagram. Then the limit
limD X exists. In other words, M has all small (resp. finite) limits.

Proof. This follows from the proof of Proposition 1.11.26, with Top replaced
by M. □

Let X : D→ M be a diagram. A colimit of X, denoted colimD X, is an object
in M with the following mapping properties: (i) (Cone): there is a collection {id}
of maps

id : Xd → colimD X d ∈ D

in M, indexed on the objects d ∈ D, which make the middle diagram

d

α

��

Xd

α∗=X(α)

��

id

��

colimD X

d′ Xd′

id′

AA

Xd

α∗=X(α)

��

id

��

fd

""
colimD X

∃!

f
// A

Xd′

id′

@@

fd′

<<

(1.92)
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commute (i.e., such that id′ α∗ = id) for each arrow α in D (such a collection {id}
is sometimes called a cone out of X) and (ii) (Universal property): the cone {id}
is initial with respect to all such cones out of X; i.e., for any object A in M and
collection {fd} of maps

fd : Xd → A d ∈ D

in M, indexed on the objects d ∈ D, which make the right-hand outer diagram
commute (i.e., such that fd′ α∗ = fd) for each arrow α in D, there exists a unique
map f in M which makes the diagram commute; i.e., such that f id = fd for each
d ∈ D. We call the cone {id} the colimiting cone of X (or the initial cone out of
X).

Remark 1.11.28. In other words, property (ii) states that every cone {fd} out
of X factors uniquely through the colimiting cone {id} of X.

Remark 1.11.29. The upshot is: giving a map f : colimD X → A in M is the
same as giving a cone {fd} out of X. For this reason, sometimes f is written as
f = (fd)d∈D or simply f = (fd).

Proposition 1.11.30. Let D be a small category and X : D→ Top a diagram.
Then the colimit colimD X exists. In other words, Top has all small colimits.

Proof. We already know that Top has all coequalizers and small coproducts.
Hence the argument in Remark 1.11.21, with Set replaced by Top, shows that
colimD X can be constructed as the coequalizer

colimD X ∼= colim
( ∐

d∈D Xd

∐
α :d→d′

inD
Xd

h′
oo

hoo
)

of the pair of maps h, h′. □

Proposition 1.11.31. Let M be a category with all coequalizers and small (resp.
finite) coproducts. Let X : D→ M a small (resp. finite) diagram. Then the colimit
colimD X exists. In other words, M has all small (resp. finite) colimits.

Proof. This follows from the proof of Proposition 1.11.30, with Top replaced
by M. □

1.12. Ends and coends

Ends and coends provide a form of hom and tensor for diagrams. Let’s develop
this idea. Let M be a category; the reader should be thinking of the special case
M = Set, for now, in which case the phrase “an object in M” can be replaced with
the phrase “a set”. Let D be a category. The opposite category Dop is the category

with the same objects as D, but with one arrow a
αop

←−− b for each arrow a
α−→ b in D.

For instance, if D is the category of the form b → d ← c, then Dop is the category
of the form b ← d → c. In this case, a diagram A : Dop → M (resp. B : D→ M)
has the form

Ab Ad
oo // Ac

(
resp. Bb

// Bd Bc
oo

)
in M. If D is a category, note that (Dop)op = D. Ends and coends are closely
related to limits and colimits, respectively—they involve wedges instead of cones.
Let’s develop these ideas. Let D be a category and Y : Dop × D→ M a diagram.
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An end of Y , denoted endD Y or Y D, is an object in M with the following mapping
properties: (i) (Wedge): there is a collection {td} of maps

td : endD Y → Y (d, d) d ∈ D

in M, indexed on the objects d ∈ D, which make the middle diagram

Y (d, d)

(id,α)

��

A

fd

00

fd′ ..

∃!

f
// endD Y

td

66

td′ ((

Y (d, d′)

Y (d′, d′)

(α,id)

OO

Y (d, d)

(id,α)

��

d

α

��

endD Y

td

66

td′ ((

Y (d, d′)

Y (d′, d′)

(α,id)

OO

d′

(1.93)

commute (i.e., such that (id, α) td = (α, id) td′) for each arrow α in D (such a
collection {td} is sometimes called a wedge into Y ) and (ii) (Universal property):
the wedge {td} is terminal with respect to all such wedges into Y ; i.e., for any
object A in M and collection {fd} of maps

fd : A→ Y (d, d) d ∈ D

in M, indexed on the objects d ∈ D, which make the left-hand outer diagram
commute (i.e., such that (id, α) fd = (α, id) fd′) for each arrow α in D, there exists
a unique map f in M which makes the diagram commute; i.e., such that td f = fd
for each d ∈ D. We call the wedge {td} the ending wedge of Y (or the terminal
wedge into Y ).

Remark 1.12.1. In other words, property (ii) states that every wedge {fd}
into Y factors uniquely through the ending wedge {td} of Y .

Remark 1.12.2. The upshot is: giving a map f : A→ endD Y in M is the
same as giving a wedge {fd} into Y . For this reason, sometimes f is written as
f = (fd)d∈D or simply f = (fd).

To work effectively with the end endD Y of the diagram Y , we need to under-
stand how to verify that a pair of maps into it are identical.

Proposition 1.12.3. Let Y : Dop × D→ M be a diagram. Assume that its end
endD Y (1.93) exists. Consider any pair of maps of the form

A
f
//

g
// endD Y

in M. Then f and g are identical if and only if their corresponding wedges into Y
are identical; i.e., in other words, f = g if and only if td f = td g for each d ∈ D.

Proof. This follows from the universal property of ends. □

Here is an equivalent way to formulate this observation; note how the change
in notation makes the statement even more obvious.

