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Abstract. In this short paper we apply some recent techniques developed

by Schonsheck, and subsequently Carr-Harper, in the context of operadic al-

gebras in spectra—on convergence of Bousfield-Kan completions and compar-
isons with convergence of the Taylor tower of the identity functor in Good-

willie’s functor calculus—to the setting of retractive spaces: this arises when

working with spaces centered away from the one-point space. Interestingly, in
the retractive spaces context, the comparison results are stronger in terms of

convergence outside of functor calculus’ notion of “radius of (strong) conver-

gence” for analytic functors. In particular, we give a new proof (and general-
ization to retractive spaces) of the Arone-Kankaanrinta result for convergence

of the Taylor tower of the identity functor to various Bousfield-Kan comple-
tions; it’s notable that no use is made of Snaith splittings—rather, we make

extensive use of the kinds of homotopical estimates that appear in earlier work

of Dundas and Dundas-Goodwillie-McCarthy.

1. Introduction

This paper is written simplicially so that “space” means “simplicial set” unless
otherwise noted; see [7, 17]. In particular, we refer to the category of pointed
simplicial sets S∗ as pointed spaces; this is equipped with the usual homotopy
theory ([7, 17]). Our basic assumption is that Z is a 0-connected fibrant pointed
space. Denote by SZ∗

∼= idZ ↓ (S∗ ↓ Z) the factorization category ([2, 2.1], [20,
4.9]) of the identity map on Z, called the category of retractive pointed spaces over
Z, equipped with the homotopy theory ([2, 2.1], [20, 4.9]) inherited from S∗; in
particular, it has the structure of a simplicial cofibrantly generated model structure
([21], [29]) with an action of S∗ ([22, 4.2]). The setting of retractive spaces naturally
arises in Goodwillie’s homotopy functor calculus [18, 19] when working with Taylor
towers centered away from the one-point space; see also [24]. When working with
Bousfield-Kan completions, we make extensive use of the kinds of homotopical
resolutions studied in [5]. We say that a retractive space X over Z is k-connected
relative to Z (or k-connected (rel. Z)) if the structure map Z → X is k-connected.

Here are our main results. In the special case when Z = ∗ (the one-point space),
Theorem 1.1 is proved by Bousfield and Hopkins [6] (for r ≥ 1) and Carlsson [8]
(for r =∞) for any 0-connected nilpotent space X, and subsequently in [4] for any
1-connected space X (using different arguments closely related to [3, 11, 13, 14]).
Our result in Theorem 1.2, generalizes this to any 0-connected (rel. Z) retractive
space F over Z, provided that, furthermore, F fits into an appropriate homotopy
pullback square. Our technical approach is motivated by the work in [26], and the
subsequent development in [9], for operadic algebras in spectra (where the estimates
are different). We make extensive use of (the retractive version of) the homotopical
estimates worked out in [4]; these are the kinds of homotopical estimates that
appear in earlier work of Dundas [13] and Dundas-Goodwillie-McCarthy [14].
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In the following theorems, Σ̃r
Z (resp. Ω̃r

Z) denotes the derived r-fold suspension

([16, 25]) (resp. derived r-fold loops ([16, 25])) in SZ∗ , and Σ̃∞
Z (resp. Ω̃∞

Z ) denotes
derived stabilization ([23]) on SZ∗ (resp. derived 0-th object functor ([23]) on Hovey

spectra SpN(SZ∗ ) on SZ∗ ).

Theorem 1.1. Assume that Z is a 0-connected pointed space. Let X be a retractive
pointed space over Z. If X is 1-connected (rel. Z), then the coaugmentations

X ≃ X∧
Ω̃r

ZΣ̃r
Z

, (1 ≤ r ≤ ∞)

are weak equivalences in retractive pointed spaces over Z.

Theorem 1.2. Assume that Z is a 0-connected pointed space. If F → X → Y is
a fibration sequence in retractive pointed spaces over Z and X,Y are 1-connected
(rel. Z), then the coaugmentations

F ≃ F∧
Ω̃r

ZΣ̃r
Z

, (1 ≤ r ≤ ∞)

are weak equivalences in retractive pointed spaces over Z. More generally, let

F //

��

X

��
A // Y

be a homotopy pullback square in retractive pointed spaces over Z. If A,X, Y are
1-connected (rel. Z), then the coaugmentations

F ≃ F∧
Ω̃r

ZΣ̃r
Z

, (1 ≤ r ≤ ∞)

are weak equivalences in retractive pointed spaces over Z.

In the special case when Z = ∗, Theorem 1.3 is proved in Arone-Kankaanrinta
[1] for r = ∞ (using closely related, but different, arguments). We generalize
their result to spaces centered away from ∗ and for 1 ≤ r ≤ ∞. Our technical
approach is motivated by the work in [28], and the subsequent development in [9],
for operadic algebras in spectra (where the estimates are different). It’s notable
that no use is made of Snaith splittings—rather (as above) we make extensive use
of (the retractive version of) the homotopical estimates worked out in [4], which are
similar in spirit to the kinds of homotopical estimates appearing in the earlier work
of Dundas [13] and Dundas-Goodwillie-McCarthy [14]; the possibility of giving a
proof of Theorem 1.3 (when Z = ∗) along the lines developed here, was suggested
in [27].

