Algebraic Topology (topics course) John E. Harper

Spring 2010

Series 1

Exercise 1. Prove Proposition 1.

The following proposition is often the easiest way to establish an isomorphism between a space A and the limit of a diagram; it verifies that limits are unique up to isomorphism. Denote by Top the category of topological spaces and continuous functions.

Proposition 1. Let $X: D \longrightarrow \mathsf{Top}$ be a diagram such that $\lim_{D} X$ exists. If A is a space, then $A \cong \lim_{D} X$ if and only if there exists a collection $\{f_d\}$ of maps

$$f_d: A \longrightarrow X(d), \qquad d \in \mathsf{D}$$

indexed on the objects $d \in D$, such that $\{f_d\}$ is a cone into X which is terminal with respect to all cones into X.

Exercise 2. Let $D = \{a \rightrightarrows b\}$. Then a diagram $X: D \longrightarrow \text{Top}$ has the form

$$X(a) \xrightarrow[h]{g} X(b)$$

and the limit $\lim_{D} X$ is a space with the following mapping properties: (1) there is a map t_a

$$\lim_{\mathsf{D}} X \xrightarrow{t_a} X(a) \xrightarrow{g} X(b) \qquad \lim_{\mathsf{D}} X \xrightarrow{t_a} X(a) \xrightarrow{g} X(b)$$

such that $gt_a = ht_a$, (2) (universal property) for any space A and map f_a such that $gf_a = hf_a$, there exists a unique map \overline{f} which makes the diagram commute. Prove that $\lim_{D} X$ is isomorphic to the following subspace

$$\lim_{\mathsf{D}} X \cong \{x \mid x \in X(a), g(x) = h(x)\}\$$

of X(a). In this case, the limit $\lim_{D} X$ is called the *equalizer* of the pair of maps g, h.

Exercise 3. Let $D = \{a \to b \leftarrow c\}$. Then a diagram $X \colon D \longrightarrow \mathsf{Top}$ has the form (1) $X(a) \xrightarrow{g} X(b) \xleftarrow{h} X(c)$

and the limit $\lim_{D} X$ is a space with the following mapping properties: (1) there are maps t_a, t_c which make the left-hand diagram

commute, (2) (universal property) for any space A and maps f_a, f_c which make the right-hand outer diagram commute, there exists a unique map \overline{f} which makes the diagram commute. Prove that $\lim_{D} X$ is isomorphic to the following subspace

$$\lim_{D} X \cong \{(x, y) \mid x \in X(a), y \in X(c), g(x) = h(y)\}$$

of the product $X(a) \times X(c)$. In this case, the limit $\lim_{D} X$ is called the *pullback* of the diagram (1) and is usually denoted by $X(a) \times_{X(b)} X(c)$.

Exercise 4. Let D be the empty category. Then there is a unique diagram $X: D \longrightarrow \mathsf{Top}$ (the empty diagram). Prove that $\lim_{D} X \cong *$. Here, * denotes a one point space.

A category D is *small* if its collection of objects forms a set, and *finite* if (1) its collection of objects forms a finite set and (2) D has only a finite number of morphisms between any two objects. A diagram $X: D \longrightarrow C$ is *small* (resp. *finite*) if the indexing category D is small (resp. finite), and a category C has all small (resp. *finite*) limits if $\lim_{D \to C} X$ exists for each small (resp. finite) diagram $X: D \longrightarrow C$.

Exercise 5. Prove that the category of topological spaces has all small limits. In other words, if $X: D \longrightarrow \mathsf{Top}$ is a small diagram, prove that the limit $\lim_{D} X$ exists.

Exercise 6. Prove Proposition 2.

The following proposition is often the easiest way to verify that a pair of maps into a limit are the same.

Proposition 2. Let $X: D \longrightarrow C$ be a diagram such that $\lim_{D} X$ exists and let the collection $\{t_d\}$ of maps

$$t_d \colon \lim_{\mathsf{D}} X \longrightarrow X(d), \qquad d \in \mathsf{D},$$

indexed on the objects $d \in D$, be the terminal cone into X. Consider any pair of maps $f, g: A \longrightarrow \lim_{D} X$. Then f and g are the same if and only if their corresponding cones into X are identical; in other words, f = g if and only if $t_d f = t_d g$ for every object $d \in D$.