Proposition 1.12.4. Let Y : Dop × D→ M be a diagram. Assume that its end
endD Y (1.93) exists. Consider any pair of maps of the form

A
(fd)
//

(gd)
// endD Y
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in M. Then (fd) and (gd) are identical if and only if their corresponding wedges
into Y are identical; i.e., in other words, (fd) = (gd) if and only if fd = gd for each
d ∈ D.

For instance, consider any wedges {pd} and {hd} into Y of the indicated left-
hand form in (1.93); i.e., such that (id, α) pd = (α, id) pd′ and (id, α)hd = (α, id)hd′

for each arrow α in D. Then the left-hand diagram of the form

A

i

��

g
// C

(pd)

��

B
(hd)
// endD Y

A

i

��

g
// C

pd

��

B
hd

// Y (d, d)

(1.94)

in M commutes if and only if the corresponding right-hand diagram in M commutes
for each d ∈ D.

Remark 1.12.5. Arguing as above, the mapping properties in (1.93) charac-
terize the end endD Y , up to isomorphism, provided that it exists.

An end diagram in M is a commutative diagram of the middle form (involving
each arrow α in D) in (1.93) in M, that satisfies the universal property of the
left-hand form in (1.93).

Remark 1.12.6. A diagram that is naturally isomorphic to an end diagram in
M, is an end diagram in M.

Proposition 1.12.7. Let D be a small category and Y : Dop × D→ Set a dia-
gram. Then the end endD X exists. In other words, Set has all small ends.

Proof. Here is the classical way to build the end endD Y . As a first step, we
look for something that has naturally occurring maps into Y (d, d), for each object
d ∈ D; we already know of such a construction, it is the product

∏
d∈D Y (d, d). This

product exists since D has a set of objects. Giving this a try, we get a diagram of
the middle form

Y (d, d)

(id,α)

��

E
i

⊂
//

td=prd i

00

td′=prd′ i
..

∏
d∈D

Y (d, d)

prd

66

prd′
((

Y (d, d′)

Y (d′, d′)

(α,id)

OO

Y (d, d)

(id,α)

��

d

α

��

∏
d∈D

Y (d, d)

prd

66

prd′
((

Y (d, d′)

Y (d′, d′)

(α,id)

OO

d′

for each arrow α in D. There is no reason for the middle diagram to commute, in
general, for each arrow α in D. So as a second step, the idea is to force it to commute
by restricting to the subset E ⊂

∏
d∈D Y (d, d) of elements where this is satisfied. De-

fine E := {e ∈
∏

d∈D Y (d, d)| (id, α) prd(e) = (α, id) prd′(e) for each arrow α in D}.
This leads us to the left-hand outer diagram which commutes (we just forced it to);
this left-hand outer diagram (involving each arrow α in D) is a limit diagram of X.
It is easy to check that E ∼= endD Y : we could either use the classical constructions
of products and subsets to verify the universal property of limits in (1.93), or we
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could work directly with the universal properties of products and subsets to verify
(1.93). □

Remark 1.12.8. This argument can be reformulated in terms of products and
equalizers as follows. Consider a pair of maps of the form∏

d∈D Y (d, d)
g
//

g′
//
∏

α :d→d′

inD
Y (d, d′)

in Set. Consider the middle diagram above (which does not commute, in general);
we want to force it to commute by restricting along an appropriate equalizer. Let’s
define the map g so that, for each arrow α in D, it picks out the bottom part of
the middle diagram above (i.e., the composite (α, id) prd′). Similarly, let’s define
the map g′ so that, for each arrow α in D, it picks out the other part of the middle
diagram above (i.e., the composite (id, α) prd). Remember, giving a map into a
product of the right-hand form is the same as giving, for each arrow α : d→ d′ in
D, a map into Y (d, d′). Hence we can describe g and g′ as induced by the following
diagram—start with the projections on the right-hand side, then work towards the
left-hand projections. The projections pointing up define g and the projections
pointing down define g′.

Y (d′, d′)
(α,id)

// Y (d, d′)

∏
d∈D Y (d, d)

g
//

g′
//

prd′

OO

prd

��

∏
α :d→d′

inD
Y (d, d′)

prα :d→d′

OO

prα :d→d′

��

Y (d, d)
(id,α)

// Y (d, d′)

Think of g as induced on each projection map prα :d→d′ via the map that “misses” or
“removes” the object d in the arrow α : d→ d′; if we start with the arrow d → d′

and miss or remove the object d, then we are left with the object d′ (hence the
map prd′), and to get from Y (d′, d′) to Y (d, d′) we compose with the induced map
(α, id) : Y (d′, d′)→ Y (d, d′). Similarly, think of g′ as induced on each projection
map prα :d→d′ via the map that “misses” or “removes” the object d′ in the arrow
α : d→ d′; if we start with the arrow d → d′ and miss or remove the object d′,
then we are left with the object d (hence the map prd), and to get from Y (d, d) to
Y (d, d′) we compose with the induced map (id, α) : Y (d, d)→ Y (d, d′). It is easy
to check that endD Y can be constructed as the equalizer

endD Y ∼= lim
( ∏

d∈D Y (d, d)
g
//

g′
//
∏

α :d→d′

inD
Y (d, d′)

)
of the pair of maps g, g′: we could either use the classical constructions of products
and equalizers to recover the description of E above, or we could work directly with
the universal properties of products and equalizers. Conceptually, this means that
once we know all equalizers and small products exist in Set, then we know that all
small ends exist in Set.

Proposition 1.12.9. Let D be a small category and Y : Dop × D→ Top a di-
agram. Then the end endD Y exists. In other words, Top has all small ends.
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Proof. We already know that Top has all equalizers and small products.
Hence the argument in Remark 1.12.8, with Set replaced by Top, shows that endD Y
can be constructed as the equalizer

endD Y ∼= lim
( ∏

d∈D Y (d, d)
g
//

g′
//
∏

α :d→d′

inD
Y (d, d′)

)
of the pair of maps g, g′. □

Proposition 1.12.10. Let M be a category with all equalizers and small (resp.
finite) products. Let Y : Dop × D→ M a small (resp. finite) diagram. Then the
end endD Y exists. In other words, M has all small (resp. finite) ends.