Theorem 1.3. Assume that Z is a 0-connected pointed space. Let X be a retractive
pointed space over Z. If X is 0-connected (rel. Z), then there are weak equivalences
of the form

PZ
∞(id)X ≃ X∧

Ω̃r
ZΣ̃r

Z

, (1 ≤ r ≤ ∞)

in retractive pointed spaces over Z; here, PZ
n (id)X is the n-excisive approximation

to the identity functor id on retractive pointed spaces over Z, evaluated at X, and
PZ
∞(id)X denotes the homotopy limit of the associated Taylor tower {PZ

n (id)X} of
the identity functor id, evaluated at X, in Goodwillie’s functor calculus [19].

To keep this paper appropriately concise, we will freely use language from [4].
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2. Proofs of the main results

To get Bousfield-Kan completion into the picture, we work with the kinds of
homotopical resolutions studied in [5]. There are adjunctions of the form

SZ∗
Σr

Z // SZ∗
Ωr

Z

oo SZ∗
Σ∞

Z // SpN(SZ∗ )
Ω∞

Z

oo (r ≥ 1)

with left adjoints on top, where Σr
Z is given by the pointed spaces action of Sr :=

(S1)∧r ∈ S∗ on objects in SZ∗ and SpN(SZ∗ ) denotes Hovey spectra ([23]) on SZ∗ ; here,
Σ∞

Z (resp. Ω∞
Z ) denotes the stabilization (resp. “0-th object”) functor. Denote by

id → Φ and ΦΦ → Φ the unit and multiplication maps of the fibrant replacement
monad Φ on SZ∗ (see [5, 6.1]) and define Ω̃r

Z := Ωr
ZΦ. Similarly, denote by id→ F

and FF → F the unit and multiplication maps of the fibrant replacement monad
F on SpN(SZ∗ ) (see [5, 6.1]) and define Ω̃∞

Z := Ω∞
Z F . Since every object in SZ∗ is

cofibrant, Σr is already derived and we define Σ̃r := Σr. If we iterate the comparison
map id → Ω̃r

ZΣ̃
r
Z it follows that we can build a cosimplicial resolution of id with

respect to Ω̃r
ZΣ̃

r
Z of the form

id // (Ω̃r
ZΣ̃

r
Z) //// (Ω̃r

ZΣ̃
r
Z)

2
////
//
(Ω̃r

ZΣ̃
r
Z)

3 · · ·(1)

for each 1 ≤ r ≤ ∞; these are the types of homotopical resolutions studied in [5];
see also [4, 9, 11]. Here, we are only showing the coface maps. If X ∈ SZ∗ , the

Bousfield-Kan completion of X with respect to Ω̃r
ZΣ̃

r
Z is the homotopy limit

X∧
Ω̃r

ZΣ̃r
Z

:= holim∆(Ω̃
r
ZΣ̃

r
Z)

•+1(X)(2)

of the Bousfield-Kan cosimplicial resolution (1) evaluated at X. To obtain the
Bousfield-Kan completion tower, we filter ∆ ([4, 5.22]) by its subcategories ∆≤n ⊂
∆, n ≥ 0, and define

(Ω̃r
ZΣ̃

r
Z)n := holim∆≤n(Ω̃r

ZΣ̃
r
Z)

•+1, n ≥ 0

to obtain the Ω̃r
ZΣ̃

r
Z-completion of X

X∧
Ω̃r

ZΣ̃r
Z

≃ holim
(
(Ω̃r

ZΣ̃
r
Z)0(X)← (Ω̃r

ZΣ̃
r
Z)1(X)← (Ω̃r

ZΣ̃
r
Z)2(X)← · · ·

)
(3)

as the homotopy limit of the completion tower, where

(Ω̃r
ZΣ̃

r
Z)0(X) ≃ (Ω̃r

ZΣ̃
r
Z)(X)

For conceptual simplicity and convenience we denote by ∗Z := Z the null object
in SZ∗ . It will be useful to denote by ∗′Z ≃ ∗Z an appropriately fattened-up version
of the null object ∗Z in SZ∗ .

Proposition 2.1. Let k ≥ 0 and 1 ≤ r ≤ ∞. Let X be a retractive pointed space
over Z. If X is k-connected (rel. Z), then the comparison map X → Ω̃r

ZΣ̃
r
ZX is

(2k + 1)-connected.
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Proof. Consider the case r = 1. Consider a pushout cofibration 2-cube of the form

X

��

// ∗′Z

��
∗′Z // Σ̃ZX

in SZ∗ . By assumption we know that the upper and left-hand 1-faces are (k + 1)-
connected. Since the 2-cube is ∞-cocartesian, it follows that the lower and right-
hand 1-faces are (k + 1)-connected. By higher Blakers-Massey [18, 2.5] for S∗, we
know that the 2-cube is l-cartesian where l is the minimum of

1− 2 + l{1,2} = −1 +∞
1− 2 + l{1} + l{2} = −1 + (k + 1) + (k + 1)

Hence l = 2k + 1, the 2-cube is (2k + 1)-cartesian, and the comparison map

X → Ω̃ZΣ̃ZX is (2k + 1)-connected. The other cases (r ≥ 2) follow by repeated

application of the r = 1 case to Σ̃ZX, Σ̃2
ZX, Σ̃3

ZX, . . . in the usual way, and finally,
for r =∞ by considering the homotopy colimit of the resulting sequence. □

For k ≥ 1, this pattern persists for the iterative application of id→ Ω̃r
ZΣ̃

r
Z to go

from 0-cubes to 1-cubes to 2-cubes to 3-cubes, and so forth.