Remark 3. For instance, consider any diagram of the form

$$\begin{array}{c|c} A & \xrightarrow{f} & B \\ i & \downarrow^{g} \\ C & \xrightarrow{i} & \lim_{D} X \end{array}$$

in C. Then the diagram commutes if and only if $t_d j i = t_d g f$ for every object $d \in D$.

Exercise 7. Prove Proposition 4 below. The idea is to reformulate your construction of $\lim_{D} X$ in Exercise 5 as the equalizer of a pair of maps.

Proposition 4. Let C be a category with all equalizers and small (resp. finite) products. If $X: D \longrightarrow C$ is a small (resp. finite) diagram, then the limit $\lim_{D} X$ exists and is isomorphic to an equalizer of the form

$$\lim_{\mathsf{D}} X \cong \lim \left(\prod_{d \in \mathsf{D}} X(d) \xrightarrow{\longrightarrow} \prod_{(\alpha \colon d \to d') \in \mathsf{D}} X(d') \right)$$

in C. In particular, the category C has all small (resp. finite) limits.

An object * of a category C is a *terminal object* if for each object $X \in C$ there exists a unique map $X \longrightarrow *$. It follows that the limit of the empty diagram in C, if it exists, is a terminal object of C. Since the empty category is discrete, if C has all small (resp. finite) products, then C has a terminal object *.

Let C be a category with all pullbacks. Given a commutative diagram of the form

in C, the induced map $A \longrightarrow B \times_D C$ is often called the *pullback corner map*; if it is an isomorphism, then (2) is called a *pullback diagram* and *i* is called the *pullback* (or base change) of *j* along *h*. It follows that any diagram isomorphic to a pullback diagram is a pullback diagram.

Exercise 8. (a) Prove Proposition 5. (b) Prove Proposition 6.

Proposition 5. Let C be a category with all pullbacks and finite products. Let $g,h: X \longrightarrow Y$ be a pair of maps in C. Consider any pullback diagram of the form

in C. Then the equalizer of the pair g, h exists and is isomorphic to E.

Proposition 6. Let C be a category with all pullbacks and small (resp. finite) products. Then C has all small (resp. finite) limits.

Exercise 9. Let $D = \{a \rightleftharpoons b\}$. Then a diagram $X: D \longrightarrow \mathsf{Top}$ has the form

$$X(a) \underset{h}{\overset{g}{\overleftarrow{\qquad}}} X(b)$$

and the colimit $\operatorname{colim}_{\mathsf{D}} X$ is a space with the following mapping properties: (1) there is a map i_a

$$\operatorname{colim}_{\mathsf{D}} X \xleftarrow{i_a} X(a) \rightleftharpoons_{h}^{g} X(b) \qquad \operatorname{colim}_{\mathsf{D}} X \xleftarrow{i_a} X(a) \gneqq_{h}^{g} X(b)$$
$$\exists ! \overbrace{\overline{f}}_{A} \swarrow_{f_a}$$

such that $i_a g = i_a h$, (2) (universal property) for any space A and map f_a such that $f_a g = f_a h$, there exists a unique map \overline{f} which makes the diagram commute. Prove that colim_D X is isomorphic to the quotient space

$$\operatorname{colim}_{\mathsf{D}} X \cong X(a) / \sim$$

of X(a) with respect to the equivalence relation \sim generated by $g(x) \sim h(x)$, $x \in X(b)$. In this case, the colimit colim_D X is called the *coequalizer* of the pair of maps g, h.

Exercise 10. Let $D = \{a \leftarrow b \rightarrow c\}$. Then a diagram $X: D \longrightarrow \mathsf{Top}$ has the form

(3)
$$X(a) \stackrel{g}{\leftarrow} X(b) \stackrel{h}{\rightarrow} X(c)$$

and colim_D X is a space with the following mapping properties: (1) there are maps i_a, i_c which make the left-hand diagram

commute, (2) (universal property) for any space A and maps f_a, f_c which make the right-hand outer diagram commute, there exists a unique map \overline{f} which makes the diagram commute. Prove that colim_D X is isomorphic to the quotient space

$$\operatorname{colim}_{\mathsf{D}} X \cong X(a) \amalg X(c) / \gamma$$

of the disjoint union $X(a) \amalg X(c)$ with respect to the equivalence relation ~ generated by $g(x) \sim h(x), x \in X(b)$. In this case, the colimit colim_D X is called the *pushout* of the diagram (3) and is usually denoted by $X(a) \amalg_{X(b)} X(c)$.