Proof. This follows from the proof of Proposition 1.12.9, with Top replaced
by M. □

If we reverse all the arrows in an end diagram and its mapping properties,
we are naturally led to the mapping properties of a coend diagram: let’s develop
this idea. Let D be a category and Y : Dop × D→ M a diagram. A coend of Y ,
denoted coendD Y or YD, is an object in M with the following mapping properties:
(i) (Wedge): there is a collection {id} of maps

id : Y (d, d)→ coendD Y d ∈ D

in M, indexed on the objects d ∈ D, which make the middle diagram

d

α

��

Y (d, d)
id

  

Y (d′, d)

(α,id)

OO

(id,α)

��

coendD Y

d′ Y (d′, d′)

id′

>>

Y (d, d)
id

  

fd

##
Y (d′, d)

(α,id)

OO

(id,α)

��

coendD Y
∃!

f
// A

Y (d′, d′)

id′

>>

fd′

;;

(1.95)

commute (i.e., such that id (α, id) = id′ (id, α)) for each arrow α in D (such a
collection {id} is sometimes called a wedge out of Y ) and (ii) (Universal property):
the wedge {id} is initial with respect to all such wedges out of Y ; i.e., for any object
A in M and collection {fd} of maps

fd : Y (d, d)→ A d ∈ D

in M, indexed on the objects d ∈ D, which make the right-hand outer diagram
commute (i.e., such that fd (α, id) = fd′ (id, α)) for each arrow α in D, there exists
a unique map f in M which makes the diagram commute; i.e., such that f id = fd
for each d ∈ D. We call the wedge {id} the coending wedge of Y (or the initial
wedge out of Y ).

Remark 1.12.11. In other words, property (ii) states that every wedge {fd}
out of Y factors uniquely through the coending wedge {id} of Y .

Remark 1.12.12. The upshot is: giving a map f : coendD Y → A in M is the
same as giving a wedge {fd} out of Y . For this reason, sometimes f is written as
f = (fd)d∈D or simply f = (fd)
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To work effectively with the coend coendD Y of the diagram Y , we need to
understand how to verify that a pair of maps out of it are identical.

Proposition 1.12.13. Let Y : Dop × D→ M be a diagram. Assume that its
coend coendD Y (1.95) exists. Consider any pair of maps of the form

coendD Y
f
//

g
// A

in M. Then f and g are identical if and only if their corresponding wedges out of
Y are identical; i.e., in other words, f = g if and only if f id = g id for each d ∈ D.

Proof. This follows from the universal property of coends. □

Here is an equivalent way to formulate this observation; note how the change
in notation makes the statement even more obvious.

Proposition 1.12.14. Let Y : Dop × D→ M be a diagram. Assume that its
coend coendD Y (1.95) exists. Consider any pair of maps of the form

coendD Y
(fd)
//

(gd)
// A

in M. Then (fd) and (gd) are identical if and only if their corresponding wedges
out of Y are identical; i.e., in other words, (fd) = (gd) if and only if fd = gd for
each d ∈ D.

For instance, consider any wedges (kd) and (nd) out of Y of the indicated right-
hand form in (1.95); i.e., such that kd (α, id) = kd′ (id, α) and nd (α, id) = nd′ (id, α)
for each arrow α in D. Then the left-hand diagram of the form

coendD Y

(kd)

��

(nd)
// C

p

��

Z
h

// D

Y (d, d)

kd

��

nd // C

p

��

Z
h

// D

(1.96)

inM commutes if and only if the corresponding right-hand diagram in Set commutes
for each d ∈ D.

Remark 1.12.15. Arguing as above, the mapping properties in (1.95) charac-
terize the coend coendD Y , up to isomorphism, provided that it exists.

A coend diagram in M is a commutative diagram of the middle form (involving
each arrow α in D) in (1.95) in M, that satisfies the universal property of the
right-hand form in (1.95).

Remark 1.12.16. A diagram that is naturally isomorphic to a coend diagram
in M, is a coend diagram in M.

Proposition 1.12.17. Let D be a small category and Y : Dop × D→ Set a
diagram. Then the coend coendD Y exists. In other words, Set has all small coends.

Proof. Here is the classical way to build the coend coendD Y . As a first
step, we look for something that has naturally occurring maps out of Y (d, d), for
each object d ∈ D; we already know of such a construction, it is the coproduct
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d∈D Y (d, d). This coproduct exists since D has a set of objects. Giving this a try,

we get a diagram of the middle form

d

α

��

Y (d, d)

ind

  

Y (d′, d)

(α,id)

OO

(id,α)

��

∐
d∈D

Y (d, d)

d′ Y (d′, d′)

ind′

<<

Y (d, d)

ind

  

id=p ind

##
Y (d′, d)

(α,id)

OO

(id,α)

��

∐
d∈D

Y (d, d)
p
// Q

Y (d′, d′)

ind′

<<

id′=p ind′

;;

for each arrow α in D. There is no reason for the middle diagram to commute, in
general, for each arrow α in D. So as a second step, the idea is to force it to commute
by mapping to the quotient set Q of

∐
d∈D Y (d, d) where this is satisfied. Define

Q :=
(∐

d∈D Y (d, d)
)
/∼ , where ∼ is the equivalence relation on

∐
d∈D Y (d, d) gen-

erated by ind (α, id)(y) ∼ ind′ (id, α)(y) for each arrow α in D and y ∈ Y (d′, d). This
leads us to the right-hand outer diagram which commutes (we just forced it to); this
right-hand outer diagram (involving each arrow α in D) is a coend diagram of Y . It
is easy to check that Q ∼= coendD Y : we could either use the classical constructions
of coproducts and quotient sets to verify the universal property of coends in (1.95),
or we could work directly with the universal properties of coproducts and quotient
sets to verify (1.95). □