Proposition 2.2. Let k ≥ 1 and 1 ≤ r ≤ ∞. Let W be a finite set and X a W -cube
in SZ∗ . Let n = |W |. If the n-cube X is (k(id + 1) + 1)-cartesian in SZ∗ , then so is

the (n+ 1)-cube of the form X→ Ω̃r
ZΣ̃

r
ZX.

Proof. These estimates are proved in [4, 1.7, 1.8] for the special case of Z = ∗
using higher Blakers-Massey (and its dual) [18, 2.5, 2.6], together with ideas closely
related to [11, 13, 14]; and similar to the proof of Proposition 2.1, exactly the same
arguments (and estimates) remain true in the more general context of pointed spaces
centered at Z; see, for instance, [9] where the analogous passage to the retractive
setting is demonstrated in detail for operadic algebras in spectra. □

Proof of Theorem 1.1. To verify thatX ≃ X∧
Ω̃r

ZΣ̃r
Z

, it suffices to verify that the map

of the form X → (Ω̃r
ZΣ̃

r
Z)n(X) into the n-th stage of the Bousfield-Kan completion

tower has connectivity strictly increasing with n. The connectivity of this map is the
same as the cartesian-ness of the coface (n+1)-cube ([3, 3.13]) of the coaugmented
Bousfield-Kan cosimplicial resolution which we calculated (Propositions 2.1 and
2.2) to be (((n+ 1) + 1) + 1) = n+ 3, which completes the proof. □

Proposition 2.3. Let n ≥ 1. Let X be a retractive pointed space over Z. If X is
0-connected (rel. Z), then the maps

(Ω̃ZΣ̃Z)
k(X)

(∗)n−−−→ PZ
n (Ω̃ZΣ̃Z)

k(X), k ≥ 1

are (n+ 1)-connected.

Proof. Consider the case of n = 1. The 1-excisive approximation PZ
1 (Ω̃ZΣ̃Z)

k(X)

to the functor (Ω̃ZΣ̃Z)
k on retractive pointed spaces over Z, evaluated at X, is the

homotopy colimit of

(Ω̃ZΣ̃Z)
k(X)

(#)1−−−→ TZ
1 (Ω̃ZΣ̃Z)

k(X)→ TZ
1 (TZ

1 (Ω̃ZΣ̃Z)
k)(X)→ · · ·
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the indicated sequence ([19, Section 1]); we want to estimate the connectivities
of these maps. It follows, by iteratively applying higher Blakers-Massey (and its
dual) [18, 2.5, 2.6] for S∗ that the maps (#)1 are 2-connected, and the other maps
are higher connected. In more detail: here is the basic idea for the maps (#)1;
estimates for the other (more highly connected) maps are similar. Consider the
∞-cocartesian 2-cube X of the form

X

��

// ∗′Z

��
∗′Z // Σ̃ZX

in SZ∗ . Since X is 0-connected (rel. Z), we know that ∗Z → X is 0-connected and
hence X → ∗Z is 1-connected ([18, 1.5]); therefore we know that X satisfies: the

1-subcubes are 1-connected and the 2-cube is ∞-cocartesian. Then Σ̃ZX satisfies:
the 1-subcubes are 2-connected and the 2-subcubes (there is only one) are ∞-
cocartesian. By higher Blakers-Massey [18, 2.5] for S∗, we know the 2-cube is
k-cartesian where k is the minimum of

1− 2 + k{1,2} = −1 +∞
1− 2 + k{1} + k{2} = −1 + 2 + 2

Hence k = 3, our 2-cube is 3-cartesian, and Σ̃ZX satisfies: the 1-subcubes are
2-connected and the 2-subcubes are 3-cartesian. Then (Ω̃ZΣ̃Z)X satisfies: the 1-
subcubes are 1-connected and the 2-subcubes are 2-cartesian. Hence we have verifed
that the map

(Ω̃ZΣ̃Z)(X)
(#)1−−−→ TZ

1 (Ω̃ZΣ̃Z)(X)

is 2-connected. Let’s keep going. By higher dual Blakers-Massey [18, 2.6] for S∗,
we know the 2-cube is k-cocartesian where k is the minimum of

2− 1 + k{1,2} = 1 + 2

2− 1 + k{1} + k{2} = 1 + 1 + 1

Hence k = 3, our 2-cube is 3-cocartesian, and (Ω̃ZΣ̃Z)X satisfies: the 1-subcubes

are 1-connected and the 2-subcubes are 3-cocartesian. Then Σ̃Z(Ω̃ZΣ̃Z)X satisfies:
the 1-subcubes are 2-connected and the 2-subcubes are 4-cocartesian. By higher
Blakers-Massey [18, 2.5] for S∗, we know the 2-cube is k-cartesian where k is the
minimum of

1− 2 + k{1,2} = −1 + 4

1− 2 + k{1} + k{2} = −1 + 2 + 2

Hence, k = 3, our 2-cube is 3-cartesian, and Σ̃Z(Ω̃ZΣ̃Z)X satisfies: the 1-subcubes

are 2-connected and the 2-subcubes are 3-cartesian. Then (Ω̃ZΣ̃Z)
2X satisfies: the

