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Exercise 1. Prove Proposition 1.

The following proposition is often the easiest way to establish an isomorphism
between a space A and the limit of a diagram; it verifies that limits are unique up
to isomorphism. Denote by Top the category of topological spaces and continuous
functions.

Proposition 1. Let X: D—Top be a diagram such that limp X exists. If A is a
space, then A = limp X if and only if there exists a collection {fq} of maps

fa: A—X(d), deD,

indexed on the objects d € D, such that {f4} is a cone into X which is terminal
with respect to all cones into X.

Exercise 2. Let D = {a = b}. Then a diagram X: D—Top has the form
g
X(a) —= X(b)
h
and the limit limp X is a space with the following mapping properties: (1) there is

a map tq

g g
limp X —=> X(a) —= X(b)  limp X —=> X(a) —= X(b)

h A h
El f/
A fa

such that gt, = ht,, (2) (universal proBerty) for any space A and map f, such that
gfa = hfs, there exists a unique map f which makes the diagram commute. Prove
that limp X is isomorphic to the following subspace

limp X = {z | z € X(a), g(x) = h(z)}

of X(a). In this case, the limit limp X is called the equalizer of the pair of maps
g, h.

Exercise 3. Let D = {a — b « ¢}. Then a diagram X: D—Top has the form
(1) X(a) L X(b) & X(c)

and the limit limp X is a space with the following mapping properties: (1) there
are maps t,,t. which make the left-hand diagram
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limp X —— X(c) limp X —<> X(c)
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l ih \_ . )
AN
X(a) ——= X(0) X(a) —— X(b)
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commute, (2) (universal property) for any space A and maps f,, f. which make the
right-hand outer diagram commute, there exists a unique map f which makes the
diagram commute. Prove that limp X is isomorphic to the following subspace

limp X = {(z,y) | » € X(a), y € X(c), g(z) = h(y)}
of the product X (a) x X(c). In this case, the limit limp X is called the pullback of
the diagram (1) and is usually denoted by X (a) x x ) X(c).

Exercise 4. Let D be the empty category. Then there is a unique diagram
X: D—Top (the empty diagram). Prove that limp X = . Here, * denotes a
one point space.

A category D is small if its collection of objects forms a set, and finite if (1)
its collection of objects forms a finite set and (2) D has only a finite number of
morphisms between any two objects. A diagram X: D—C is small (resp. finite)
if the indexing category D is small (resp. finite), and a category C has all small
(vesp. finite) limits if limp X exists for each small (resp. finite) diagram X : D—C.

Exercise 5. Prove that the category of topological spaces has all small limits. In
other words, if X: D—Top is a small diagram, prove that the limit limp X exists.

Exercise 6. Prove Proposition 2.

The following proposition is often the easiest way to verify that a pair of maps
into a limit are the same.

Proposition 2. Let X: D—C be a diagram such that limp X exists and let the
collection {tq} of maps

tq: limp X—>X(d), d e D,
indexed on the objects d € D, be the terminal cone into X. Consider any pair of
maps f,g: A—limp X. Then f and g are the same if and only if their corre-

sponding cones into X are identical; in other words, f = g if and only if tqf = tqg
for every object d € D.

Remark 3. For instance, consider any diagram of the form

A B

C *)j limD X

in C. Then the diagram commutes if and only if t4ji = t4gf for every object d € D.

Exercise 7. Prove Proposition 4 below. The idea is to reformulate your construc-
tion of limp X in Exercise 5 as the equalizer of a pair of maps.

Proposition 4. Let C be a category with all equalizers and small (resp. finite)
products. If X: D—C is a small (resp. finite) diagram, then the limit limp X
exists and is isomorphic to an equalizer of the form

: o~ X(d—= I X
limp X = hm( dl;[D @ (a: d—d’)eD

in C. In particular, the category C has all small (resp. finite) limits.
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An object * of a category C is a terminal object if for each object X € C there
exists a unique map X —x*. It follows that the limit of the empty diagram in C,
if it exists, is a terminal object of C. Since the empty category is discrete, if C has
all small (resp. finite) products, then C has a terminal object *.

Let C be a category with all pullbacks. Given a commutative diagram of the
form

(2)

Y.

B——D
h

in C, the induced map A—B x p C'is often called the pullback corner map; if it is
an isomorphism, then (2) is called a pullback diagram and i is called the pullback
(or base change) of j along h. It follows that any diagram isomorphic to a pullback
diagram is a pullback diagram.