Remark 1.12.18. This argument can be reformulated in terms of coproducts
and coequalizers as follows. Consider a pair of maps of the form∐

d∈D Y (d, d)
∐

α :d→d′

inD
Y (d′, d)

h′
oo

hoo

in Set. Consider the middle diagram above (which does not commute, in general);
we want to force it to commute by mapping to an appropriate coequalizer. Let’s
define the map h so that, for each arrow α in D, it picks out the bottom part of
the middle diagram above (i.e., the composite ind′ (id, α)). Similarly, let’s define
the map h′ so that, for each arrow α in D, it picks out the other part of the middle
diagram above (i.e., the composite ind (α, id)). Remember, giving a map out of a
coproduct of the right-hand form is the same as giving, for each arrow α : d→ d′

in D, a map out of Y (d′, d). Hence we can describe h and h′ as induced by the
following diagram—start with the inclusions on the right-hand side, then work
towards the left-hand inclusions. The inclusions pointing down define h and the
inclusions pointing up define h′.

Y (d′, d′)

ind′

��

Y (d′, d)
(id,α)

oo

inα :d→d′

��∐
d∈D Y (d, d)

∐
α :d→d′

inD
Y (d′, d)

h′
oo

hoo

Y (d, d)

ind

OO

Y (d′, d)
(α,id)

oo

inα :d→d′

OO
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Think of h as induced on each inclusion map inα :d→d′ via the map that “misses” or
“removes” the object d in the arrow α : d→ d′; if we start with the arrow d → d′

and miss or remove the object d, then we are left with the object d′ (hence the
map ind′), and to get from Y (d′, d) to Y (d′, d′) we compose with the induced map
(id, α) : Y (d′, d)→ Y (d′, d′). Similarly, think of h′ as induced on each inclusion
map inα :d→d′ via the map that “misses” or “removes” the object d′ in the arrow
α : d→ d′; if we start with the arrow d → d′ and miss or remove the object d′,
then we are left with the object d (hence the map ind), and to get from Y (d′, d) to
Y (d, d) we compose with the induced map (α, id) : Y (d′, d)→ Y (d, d). It is easy to
check that coendD Y can be constructed as the coequalizer

coendD Y ∼= colim
( ∐

d∈D Y (d, d)
∐

α :d→d′

inD
Y (d′, d)

h′
oo

hoo
)

of the pair of maps h, h′: we could either use the classical constructions of co-
products and coequalizers to recover the description of Q above, or we could work
directly with the universal properties of coproducts and coequalizers. Conceptually,
this means that once we know all coequalizers and small coproducts exist in Set,
then we know that all small coends exist in Set.

Proposition 1.12.19. Let D be a small category and Y : Dop × D→ Top a
diagram. Then the coend coendD Y exists. In other words, Top has all small coends.

Proof. We already know that Top has all coequalizers and small coproducts.
Hence the argument in Remark 1.12.18, with Set replaced by Top, shows that
coendD Y can be constructed as the coequalizer

coendD Y ∼= colim
( ∐

d∈D Y (d, d)
∐

α :d→d′

inD
Y (d′, d)

h′
oo

hoo
)

of the pair of maps h, h′. □

Proposition 1.12.20. Let M be a category with all coequalizers and small (resp.
finite) coproducts. Let Y : Dop × D→ M a small (resp. finite) diagram. Then the
coend coendD Y exists. In other words, M has all small (resp. finite) coends.

Proof. This follows from the proof of Proposition 1.12.19, with Top replaced
by M. □

Let B,C : D→ M be a pair of diagrams. A map f : B → C of diagrams is a
natural transformation; i.e., a collection {fd} of maps

fd : Bd → Cd d ∈ D

in M, indexed on the objects d ∈ D, which make the right-hand diagram

d

α

��

Bd

α∗=B(α)

��

fd // Cd

α∗=C(α)

��

d′ Bd′
fd′
// Cd′

commute (i.e., such that α∗ fd = fd′ α∗) for each arrow α in D. If D is a small
category, we denote by MD the category of D-shaped diagrams in M and their
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maps. For instance, if D is the category of the form

0 1oo 2oo 3oo 4oo · · ·oo

(with objects the non-negative integers and a single morphism i← j for each i ≤ j),

then a map f : B → C in SetD is a collection of maps f0, f1, f2, . . . which make the
diagram

B0

f0

��

B1
oo

f1

��

B2
oo

f2

��

B3
oo

f3

��

B4
oo

f4

��

· · ·oo

C0 C1
oo C2

oo C3
oo C4

oo · · ·oo

in Set commute.
If M is a category and B,C ∈ M is a pair of objects in M, then homM(B,C)

denotes the set of maps B → C in M; maps (or arrows, or morphisms) in M are
sometimes called homomorphisms in M; hence the “hom” notation for the indicated
collection of maps. There are functors of the form

homM(B,−) : M→ Set, Z 7→ homM(B,Z)(1.97)

homM(−, C) : Mop → Set, Y 7→ homM(Y,C)(1.98)

homM(−,−) : Mop ×M→ Set, (Y,Z) 7→ homM(Y,Z)(1.99)

Remark 1.12.21. We will sometimes drop the decoration M from the notation
and simply write hom in place of homM; this will not cause any confusion. Let’s re-
mind ourselves how the induced maps are defined—they are the naturally occurring
ones:

Z
α−→ Z ′ 7→ hom(B,Z)

(id,α)−−−−→ hom(B,Z ′)(
B

ξ−→ Z 7→ B
ξ−→ Z

α−→ Z ′
)

Y
β←− Y ′ 7→ hom(Y,C)