1-subcubes are 1-connected and the 2-subcubes are 2-cartesian. Hence we have
verifed that the map

(Ω̃ZΣ̃Z)
2(X)

(#)1−−−→ TZ
1 (Ω̃ZΣ̃Z)

2(X)
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is 2-connected. Let’s keep going. By higher dual Blakers-Massey [18, 2.6] for S∗,
we know the 2-cube is k-cocartesian where k is the minimum of

2− 1 + k{1,2} = 1 + 2

2− 1 + k{1} + k{2} = 1 + 1 + 1

Hence k = 3, our 2-cube is 3-cocartesian, and (Ω̃ZΣ̃Z)
2X satisfies: the 1-subcubes

are 1-connected and the 2-subcubes are 3-cocartesian. Then Σ̃Z(Ω̃ZΣ̃Z)
2X satisfies:

the 1-subcubes are 2-connected and the 2-subcubes are 4-cocartesian. By higher
Blakers-Massey [18, 2.5] for S∗, we know the 2-cube is k-cartesian where k is the
minimum of

1− 2 + k{1,2} = −1 + 4

1− 2 + k{1} + k{2} = −1 + 2 + 2

Hence, k = 3, our 2-cube is 3-cartesian, and Σ̃Z(Ω̃ZΣ̃Z)
2X satisfies: the 1-subcubes

are 2-connected and the 2-subcubes are 3-cartesian. Then (Ω̃ZΣ̃Z)
3X satisfies: the

1-subcubes are 1-connected and the 2-subcubes are 2-cartesian. Hence we have
verifed that the map

(Ω̃ZΣ̃Z)
3(X)

(#)1−−−→ TZ
1 (Ω̃ZΣ̃Z)

3(X)

is 2-connected; notice how the subcube estimates have stabilized at each respective
step. And so forth. Hence it follows that the maps

(Ω̃ZΣ̃Z)
k(X)

(#)1−−−→ TZ
1 (Ω̃ZΣ̃Z)

k(X), k ≥ 1

are 2-connected. Consider the case of n = 2. The 2-excisive approximation
PZ
2 (Ω̃ZΣ̃Z)

k(X) to the functor (Ω̃ZΣ̃Z)
k on retractive pointed spaces over Z, eval-

uated at X, is the homotopy colimit of

(Ω̃ZΣ̃Z)
k(X)

(#)2−−−→ TZ
2 (Ω̃ZΣ̃Z)

k(X)→ TZ
2 (TZ

2 (Ω̃ZΣ̃Z)
k)(X)→ · · ·

the indicated sequence ([19, Section 1]); we want to estimate the connectivities of
these maps. It follows, by iteratively applying higher Blakers-Massey (and its dual)
[18, 2.5, 2.6] for S∗ that the maps (#)2 are 3-connected, and the other maps are
higher connected. In more detail: here is the basic idea for the maps (#)2; estimates
for the other (more highly connected) maps are similar. Consider a strongly ∞-
cocartesian 3-cube X satisfying: the 1-subcubes are 1-connected, the 2-subcubes
are∞-cocartesian, and the 3-subcubes (there is only one) are∞-cocartesian. Then

Σ̃ZX satisfies: the 1-subcubes are 2-connected, the 2-subcubes are ∞-cocartesian,
and the 3-subcubes are ∞-cocartesian. By higher Blakers-Massey [18, 2.5] for S∗,
we know the 3-cube is k-cartesian where k is the minimum of

1− 3 + k{1,2,3} = −2 +∞
1− 3 + k{1,2} + k{3} = −2 +∞+ 2

1− 3 + k{1} + k{2} + k{3} = −2 + 2 + 2 + 2

Hence k = 4, our 3-cube is 4-cartesian, and Σ̃ZX satisfies: the 1-subcubes are
2-connected, the 2-subcubes are 3-cartesian, and the 3-subcubes are 4-cartesian.
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Then (Ω̃ZΣ̃Z)X satisfies: the 1-subcubes are 1-connected, the 2-subcubes are 2-
cartesian, and the 3-subcubes are 3-cartesian. Hence we have verifed that the map

(Ω̃ZΣ̃Z)(X)
(#)2−−−→ TZ

2 (Ω̃ZΣ̃Z)(X)

is 3-connected. Let’s keep going. By higher dual Blakers-Massey [18, 2.6] for S∗,
we know the 3-cube is k-cocartesian where k is the minimum of

3− 1 + k{1,2,3} = 2 + 3

3− 1 + k{1,2} + k{3} = 2 + 2 + 1

3− 1 + k{1} + k{2} + k{3} = 2 + 1 + 1 + 1

Hence k = 5, our 3-cube is 5-cocartesian, and (Ω̃ZΣ̃Z)X satisfies: the 1-subcubes are
1-connected, the 2-subcubes are 3-cocartesian, and the 3-subcubes are 5-cocartesian.
Then Σ̃Z(Ω̃ZΣ̃Z)X satisfies: the 1-subcubes are 2-connected, the 2-subcubes are 4-
cocartesian, and the 3-subcubes are 6-cocartesian. By higher Blakers-Massey [18,
2.5] for S∗, we know the 3-cube is k-cartesian where k is the minimum of

