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Exercise 1. Prove Proposition 1.

The following proposition is often the easiest way to establish an isomorphism
between a space A and the limit of a diagram; it verifies that limits are unique up
to isomorphism. Denote by Top the category of topological spaces and continuous
functions.

Proposition 1. Let X : D−→Top be a diagram such that limD X exists. If A is a
space, then A ∼= limD X if and only if there exists a collection {fd} of maps

fd : A−→X(d), d ∈ D,

indexed on the objects d ∈ D, such that {fd} is a cone into X which is terminal
with respect to all cones into X.

Exercise 2. Let D = {a ⇒ b}. Then a diagram X : D−→Top has the form

X(a)
g //
h

// X(b)

and the limit limD X is a space with the following mapping properties: (1) there is
a map ta

limD X
ta // X(a)

g //
h

// X(b) limD X
ta // X(a)

g //
h

// X(b)

A fa

GG

∃! f

OO

such that gta = hta, (2) (universal property) for any space A and map fa such that
gfa = hfa, there exists a unique map f which makes the diagram commute. Prove
that limD X is isomorphic to the following subspace

limD X ∼= {x | x ∈ X(a), g(x) = h(x)}
of X(a). In this case, the limit limD X is called the equalizer of the pair of maps
g, h.

Exercise 3. Let D = {a→ b← c}. Then a diagram X : D−→Top has the form

X(a)
g−→ X(b) h←− X(c)(1)

and the limit limD X is a space with the following mapping properties: (1) there
are maps ta, tc which make the left-hand diagram

limD X

ta

��

tc // X(c)

h

��
X(a)

g
// X(b)

A fc
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tc // X(c)
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g
// X(b)
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commute, (2) (universal property) for any space A and maps fa, fc which make the
right-hand outer diagram commute, there exists a unique map f which makes the
diagram commute. Prove that limD X is isomorphic to the following subspace

limD X ∼= {(x, y) | x ∈ X(a), y ∈ X(c), g(x) = h(y)}
of the product X(a)×X(c). In this case, the limit limD X is called the pullback of
the diagram (1) and is usually denoted by X(a)×X(b) X(c).

Exercise 4. Let D be the empty category. Then there is a unique diagram
X : D−→Top (the empty diagram). Prove that limD X ∼= ∗. Here, ∗ denotes a
one point space.

A category D is small if its collection of objects forms a set, and finite if (1)
its collection of objects forms a finite set and (2) D has only a finite number of
morphisms between any two objects. A diagram X : D−→C is small (resp. finite)
if the indexing category D is small (resp. finite), and a category C has all small
(resp. finite) limits if limD X exists for each small (resp. finite) diagram X : D−→C.

Exercise 5. Prove that the category of topological spaces has all small limits. In
other words, if X : D−→Top is a small diagram, prove that the limit limD X exists.

Exercise 6. Prove Proposition 2.

The following proposition is often the easiest way to verify that a pair of maps
into a limit are the same.

Proposition 2. Let X : D−→C be a diagram such that limD X exists and let the
collection {td} of maps

td : limD X−→X(d), d ∈ D,

indexed on the objects d ∈ D, be the terminal cone into X. Consider any pair of
maps f, g : A−→limD X. Then f and g are the same if and only if their corre-
sponding cones into X are identical; in other words, f = g if and only if tdf = tdg
for every object d ∈ D.

Remark 3. For instance, consider any diagram of the form

A

i

��

f // B

g

��
C

j
// limD X

in C. Then the diagram commutes if and only if tdji = tdgf for every object d ∈ D.

Exercise 7. Prove Proposition 4 below. The idea is to reformulate your construc-
tion of limD X in Exercise 5 as the equalizer of a pair of maps.

Proposition 4. Let C be a category with all equalizers and small (resp. finite)
products. If X : D−→C is a small (resp. finite) diagram, then the limit limD X
exists and is isomorphic to an equalizer of the form

limD X ∼= lim
( ∏
d∈D

X(d)
////

∏
(α : d→d′)∈D

X(d′)
)

in C. In particular, the category C has all small (resp. finite) limits.
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An object ∗ of a category C is a terminal object if for each object X ∈ C there
exists a unique map X−→∗. It follows that the limit of the empty diagram in C,
if it exists, is a terminal object of C. Since the empty category is discrete, if C has
all small (resp. finite) products, then C has a terminal object ∗.

Let C be a category with all pullbacks. Given a commutative diagram of the
form

A

i

��

g // C

j

��
B

h
// D

(2)

in C, the induced map A−→B×D C is often called the pullback corner map; if it is
an isomorphism, then (2) is called a pullback diagram and i is called the pullback
(or base change) of j along h. It follows that any diagram isomorphic to a pullback
diagram is a pullback diagram.

Exercise 8. (a) Prove Proposition 5. (b) Prove Proposition 6.

Proposition 5. Let C be a category with all pullbacks and finite products. Let
g, h : X−→Y be a pair of maps in C. Consider any pullback diagram of the form

E

��

// X

(id,h)

��
X

(id,g)
// X × Y

in C. Then the equalizer of the pair g, h exists and is isomorphic to E.