(β,id)−−−→ hom(Y ′, C)(
Y

ξ−→ C 7→ Y ′ β−→ Y
ξ−→ C

)
In other words, (id, α)(ξ) = αξ and (β, id)(ξ) = ξβ. Similarly, for α, β a pair of
maps in M, the right-hand diagram

Y Z
α // Z ′ hom(Y,Z)

(β,id)

��

(id,α)
// hom(Y,Z ′)

(β,id)

��

Y ′

β

OO

hom(Y ′, Z)
(id,α)

// hom(Y ′, Z ′)

in Set commutes; i.e., (β, id)(id, α) = (id, α)(β, id). We denote the composite by

hom(Y, Z)
(β,α)−−−→ hom(Y ′, Z ′)(

Y
ξ−→ Z 7→ Y ′ β−→ Y

ξ−→ Z
α−→ Z ′

)
In other words, (β, α)ξ = αξβ.
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Proposition 1.12.22. Let D be a small category. If B,C ∈ MD, then the set
of maps homMD(B,C) is naturally isomorphic to the end

homMD(B,C) ∼= homM(B,C)D

of the diagram homM(B,C) : Dop × D→ Set.

Proof. The basic idea is to (i) look for a naturally occuring wedge into
homM(B,C) and (ii) verify it is terminal with respect to all such wedges. Con-
sider the middle diagram of the form

(Bd, Cd)

(id,α∗)

��

A

fd

00

fd′ --

∃!

f
// (B,C)

td

66

td′ ((

(Bd, Cd′)

(Bd′ , Cd′)

(α∗,id)

OO

(Bd, Cd)

(id,α∗)

��

d

α

��

(B,C)

td

66

td′ ((

(Bd, Cd′)

(Bd′ , Cd′)

(α∗,id)

OO

d′

in Set; here, we use the shorthand notation (Bd, Cd) = homM(Bd, Cd) and (B,C) =
homMD(B,C). The map td sends B → C to Bd → Cd; i.e., it is the “evaluate at d”
map. Consider any wedge {fd} of the left-hand form. Noting that each a ∈ A picks
out a map B → C of diagrams (i.e., understanding what it means for the outer
left-hand diagram to commute, for each arrow α in D) completes the proof—in
other words, uniqueness is forced on us, since the diagram commutes implies that
f(a) is the map B → C of diagrams given by the collection {fd(a)} of maps, for
each a ∈ A, and existence follows since this is a well-defined map in Set. □

Proposition 1.12.23. Let D be a small category and Z : D→ Set a diagram.
Then the limit limD Z is naturally isomorphic to the end

limD Z ∼= homSet(∗, Z)D ∼= homSetD(∗, Z)

Here, ∗ : D→ Set denotes the constant diagram with value the terminal object ∗ in
Set.

Proof. This is because Zd
∼= homSet(∗, Zd) for each object d ∈ D; in other

words, the terminal wedge of the indicated end reduces to the same information as
the terminal cone of the indicated limit. □

Remark 1.12.24. In other words, the limit limD Z can be calculated by taking
“hom” (as D-shaped diagrams) of ∗ into Z. This observation plays a role later when
we develop the Bousfield-Kan homotopy limit functor.

Proposition 1.12.25. Let D be a small category and X : Dop → Set a diagram.
Then the colimit colimDop X is naturally isomorphic to the coend

colimDop X ∼= X ×D ∗

Here, the diagram ∗ : D→ Set denotes the constant diagram with value ∗ (the ter-
minal object) in Set.

Proof. This is because Xd
∼= Xd × ∗ for each object d ∈ D; in other words,

the initial wedge of the indicated coend reduces to the same information as the
initial cone of the indicated colimit. □
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Remark 1.12.26. In other words, the colimit colimDop X can be calculated by
“tensoring” (as D-shaped diagrams) X with ∗. This observation plays a role later
when we develop the Bousfield-Kan homotopy colimit functor.

The following is similar, but let’s point it out anyways.

Proposition 1.12.27. Let M be a category with all small limits and colimits.
Let Y : D→ M a small diagram. Then the limit limD Y (resp. colimit colimD Y ) is
naturally isomorphic to the end (resp. coend)

limD Y ∼= (∗ × Y )D
(
resp. colimD Y ∼= ∗ ×D Y

)
Here, the diagram ∗ : Dop → M denotes the constant diagram with value ∗ (the
terminal object) in M.

Proof. This is because Yd
∼= ∗×Yd for each object d ∈ D; in other words, the

terminal wedge (resp. initial wedge) of the indicated end (resp. coend) reduces to
the same information as the terminal cone (resp. initial cone) of the indicated limit
(resp. colimit). □

1.13. Yoneda lemma

Proposition 1.13.1 (Yoneda lemma: D-shaped diagrams in Set). Let D be a
small category, b ∈ D, and consider the associated diagram hom(b,−) : D→ Set. If
X : D→ Set is a diagram, then there exists an isomorphism

homSetD(hom(b,−), X) ∼= Xb

in Set, natural in b,X. This conclusion remains true, even if we drop the as-
sumption that D is small—in this case, SetD (as a large category) may only have
hom-classes, instead of hom-sets, in general, but the bijection remains true and Xb

is a set, hence this particular hom-class is a hom-set.