1− 3 + k{1,2,3} = −2 + 6

1− 3 + k{1,2} + k{3} = −2 + 4 + 2

1− 3 + k{1} + k{2} + k{3} = −2 + 2 + 2 + 2

Hence, k = 4, our 3-cube is 4-cartesian, and Σ̃Z(Ω̃ZΣ̃Z)X satisfies: the 1-subcubes
are 2-connected, the 2-subcubes are 3-cartesian, and the 3-subcubes are 4-cartesian.
Then (Ω̃ZΣ̃Z)

2X satisfies: the 1-subcubes are 1-connected, the 2-subcubes are 2-
cartesian, and the 3-subcubes are 3-cartesian. Hence we have verifed that the map

(Ω̃ZΣ̃Z)
2(X)

(#)2−−−→ TZ
2 (Ω̃ZΣ̃Z)

2(X)

is 3-connected. Let’s keep going. By higher dual Blakers-Massey [18, 2.6] for S∗,
we know the 3-cube is k-cocartesian where k is the minimum of

3− 1 + k{1,2,3} = 2 + 3

3− 1 + k{1,2} + k{3} = 2 + 2 + 1

3− 1 + k{1} + k{2} + k{3} = 2 + 1 + 1 + 1

Hence k = 5, our 3-cube is 5-cocartesian, and (Ω̃ZΣ̃Z)
2X satisfies: the 1-subcubes

are 1-connected, the 2-subcubes are 3-cocartesian, and the 3-subcubes are 5-cocartesian.
Then Σ̃Z(Ω̃ZΣ̃Z)

2X satisfies: the 1-subcubes are 2-connected, the 2-subcubes are
4-cocartesian, and the 3-subcubes are 6-cocartesian. By higher Blakers-Massey [18,
2.5] for S∗, we know the 3-cube is k-cartesian where k is the minimum of

1− 3 + k{1,2,3} = −2 + 6

1− 3 + k{1,2} + k{3} = −2 + 4 + 2

1− 3 + k{1} + k{2} + k{3} = −2 + 2 + 2 + 2

Hence, k = 4, our 3-cube is 4-cartesian, and Σ̃Z(Ω̃ZΣ̃Z)
2X satisfies: the 1-subcubes

are 2-connected, the 2-subcubes are 3-cartesian, and the 3-subcubes are 4-cartesian.
Then (Ω̃ZΣ̃Z)

3X satisfies: the 1-subcubes are 1-connected, the 2-subcubes are 2-
cartesian, and the 3-subcubes are 3-cartesian. Hence we have verifed that the map

(Ω̃ZΣ̃Z)
3(X)

(#)2−−−→ TZ
2 (Ω̃ZΣ̃Z)

3(X)
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is 3-connected; notice how the subcube estimates have stabilized at each respective
step. And so forth. Hence it follows that the maps

(Ω̃ZΣ̃Z)
k(X)

(#)2−−−→ TZ
2 (Ω̃ZΣ̃Z)

k(X), k ≥ 1

are 3-connected. And so forth. □

Proposition 2.4. Let n ≥ 1 and 1 ≤ r ≤ ∞. Let X be a retractive pointed space
over Z. If X is 0-connected (rel. Z), then the maps

(Ω̃r
ZΣ̃

r
Z)

k(X)
(∗)n−−−→ PZ

n (Ω̃r
ZΣ̃

r
Z)

k(X), k ≥ 1

are (n+ 1)-connected.

Proof. A detailed proof of the r = 1 case is given above (Proposition 2.3), and
the other cases are similar. In the case of r = ∞, several of the steps are easier
since Σ̃∞

Z preserves cocartesian-ness, Ω̃∞
Z preserves cartesian-ness, and the stable

estimates in [10, 3.10] are available for each estimate step following the application

of Σ̃∞
Z . □

Proposition 2.5. Let n ≥ 1. Let X be a retractive pointed space over Z. If X is
0-connected (rel. Z), then the maps

(Ω̃ZΣ̃Z)k(X)
(∗∗)n−−−→ PZ

n+k(Ω̃ZΣ̃Z)k(X), k ≥ 0

are (n+ 1)-connected.

Proof. Consider the case of k = 0. Then the map (∗∗)n is (n + 1)-connected by

Proposition 2.4. Consider the case of k = 1. By definition, (Ω̃ZΣ̃Z)1X fits into an
∞-cartesian 2-cube of the form ([4, 5.26])

(Ω̃ZΣ̃Z)1X

��

// (Ω̃ZΣ̃Z)X

��
(Ω̃ZΣ̃Z)X // (Ω̃ZΣ̃Z)

2X

and therefore the map (∗∗)n fits into a 3-cube of the form

(Ω̃ZΣ̃Z)1X

��

//

(∗∗)n

''

(Ω̃ZΣ̃Z)X

��

(∗)n+1

''
PZ
n+1(Ω̃ZΣ̃Z)1X

��

// PZ
n+1(Ω̃ZΣ̃Z)X

��

(Ω̃ZΣ̃Z)X //

(∗)n+1

''

(Ω̃ZΣ̃Z)
2X

(∗)n+1

''
PZ
n+1(Ω̃ZΣ̃Z)X // PZ

n+1(Ω̃ZΣ̃Z)
2X

(4)