Proposition 6. Let C be a category with all pullbacks and small (resp. finite)
products. Then C has all small (resp. finite) limits.

Exercise 9. Let D = {a ⇔ b}. Then a diagram X : D−→Top has the form

X(a) X(b)
goo
h

oo

and the colimit colimD X is a space with the following mapping properties: (1)
there is a map ia

colimD X X(a)
iaoo X(b)

goo
h

oo colimD X

∃! f

��

X(a)
iaoo

fapp

X(b)
goo
h

oo

A

such that iag = iah, (2) (universal property) for any space A and map fa such that
fag = fah, there exists a unique map f which makes the diagram commute. Prove
that colimD X is isomorphic to the quotient space

colimD X ∼= X(a)/ ∼

of X(a) with respect to the equivalence relation ∼ generated by g(x) ∼ h(x),
x ∈ X(b). In this case, the colimit colimD X is called the coequalizer of the pair of
maps g, h.
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Exercise 10. Let D = {a← b→ c}. Then a diagram X : D−→Top has the form

X(a)
g←− X(b) h−→ X(c)(3)

and colimD X is a space with the following mapping properties: (1) there are maps
ia, ic which make the left-hand diagram

X(b)

g

��

h // X(c)

ic

��
X(a)

ia // colimD X

X(b)

g

��

h // X(c)

ic

�� fc

��

X(a)
ia //

fa //

colimD X
f

∃!
$$
A

commute, (2) (universal property) for any space A and maps fa, fc which make the
right-hand outer diagram commute, there exists a unique map f which makes the
diagram commute. Prove that colimD X is isomorphic to the quotient space

colimD X ∼= X(a)qX(c)/ ∼

of the disjoint union X(a) qX(c) with respect to the equivalence relation ∼ gen-
erated by g(x) ∼ h(x), x ∈ X(b). In this case, the colimit colimD X is called the
pushout of the diagram (3) and is usually denoted by X(a)qX(b) X(c).

Exercise 11. Let D be the empty category. Then there is a unique diagram
X : D−→Top (the empty diagram). Prove that colimD X ∼= ∅. Here, ∅ denotes the
empty space.

A category C has all small (resp. finite) colimits if colimD X exists for each small
(resp. finite) diagram X : D−→C. Recall from lecture the following proposition.

Proposition 7. Let C be a category with all coequalizers and small (resp. finite) co-
products. If X : D−→C is a small (resp. finite) diagram, then the colimit colimD X
exists and is isomorphic to a coequalizer of the form

colimD X ∼= colim
( ∐
d∈D

X(d)
∐

(α : d→d′)∈D

X(d)
oooo

)
in C. In particular, the category C has all small (resp. finite) colimits.

An object ∅ of a category C is an initial object if for each object X ∈ C there
exists a unique map ∅−→X. It follows that the colimit of the empty diagram in C,
if it exists, is an initial object of C. Since the empty category is discrete, if C has
all small (resp. finite) coproducts, then C has an initial object ∅.

Let C be a category with all pushouts. Given a commutative diagram of the
form

A

i

��

g // C

j

��
B

h
// D

(4)

in C, the induced map B qA C−→D is often called the pushout corner map; if this
map is an isomorphism, then (4) is called a pushout diagram and j is called the
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pushout (or cobase change) of i along g. It follows that any diagram isomorphic to
a pushout diagram is a pushout diagram.

Exercise 12. (a) Prove Proposition 8. (b) Prove Proposition 9.

Proposition 8. Let C be a category with all pushouts and finite coproducts. Let
g, h : Y−→X be a pair of maps in C. Consider any pushout diagram of the form

X q Y

(id,g)

��

(id,h) // X

��
X // C

in C. Then the coequalizer of the pair g, h exists and is isomorphic to C.

Proposition 9. Let C be a category with all pushouts and small (resp. finite)
coproducts. Then C has all small (resp. finite) colimits.

Exercise 13. Prove Proposition 10.

Proposition 10. Let F : C−→C′ be a functor.
(a) If F preserves all equalizers and small (resp. finite) products, then F pre-

serves all small (resp. finite) limits.
(b) If F preserves all pullbacks and small (resp. finite) products, then F pre-

serves all small (resp. finite) limits.
(c) If F preserves all coequalizers and small (resp. finite) coproducts, then F

preserves all small (resp. finite) colimits.
(d) If F preserves all pushouts and small (resp. finite) coproducts, then F

preserves all small (resp. finite) colimits.

Exercise 14. Prove Proposition 11.

Proposition 11. Let C be a category with all small limits and colimits. If A, B,C
are objects in C and X : D−→C is a small diagram, then there are natural isomor-
phisms of sets:

(a) hom(A, B × C) ∼= hom(A, B)× hom(A, C)
(b) hom(A, limD X) ∼= limD hom(A, X)
(c) hom(AqB, C) ∼= hom(A, B)× hom(A, C)
(d) hom(colimD X, B) ∼= limDop hom(X, B)

Exercise 15. Please read [1, Sections 1-2] and review the notions of category,
subcategory, functor, and natural transformation [2, I], [3, 2.1-2.3, 2.6]; adjunctions
will be introduced in lecture.
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