Proof. Here is the basic idea: a map of diagrams out of hom(b,−) has so
much structure forced on it, that it is already completely determined by where
the identity map is sent. In more detail: consider any map f : hom(b,−)→ X
of diagrams. Then f consists of a collection {fd} of maps in Set, indexed on the
objects d ∈ D, which makes the middle diagram

d

α

��

hom(b, d)

(id,α)

��

fd // Xd

X(α)

��

hom(b, d)

(id,α)

��

f
// Xd

X(α)

��

d′ hom(b, d′)
fd′
// Xd′ hom(b, d′)

f
// Xd′

(1.100)

commute for each arrow α in D. For notational convenience, let’s drop the sub-
scripts on f ; then we can write the middle diagram as the right-hand diagram. In
particular, for each arrow α : b→ d in D, the right-hand diagram

b

α

��

hom(b, b)

(id,α)

��

f
// Xb

X(α)

��

d hom(b, d)
f
// Xd

(1.101)
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in Set commutes; here, we obtained (1.101) by replacing α in (1.100) with an element
α ∈ hom(b, d). Chasing the identity map id ∈ hom(b, b) around the diagram verifies

b
id−→ b 7→ f(id) 7→ X(α)f(id)

b
id−→ b 7→ b

id−→ b
α−→ d 7→ f(α)

that f(α) = X(α)f(id). The upshot is that f is completely determined by its value
f(id) on the identity map id: b→ b. It is easy to check that the Yoneda map

homSetD(hom(b,−), X)
∼=−−→ Xb, f 7→ f(id)

is a bijection, natural in b,X.
In more detail: let’s verify it is a surjection. Choose any a ∈ Xb and define

f : hom(b,−)→ X by f(id) = a and f(α) = X(α)f(id) for each arrow α : b→ d in
D. It follows that f is a well-defined map of diagrams and hence the Yoneda map
is a surjection. Let’s verify it is an injection. Suppose f, f ′ : hom(b,−)→ X is a
pair of maps of diagrams. Assume that f(id) = f ′(id). Then f(α) = X(α)f(id) =
X(α)f ′(id) = f ′(α) for each arrow α : b→ d in D and hence the Yoneda map is an
injection. Hence we have verified the Yoneda map is an isomorphism in Set. □

Corollary 1.13.2. Let D be a category. If b, b′ ∈ D, then there exists an
isomorphism homSetD(hom(b,−),hom(b′,−)) ∼= hom(b′, b) in Set, natural in b, b′.

Remark 1.13.3. The upshot is: giving a map f : hom(b,−)→ hom(b′,−) of
diagrams is the same as giving a map b← b′ in D.

It will be useful to further elaborate this.

Corollary 1.13.4. Let D be a category. If b, b′ ∈ D, then each map

f : hom(b,−)→ hom(b′,−)

of diagrams has the form f = (β, id) for some map b
β←− b′ in D (i.e., β = f(id));

furthermore, f is an isomorphism if and only if β is an isomorphism in D.

Proof. Define β = f(id) : b′ → b in D. Then f(α) = (id, α)f(id) = (id, α)β =
αβ = (β, id)α for each arrow α : b→ d in D. Hence we have verified that f = (β, id).
Let’s verify that f is an isomorphism if and only if β is an isomorphism in D.
Suppose f is an isomorphism. Then there is a commutative diagram of the form

hom(b′,−)

(β′,id)

��

(id,id)=id

""

hom(b,−)
(β,id)

//

(id,id)=id ))

hom(b′,−)

(β′,id)

��

hom(b,−)

for some arrow β′ : b→ b′ in D. It follows that β′β = id and ββ′ = id and hence β is
an isomorphism in D. Conversely, if β is an isomorphism, then so is (β, id) = f . □

Once we get adjunctions into the picture, this sometimes provides an efficient
method for showing that a pair of particular objects b, b′ ∈ D are isomorphic.
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Proposition 1.13.5 (Yoneda lemma: Dop-shaped diagrams in Set). Let D be a
small category, c ∈ D, and consider the associated diagram hom(−, c) : Dop → Set.
If Y : Dop → Set is a diagram, then there exists an isomorphism

homSetD
op (hom(−, c), Y ) ∼= Yc

in Set, natural in c, Y . This conclusion remains true, even if we drop the as-

sumption that D is small—in this case, SetD
op

(as a large category) may only have
hom-classes, instead of hom-sets, in general, but the bijection remains true and Yc

is a set, hence this particular hom-class is a hom-set.

Proof. Here is the basic idea: a map of diagrams out of hom(−, c) has so
much structure forced on it, that it is already completely determined by where
the identity map is sent. In more detail: consider any map f : hom(−, c)→ Y of
diagrams. Then f consists of a collection {fd} of maps in Set, indexed on the
objects d ∈ D, which makes the middle diagram

d hom(d, c)

(α,id)

��

fd // Yd

Y (α)

��

hom(d, c)

(α,id)

��

f
// Yd

Y (α)

��

d′

α

OO

hom(d′, c)
fd′
// Yd′ hom(d′, c)

f
// Yd′

(1.102)

commute for each arrow α in D. For notational convenience, let’s drop the sub-
scripts on f ; then we can write the middle diagram as the right-hand diagram. In
particular, for each arrow α : d→ c in D, the right-hand diagram

c hom(c, c)

(α,id)

��

f
// Yc

Y (α)

��

d

α

OO

hom(d, c)
f
// Yd

(1.103)

in Set commutes; here, we obtained (1.103) by replacing α in (1.102) with an element
α ∈ hom(d, c). Chasing the identity map id ∈ hom(c, c) around the diagram verifies

c
id−→ c 7→ f(id) 7→ Y (α)f(id)

c
id−→ c 7→ d

α−→ c
id−→ c 7→ f(α)

that f(α) = Y (α)f(id). The upshot is that f is completely determined by its value
f(id) on the identity map id: c→ c. It is easy to check that the Yoneda map

homSetD
op (hom(−, c), Y )

∼=−−→ Yc, f 7→ f(id)

is a bijection, natural in c, Y .
In more detail: let’s verify it is a surjection. Choose any a ∈ Yc and define

f : hom(−, c)→ Y by f(id) = a and f(α) = Y (α)f(id) for each arrow α : d→ c in
D. It follows that f is a well-defined map of diagrams and hence the Yoneda map
is a surjection. Let’s verify it is an injection. Suppose f, f ′ : hom(−, c)→ Y is a
pair of maps of diagrams. Assume that f(id) = f ′(id). Then f(α) = Y (α)f(id) =
Y (α)f ′(id) = f ′(α) for each arrow α : d→ c in D and hence the Yoneda map is an
injection. Hence we have verified the Yoneda map is an isomorphism in Set. □
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Corollary 1.13.6. Let D be a category. If c, c′ ∈ D, then there exists an
isomorphism homSetD

op (hom(−, c),hom(−, c′)) ∼= hom(c, c′) in Set, natural in c, c′.