Several applications of [18, 1.6] show that the map (∗∗)n is (n + 1)-connected. In
more detail: the back 2-face is ∞-cartesian, hence the front 2-face is ∞-cartesian
([19, 1.7]). Therefore, the 3-cube is ∞-cartesian. By Proposition 2.4, the maps
(∗)n+1 are (n+2)-connected, hence the right-hand 2-face is (n+1)-cartesian. Since
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the 3-cube is∞-cartesian, we therefore know the left-hand 2-face is (n+1)-cartesian;
and hence, since the map (∗)n+1 is (n+ 2)-connected, therefore we know the map

(∗∗)n is (n + 1)-connected. Consider the case of k = 2. By definition, (Ω̃ZΣ̃Z)2X
fits into an ∞-cartesian 3-cube X of the form

(Ω̃ZΣ̃Z)2X

��

//

''

(Ω̃ZΣ̃Z)X

��

''
(Ω̃ZΣ̃Z)X

��

// (Ω̃ZΣ̃Z)
2X

��

(Ω̃ZΣ̃Z)X //

''

(Ω̃ZΣ̃Z)
2X

''
(Ω̃ZΣ̃Z)

2X // (Ω̃ZΣ̃Z)
3X

and therefore the map (∗∗)n fits into a 4-cube of the form X → PZ
n+2X. Several

applications of [18, 1.6] show that the map (∗∗)n is (n + 1)-connected. In more
detail: X is ∞-cartesian, hence PZ

n+2X is ∞-cartesian ([19, 1.7]). Therefore, the
4-cube is ∞-cartesian. Consider the 3-face of the form

(Ω̃ZΣ̃Z)X

��

(∗)n+2 //

&&

PZ
n+2(Ω̃ZΣ̃Z)X

��

((
(Ω̃ZΣ̃Z)

2X

��

(∗)n+2 // PZ
n+2(Ω̃ZΣ̃Z)

2X

��

(Ω̃ZΣ̃Z)
2X

(∗)n+2 //

&&

PZ
n+2(Ω̃ZΣ̃Z)

2X

((
(Ω̃ZΣ̃Z)

3X
(∗)n+2 // PZ

n+2(Ω̃ZΣ̃Z)
3X

By Proposition 2.4, the maps (∗)n+2 are (n + 3)-connected, hence the top and
bottom 2-faces are (n + 2)-cartesian, and therefore the 3-face is (n + 1)-cartesian.
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Since the 4-cube is ∞-cartesian, we therefore know the opposite 3-face of the form

(Ω̃ZΣ̃Z)2X

��

(∗∗)n //

&&

PZ
n+2(Ω̃ZΣ̃Z)2X

��

((
(Ω̃ZΣ̃Z)X

��

(∗)n+2 // PZ
n+2(Ω̃ZΣ̃Z)X

��

(Ω̃ZΣ̃Z)X
(∗)n+2 //

&&

PZ
n+2(Ω̃ZΣ̃Z)X

((
(Ω̃ZΣ̃Z)

2X
(∗)n+2 // PZ

n+2(Ω̃ZΣ̃Z)
2X

is (n + 1)-cartesian; and hence, since the maps (∗)n+2 are (n + 3)-connected, we
know the bottom 2-face is (n+ 2)-cartesian, it follows that the top face is (n+ 1)-
cartesian, and since the map (∗)n+2 is (n+3)-connected, therefore we know the map
(∗∗)n is (n+1)-connected. The other cases similarly follow by repeated applications
of [18, 1.6]. □

Proposition 2.6. Let n ≥ 1 and 1 ≤ r ≤ ∞. Let X be a retractive pointed space
over Z. If X is 0-connected (rel. Z), then the maps

(Ω̃r
ZΣ̃

r
Z)k(X)

(∗∗)n−−−→ PZ
n+k(Ω̃

r
ZΣ̃

r
Z)k(X), k ≥ 0

are (n+ 1)-connected.

Proof. A detailed proof of the r = 1 case is given above (Proposition 2.5), and the
other cases are similar; the estimates are identical (Proposition 2.4). □

Proof of Theorem 1.3. We follow the basic proof strategy in [28], and the subse-
quent development in [9], for operadic algebras in spectra (where the estimates are
different). Here is the basic idea. Consider the case of r = 1. We start with the
Bousfield-Kan completion tower of the form

(Ω̃ZΣ̃Z)0 (Ω̃ZΣ̃Z)1oo (Ω̃ZΣ̃Z)2 · · ·oo

and resolve each term by its Taylor tower to produce the tower of towers diagram

PZ
3 (Ω̃ZΣ̃Z)0(X)

��

PZ
3 (Ω̃ZΣ̃Z)1(X)oo

��

PZ
3 (Ω̃ZΣ̃Z)2(X) · · ·oo

��
PZ
2 (Ω̃ZΣ̃Z)0(X)

��

PZ
2 (Ω̃ZΣ̃Z)1(X)oo

��

PZ
2 (Ω̃ZΣ̃Z)2(X) · · ·oo

��
PZ
1 (Ω̃ZΣ̃Z)0(X) PZ

1 (Ω̃ZΣ̃Z)1(X)oo PZ
1 (Ω̃ZΣ̃Z)2(X) · · ·oo

(5)

By our uniformity estimates (Propositions 2.1 and 2.2), it follows immediately that

id → (Ω̃ZΣ̃Z)n satisfies On+1 ([19, 1.2]) for each n ≥ 0; in other words, via this

map the functors id and (Ω̃ZΣ̃Z)n agree to order n+ 1 and hence the maps

PZ
m(id)(X)