Exercise 11. Let D be the empty category. Then there is a unique diagram $X: D \longrightarrow \mathsf{Top}$ (the empty diagram). Prove that $\operatorname{colim}_{\mathsf{D}} X \cong \emptyset$. Here, \emptyset denotes the empty space.

A category C has all small (resp. finite) colimits if $\operatorname{colim}_{\mathsf{D}} X$ exists for each small (resp. finite) diagram $X: \mathsf{D} \longrightarrow \mathsf{C}$. Recall from lecture the following proposition.

Proposition 7. Let C be a category with all coequalizers and small (resp. finite) coproducts. If $X: D \longrightarrow C$ is a small (resp. finite) diagram, then the colimit colim_D X exists and is isomorphic to a coequalizer of the form

$$\operatorname{colim}_{\mathsf{D}} X \cong \operatorname{colim}\left(\coprod_{d \in \mathsf{D}} X(d) \stackrel{\checkmark}{=} \coprod_{(\alpha \colon d \to d') \in \mathsf{D}} X(d) \right)$$

in C. In particular, the category C has all small (resp. finite) colimits.

An object \emptyset of a category C is an *initial object* if for each object $X \in C$ there exists a unique map $\emptyset \longrightarrow X$. It follows that the colimit of the empty diagram in C, if it exists, is an initial object of C. Since the empty category is discrete, if C has all small (resp. finite) coproducts, then C has an initial object \emptyset .

Let C be a category with all pushouts. Given a commutative diagram of the form

in C, the induced map $B \amalg_A C \longrightarrow D$ is often called the *pushout corner map*; if this map is an isomorphism, then (4) is called a *pushout diagram* and j is called the

pushout (or cobase change) of i along g. It follows that any diagram isomorphic to a pushout diagram is a pushout diagram.

Exercise 12. (a) Prove Proposition 8. (b) Prove Proposition 9.

Proposition 8. Let C be a category with all pushouts and finite coproducts. Let $g, h: Y \longrightarrow X$ be a pair of maps in C. Consider any pushout diagram of the form

in C. Then the coequalizer of the pair g, h exists and is isomorphic to C.

Proposition 9. Let C be a category with all pushouts and small (resp. finite) coproducts. Then C has all small (resp. finite) colimits.

Exercise 13. Prove Proposition 10.

Proposition 10. Let $F: \mathsf{C} \longrightarrow \mathsf{C}'$ be a functor.

- (a) If F preserves all equalizers and small (resp. finite) products, then F preserves all small (resp. finite) limits.
- (b) If F preserves all pullbacks and small (resp. finite) products, then F preserves all small (resp. finite) limits.
- (c) If F preserves all coequalizers and small (resp. finite) coproducts, then F preserves all small (resp. finite) colimits.
- (d) If F preserves all pushouts and small (resp. finite) coproducts, then F preserves all small (resp. finite) colimits.

Exercise 14. Prove Proposition 11.

Proposition 11. Let C be a category with all small limits and colimits. If A, B, C are objects in C and X: $D \longrightarrow C$ is a small diagram, then there are natural isomorphisms of sets:

- (a) $\hom(A, B \times C) \cong \hom(A, B) \times \hom(A, C)$
- (b) $\hom(A, \lim_{D} X) \cong \lim_{D} \hom(A, X)$
- (c) $\hom(A \amalg B, C) \cong \hom(A, B) \times \hom(A, C)$
- (d) $\operatorname{hom}(\operatorname{colim}_{\mathsf{D}} X, B) \cong \operatorname{lim}_{\mathsf{D}^{\operatorname{op}}} \operatorname{hom}(X, B)$

Exercise 15. Please read [1, Sections 1-2] and review the notions of *category*, *subcategory*, *functor*, and *natural transformation* [2, I], [3, 2.1-2.3, 2.6]; adjunctions will be introduced in lecture.

References

- W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73–126. North-Holland, Amsterdam, 1995.
- [2] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
- J. P. May. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999. Available at: http://www.math.uchicago.edu/~may/.