Remark 1.13.7. The upshot is: giving a map f : hom(−, c)→ hom(−, c′) of
diagrams is the same as giving a map c→ c′ in D.

It will be useful to further elaborate this.

Corollary 1.13.8. Let D be a category. If c, c′ ∈ D, then each map

f : hom(−, c)→ hom(−, c′)

of diagrams has the form f = (id, β) for some map c
β−→ c′ in D (i.e., β = f(id));

furthermore, f is an isomorphism if and only if β is an isomorphism in D.

Proof. Define β = f(id) : c→ c′ in D. Then f(α) = (α, id)f(id) = (α, id)β =
βα = (id, β)α for each arrow α : d→ c in D. Hence we have verified that f = (id, β).
Let’s verify that f is an isomorphism if and only if β is an isomorphism in D.
Suppose f is an isomorphism. Then there is a commutative diagram of the form

hom(−, c′)

(id,β′)

��

(id,id)=id

""

hom(−, c)
(id,β)

//

(id,id)=id ))

hom(−, c′)

(id,β′)

��

hom(−, c)

for some arrow β′ : c′ → c in D. It follows that ββ′ = id and β′β = id and hence β is
an isomorphism in D. Conversely, if β is an isomorphism, then so is (id, β) = f . □

Once we get adjunctions into the picture, this sometimes provides an efficient
method for verifying that a pair of particular objects c, c′ ∈ D are isomorphic.

1.14. Colimits of representables

Suppose D is a small category and let Y : Dop → Set be a diagram. Consider

the functor hom(−,−) : D→ SetD
op

defined objectwise by c 7→ hom(−, c).

Remark 1.14.1. We know by Yoneda that giving a map f : hom(−, c)→ Y of
diagrams is the same as giving a map y : ∗ → Yc in Set, where ∗ is the terminal
object in Set (i.e., a one point set) and we label the map by the element that it picks
out—in this case, it picks out the element y = f(id) ∈ Yc. When working with maps
of diagrams of the form f : hom(−, c)→ Y , we often only need to keep track of the
element y = f(id) since it uniquely determines the map f : hom(−, c)→ Y . In what
follows, for notational convenience reasons we will often use the same label for both
the map y : ∗ → Yc in Set (i.e., the map that picks out the element y ∈ Yc) and its
corresponding map f : hom(−, c)→ Y of diagrams (where f(id) = y); this will not
cause any confusion. For instance, in this notation, the map y : hom(−, c)→ Y of



64 1. BASIC CONSTRUCTIONS: MAPPING PROPERTIES

diagrams corresponds to the map y : ∗ → Yc in Set and the middle diagram

c

α

��

hom(−, c)

(id,α)

��

y
// Y

c′ hom(−, c′)
y′
// Y

∗
y
// Yc

∗
y′
// Yc′

Y (α)

OO

in SetD
op

commutes if and only if the corresponding right-hand diagram in Set
commutes; here, α : c→ c′ denotes a map in D.

Let’s use the notational convention in Remark 1.14.1 for what follows. The
category of elements of Y , denoted hom(−,−) ↓ Y , is the category with objects
all pairs (c, y) where c ∈ D and y : hom(−, c)→ Y is a map of diagrams, and with
maps α : (c, y)→ (c′, y′) those maps α : c→ c′ in D that make the diagram

c

α

��

hom(−, c)

(id,α)

��

y
// Y

c′ hom(−, c′)
y′
// Y

in SetD
op

commute. We often refer to the object (c, y) simply by y, when c is clear
from the context; this will not cause any confusion. The diagram of elements of Y
is the diagram defined objectwise by

hom(−,−) ↓ Y → SetD
op

, hom(−, c) y−→ Y 7→ hom(−, c)

In other words, it is the projection functor (or forgetful functor) that sends y to its
domain.

Proposition 1.14.2. If Y : Dop → Set is a diagram, then the natural map

colim
y : hom(−,c)→Y

hom(−, c)
∼=−−→ Y

in SetD
op

is an isomorphism; here, the indicated colimit is indexed over all objects
y : hom(−, c)→ Y in the category hom(−,−) ↓ Y of elements of Y .

Proof. The basic idea is that Y should be the colimit of its elements when
appropriately glued together—the diagram of elements of Y makes this precise.
Let’s verify that Y is the indicated colimit: it suffices to verify the universal property
of colimits. The first step is to look for a naturally occurring cone into Y , but that
is built into the indexing category via the notion of a map from y to y′ as indicated

c

α

��

hom(−, c)

(id,α)

��

y
// Y

c′ hom(−, c′)
y′
// Y

hom(−, c)

(id,α)

��

y

��

fy

  

Y
∃!

f
// A

hom(−, c′)
y′

AA

fy′

??