≃−−→ PZ
m(Ω̃ZΣ̃Z)n(X), 1 ≤ m ≤ n+ 1
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are weak equivalences for every n ≥ 0. It follows that holim applied horizontally
produces the Taylor tower of the identity functor {PZ

n (id)} and hence applying
holim first horizontally and then vertically produces

holim
vert

holim
horiz

(5) ≃ PZ
∞(id)(X)

What about the other way? By our estimates (Proposition 2.6), it follows immedi-
ately that holim applied vertically produces the Bousfield-Kan completion tower

(Ω̃ZΣ̃Z)0(X) (Ω̃ZΣ̃Z)1(X)oo (Ω̃ZΣ̃Z)2(X) · · ·oo

and hence applying holim first vertically and then horizontally produces

holim
horiz

holim
vert

(5) ≃ X∧
Ω̃ZΣ̃Z

Hence we have verified that

PZ
∞(id)(X) ≃ X∧

Ω̃ZΣ̃Z

The other cases are similar; the estimates are identical (Proposition 2.6). □

Proposition 2.7. If n ≥ −1, then (Ω̃ZΣ̃Z) preserves (id+1)-cartesian (n+1)-cubes
in SZ∗ .

Proof. The cases for n = −1, 0 are trivial. Now that we know the desired behavior
is satisfied on 0-subcubes, we will not continue to indicate their estimates below
when verifying the (id+1)-cartesian property. Consider the case of n = 1. Assume
that X is an (id + 1)-cartesian 2-cube in SZ∗ . Then X satisfies: the 1-subcubes are
2-connected, and the 2-subcubes (there is only one) are 3-cartesian. By higher dual
Blakers-Massey [18, 2.6] for S∗, we know the 2-cube is k-cocartesian where k is the
minimum of

2− 1 + k{1,2} = 1 + 3

2− 1 + k{1} + k{2} = 1 + 2 + 2

Hence k = 4, our 3-cube is 4-cocartesian, and X satisfies: the 1-subcubes are
2-connected, and the 2-subcubes are 4-cocartesian. Then Σ̃ZX satisfies: the 1-
subcubes are 3-connected, and the 2-subcubes are 5-cocartesian. By higher Blakers-
Massey [18, 2.5] for S∗, we know the 2-cube is k-cartesian where k is the minimum
of

1− 2 + k{1,2} = −1 + 5

1− 2 + k{1} + k{2} = −1 + 3 + 3

Hence, k = 4, our 2-cube is 4-cartesian, and Σ̃ZX satisfies: the 1-subcubes are
3-connected, and the 2-subcubes are 4-cartesian. Then Ω̃ZΣ̃ZX satisfies: the 1-
subcubes are 2-connected, and the 2-subcubes are 3-cartesian. Hence we have
verified that (Ω̃ZΣ̃Z)X is (id + 1)-cartesian in SZ∗ . Consider the case of n = 2.
Assume that X is an (id+1)-cartesian 3-cube in SZ∗ . Then X satisfies: the 1-subcubes
are 2-connected, the 2-subcubes are 3-cartesian, and the 3-subcubes (there is only
one) are 4-cartesian. By higher dual Blakers-Massey [18, 2.5] for S∗, we know the
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3-cube is k-cocartesian where k is the minimum of

3− 1 + k{1,2,3} = 2 + 4

3− 1 + k{1,2} + k{3} = 2 + 3 + 2

3− 1 + k{1} + k{2} + k{3} = 2 + 2 + 2 + 2

Hence k = 6, our 3-cube is 6-cocartesian, and X satisfies: the 1-subcubes are 2-
connected, the 2-subcubes are 4-cocartesian, and the 3-subcubes are 6-cocartesian.
Then Σ̃ZX satisfies: the 1-subcubes are 3-connected, the 2-subcubes are 5-cocartesian,
and the 3-subcubes are 7-cocartesian. By higher Blakers-Massey [18, 2.5] for S∗,
we know the 3-cube is k-cartesian where k is the minimum of

1− 3 + k{1,2,3} = −2 + 7

1− 3 + k{1,2} + k{3} = −2 + 5 + 3

1− 3 + k{1} + k{2} + k{3} = −2 + 3 + 3 + 3

Hence, k = 5, our 3-cube is 5-cartesian, and Σ̃ZX satisfies: the 1-subcubes are
3-connected, the 2-subcubes are 4-cartesian, and the 3-subcubes are 5-cartesian.
Then (Ω̃ZΣ̃Z)X satisfies: the 1-subcubes are 2-connected, the 2-subcubes are 3-

cartesian, and the 3-subcubes are 4-cartesian. Hence we have verified that (Ω̃ZΣ̃Z)X
is (id + 1)-cartesian in SZ∗ . And so forth. □

Proposition 2.8. Let 1 ≤ r ≤ ∞. If n ≥ −1, then (Ω̃r
ZΣ̃

r
Z) preserves (id + 1)-

cartesian (n+ 1)-cubes in SZ∗ .