(1.104)
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in the middle diagram. Consider any A ∈ SetD
op

and collection {fy} of maps

fy : hom(−, c)→ A y ∈ hom(−,−) ↓ Y

in SetD
op

, indexed on the objects y ∈ hom(−,−) ↓ Y , which make the right-
hand outer diagram commute (i.e., such that fy′(id, α) = fy) for each arrow α in
hom(−,−) ↓ Y (indicated in the middle diagram). We want to show: there exists

a unique map f in SetD
op

which makes the right-hand diagram commute (i.e., such
that f y = fy for each y ∈ hom(−,−) ↓ Y . To understand the meaning of this,
let’s rewrite the diagrams in (1.104) (see Remark 1.14.1) in their equivalent forms
as the diagrams

c

α

��

∗
y
// Yc

c′ ∗
y′
// Yc′

Y (α)

OO
∗

y
//

fy

""

Yc

fc // Ac

∗
y′
//

fy′

==
Yc′

fc′

//

Y (α)

OO

Ac′

A(α)

OO

in Set. Uniqueness is forced on us, since the right-hand diagram in (1.104) commutes
implies that f c y = fy for each y ∈ hom(−,−) ↓ Y . Existence follows since f is

a well-defined map of diagrams: in more detail, we want to verify that f c Y (α) =
A(α)f c′ . Choose any y′ ∈ Yc′ and consider the corresponding map y′ : ∗ → Yc′ . Let
y = Y (α)y′. Then we know that f c Y (α)y′ = f c y = fy = A(α)fy′ = A(α)f c′y

′.

Hence we have verified that f is a well-defined map of diagrams. □

Suppose D is a small category and let X : D→ Set be a diagram. Consider the
functor hom(−,−) : Dop → SetD defined objectwise by b 7→ hom(b,−).

Remark 1.14.3. We know by Yoneda that giving a map f : hom(b,−)→ X of
diagrams is the same as giving a map x : ∗ → Xb in Set, where ∗ is the terminal
object in Set (i.e., a one point set) and we label the map by the element that it picks
out—in this case, it picks out the element x = f(id) ∈ Xb. When working with
maps of diagrams of the form f : hom(b,−)→ X, we often only need to keep track
of the element x = f(id) since it uniquely determines the map f : hom(b,−)→ X.
In what follows, for notational convenience reasons, we will often use the same
label for both the map x : ∗ → Xb in Set (i.e., the map that picks out the element
x ∈ Xb) and its corresponding map f : hom(b,−)→ X of diagrams (where f(id) =
x); this will not cause any confusion. For instance, in this notation, the map
x : hom(−, b)→ X of diagrams corresponds to the map x : ∗ → Xb in Set and the
middle diagram

b hom(b,−)

(α,id)

��

x // X

b′

α

OO

hom(b′,−)
x′
// X

∗ x // Xb

∗
x′
// Xb′

X(α)

OO

in SetD commutes if and only if the corresponding right-hand diagram in Set com-
mutes; here, α : b′ → b denotes a map in D.
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Let’s use the notational convention in Remark 1.14.3 for what follows. The
category of elements of X, denoted hom(−,−) ↓ X, is the category with objects
all pairs (b, x) where b ∈ D and x : hom(b,−)→ X is a map of diagrams, and with
maps α : (b, x)→ (b′, x′) those maps α : b′ → b in D that make the diagram

b hom(b,−)

(α,id)

��

x // X

b′

α

OO

hom(b′,−)
x′
// X

in SetD commute. We often refer to the object (b, x) simply by x, when x is clear
from the context; this will not cause any confusion. The diagram of elements of X
is the diagram defined objectwise by

hom(−,−) ↓ X → SetD, hom(b,−) x−→ X 7→ hom(b,−)

In other words, it is the projection functor (or forgetful functor) that sends x to its
domain.

Proposition 1.14.4. If X : D→ Set is a diagram, then the natural map

colim
x : hom(b,−)→X

hom(b,−)
∼=−−→ X

in SetD is an isomorphism; here, the indicated colimit is indexed over all objects
x : hom(b,−)→ X in the category hom(−,−) ↓ X of elements of X.

Proof. The basic idea is that X should be the colimit of its elements when ap-
propriately glued together—the diagram of elements of X makes this precise. Let’s
verify that X is the indicated colimit: it suffices to verify the universal property of
colimits. The first step is to look for a naturally occurring cone into X, but that is
built into the indexing category via the notion of a map from x to x′ as indicated

b hom(b,−)

(α,id)

��

x // X

b′

α

OO

hom(b′,−)
x′
// X

hom(b,−)

(α,id)

��

x

��

fx

  

X
∃!

f
// A

hom(b′,−)
x′

AA

fx′

>>

(1.105)

in the middle diagram. Consider any A ∈ SetD and collection {fx} of maps

fx : hom(b,−)→ A x ∈ hom(−,−) ↓ X

in SetD, indexed on the objects x ∈ hom(−,−) ↓ X, which make the right-
hand outer diagram commute (i.e., such that fx′(α, id) = fx) for each arrow α
in hom(−,−) ↓ X (indicated in the middle diagram). We want to show: there

exists a unique map f in SetD which makes the right-hand diagram commute (i.e.,
such that f x = fx for each x ∈ hom(−,−) ↓ X. To understand the meaning of
this, let’s rewrite the diagrams in (1.105) (see Remark 1.14.3) in their equivalent
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forms as the diagrams

b ∗ x // Xb

b′

α

OO

∗
x′
// Xb′

X(α)

OO
∗ x //

fx

""

Xb

fb // Ab

∗
x′
//

fx′

<<
Xb′

fb′

//

X(α)

OO

Ab′

A(α)

OO

in Set. Uniqueness is forced on us, since the right-hand diagram in (1.104) com-
mutes implies that f b x = fx for each x ∈ hom(−,−) ↓ X. Existence follows
since f is a well-defined map of diagrams: in more detail, we want to verify that
f b X(α) = A(α)f b′ . Choose any x′ ∈ Xb′ and consider the corresponding map
x′ : ∗ → Xb′ . Let x = X(α)x′. Then we know that f b X(α)x′ = f b x = fx =
A(α)fx′ = A(α)f b′x

′. Hence we have verified that f is a well-defined map of dia-
grams. □

NEXT STEPS: FINISH TYPING UP PENCIL AND PAPER NOTES FOR
THE REMAINING SECTIONS IN CHAPTER 1. ADD REFERENCES. START
TYPING UP PENCIL AND PAPER NOTES FOR CHAPTERS 2 AND 3.
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