Proof. A detailed proof of the r = 1 case is given above (Proposition 2.7), and
the other cases are similar. In the case of r = ∞, several of the steps are easier
since Σ̃∞

Z preserves cocartesian-ness, Ω̃∞
Z preserves cartesian-ness, and the stable

estimates in [10, 3.10] are available for each estimate step following the application

of Σ̃∞
Z . □

Proof of Theorem 1.2. We follow the basic proof strategy in [26], and the subse-
quent development in [9], for operadic algebras in spectra (where the estimates
are different). Here is the basic idea. Consider the case r = 1. Start with the
Bousfield-Kan cosimplicial resolution

id // (Ω̃ZΣ̃Z) //// (Ω̃ZΣ̃Z)
2

////
//
(Ω̃ZΣ̃Z)

3 · · ·(6)

of the identity functor and consider the fibration sequence F → E → B in SZ∗ .
Since we know that E,B are 1-connected (rel. Z) by assumption, this means that
we have the homotopical estimates in Propositions 2.1 and 2.2 available. With this
in mind, let’s resolve E,B with respect to the Bousfield-Kan cosimplicial resolution

F //

��

F̃ 0

��

//// F̃ 1

��

////
//
F̃ 2 · · ·

��
E //

��

(Ω̃ZΣ̃Z)(E)

��

//// (Ω̃ZΣ̃Z)
2(E) ////

//

��

(Ω̃ZΣ̃Z)
3(E) · · ·

��
B // (Ω̃ZΣ̃Z)(B) //// (Ω̃ZΣ̃Z)

2(B) ////
//
(Ω̃ZΣ̃Z)

3(B) · · ·
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and take homotopy fibers vertically to define the coaugmented cosimplicial diagram
of the form F → F̃ . By construction the columns are homotopy fiber sequences in
SZ∗ , and since E,B are 1-connected (rel Z), we know from Theorem 1.1 that

E
≃−−→ holim∆(Ω̃ZΣ̃Z)

•+1(E)

B
≃−−→ holim∆(Ω̃ZΣ̃Z)

•+1(B)

Since homotopy limits commute with homotopy fibers, it follows that

F ≃ holim∆ F̃

We want to show that F ≃ F∧
Ω̃ZΣ̃Z

. To get Bousfield-Kan completion into the pic-

ture, let’s resolve each term in F → F̃ with respect to (6) to obtain the cosimplicial
resolution of coaugmented cosimplicial diagrams of the form

(Ω̃ZΣ̃Z)
3F

(#) // (Ω̃ZΣ̃Z)
3F̃ 0 //// (Ω̃ZΣ̃Z)

3F̃ 1
////
//
(Ω̃ZΣ̃Z)

3F̃ 2 · · ·

(Ω̃ZΣ̃Z)
2F

(#) //

OOOOOO

(Ω̃ZΣ̃Z)
2F̃ 0 ////

OOOOOO

(Ω̃ZΣ̃Z)
2F̃ 1

OOOOOO

////
//
(Ω̃ZΣ̃Z)

2F̃ 2 · · ·

OOOOOO

(Ω̃ZΣ̃Z)F
(#) //

OOOO

(Ω̃ZΣ̃Z)F̃
0 ////

OOOO

(Ω̃ZΣ̃Z)F̃
1

////
//

OOOO

(Ω̃ZΣ̃Z)F̃
2 · · ·

OOOO

F
(#) //

OO

F̃ 0 ////

(∗∗)

OO

F̃ 1

(∗∗)

OO

////
//
F̃ 2 · · ·

(∗∗)

OO

(7)

We know by our homotopical estimates (Propositions 2.1 and 2.2) that the coface
(n+ 1)-cubes ([3, 3.13]) associated to

E → (Ω̃ZΣ̃Z)
•+1(E)

B → (Ω̃ZΣ̃Z)
•+1(B)

are ((id+1)+1)-cartesian in SZ∗ , and hence it follows by several applications of [18,

1.6, 1.18] that the coface (n+ 1)-cubes associated to F → F̃ are (id + 1)-cartesian

in SZ∗ . We know, by Proposition 2.8, that (Ω̃ZΣ̃Z) preserves (id + 1)-cartesian
(n+1)-cubes in SZ∗ for each n ≥ −1. Therefore, the coface (n+1)-cubes ([3, 3.13])
associated to

(Ω̃ZΣ̃Z)
kF → (Ω̃ZΣ̃Z)

kF̃ , k ≥ 0

are (id + 1)-cartesian in SZ∗ for each n ≥ −1, and hence each of the maps

(Ω̃ZΣ̃Z)
kF → holim∆≤n(Ω̃ZΣ̃Z)

kF̃ , k ≥ 0

is (n + 2)-connected. Therefore applying holim∆ horizontally to the maps (#)
induces a weak equivalence, and hence applying holim∆ first horizontally and then
vertically produces

holim
vert

holim
horiz

(7) ≃ F∧
Ω̃ZΣ̃Z

What about the other way? Since the (∗∗) columns have extra codegeneracy maps

s−1 [15, 6.2] (by formal reasons: Ω̃Z commutes with homotopy fibers), applying
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holim∆ vertically produces [12, 3.16] the coaugmented cosimplicial diagram

F // F̃ 0 //// F̃ 1
////
//
F̃ 2 · · ·

and hence applying holim∆ first vertically and then horizontally produces

holim
horiz

holim
vert

(7) ≃ F

Hence we have verified that the coaugmentation

F ≃ F∧
Ω̃ZΣ̃Z

is a weak equivalence. The other cases are similar (the estimates are identical).

Consider the case of the homotopy pullback square; then F → F̃ is constructed by
taking homotopy pullbacks instead of homotopy fibers and the above arguments
complete the proof. □
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