Exercise 8. (a) Prove Proposition 5. (b) Prove Proposition 6.

Proposition 5. Let C be a category with all pullbacks and finite products. Let
g,h: X—Y be a pair of maps in C. Consider any pullback diagram of the form

E—X

l \L(id,h)

in C. Then the equalizer of the pair g, h exists and is isomorphic to E.
Proposition 6. Let C be a category with all pullbacks and small (resp. finite)
products. Then C has all small (resp. finite) limits.
Exercise 9. Let D = {a &= b}. Then a diagram X: D—Top has the form

g

X(a) == X(b)

and the colimit colimp X is a space with the following mapping properties: (1)
there is a map i,

i 9 iq 9
colimp X <—— X (a) =— X (b) colimp X <—— X (a) =—— X (b)
h , h

El f/
v
A fa

such that i,g = ish, (2) (universal property) for any space A and map f, such that
fag = fah, there exists a unique map f which makes the diagram commute. Prove
that colimp X is isomorphic to the quotient space

colimp X = X (a)/ ~
of X(a) with respect to the equivalence relation ~ generated by g(x) ~ h(z),

x € X(b). In this case, the colimit colimp X is called the coequalizer of the pair of
maps ¢, h.
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Exercise 10. Let D = {a < b — ¢}. Then a diagram X: D—Top has the form
3) X(a) <& X(b) & X(e)

and colimp X is a space with the following mapping properties: (1) there are maps
iq, 1. which make the left-hand diagram

X(b) —— X(c) X(b) ——= X(c)

(R R ALY

AN

X(a) e, colimp X X (a) N colimp X
A

commute, (2) (universal property) for any space A and maps f,, f. which make the
right-hand outer diagram commute, there exists a unique map f which makes the
diagram commute. Prove that colimp X is isomorphic to the quotient space

colimp X 2 X (a) I X(c)/ ~

of the disjoint union X (a) IT X (c) with respect to the equivalence relation ~ gen-
erated by g(x) ~ h(z), + € X(b). In this case, the colimit colimp X is called the
pushout of the diagram (3) and is usually denoted by X (a) Hx @) X(c).

Exercise 11. Let D be the empty category. Then there is a unique diagram
X: D—Top (the empty diagram). Prove that colimp X = (). Here, () denotes the
empty space.

A category C has all small (resp. finite) colimits if colimp X exists for each small
(resp. finite) diagram X : D—C. Recall from lecture the following proposition.

Proposition 7. Let C be a category with all coequalizers and small (resp. finite) co-
products. If X: D—C is a small (resp. finite) diagram, then the colimit colimp X
exists and is isomorphic to a coequalizer of the form

. o X(@=— I X(
colimp X = cohm( dIé[D (d) (o: d—d’)eD

in C. In particular, the category C has all small (resp. finite) colimits.

An object §) of a category C is an initial object if for each object X € C there
exists a unique map #— X. It follows that the colimit of the empty diagram in C,
if it exists, is an initial object of C. Since the empty category is discrete, if C has
all small (resp. finite) coproducts, then C has an initial object (.

Let C be a category with all pushouts. Given a commutative diagram of the
form

(4) A—">C
BT>D

in C, the induced map B4 C—D is often called the pushout corner map; if this
map is an isomorphism, then (4) is called a pushout diagram and j is called the
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pushout (or cobase change) of 7 along g. It follows that any diagram isomorphic to
a pushout diagram is a pushout diagram.

Exercise 12. (a) Prove Proposition 8. (b) Prove Proposition 9.

Proposition 8. Let C be a category with all pushouts and finite coproducts. Let
g,h: Y—X be a pair of maps in C. Consider any pushout diagram of the form

(id,h)
XYy —X

(id,g)l l

X——C
in C. Then the coequalizer of the pair g, h exists and is isomorphic to C.

Proposition 9. Let C be a category with all pushouts and small (resp. finite)
coproducts. Then C has all small (resp. finite) colimits.

Exercise 13. Prove Proposition 10.

Proposition 10. Let F: C—C’ be a functor.

(a) If F preserves all equalizers and small (resp. finite) products, then F pre-
serves all small (resp. finite) limits.

(b) If F preserves all pullbacks and small (resp. finite) products, then F pre-
serves all small (resp. finite) limits.

(c) If F preserves all coequalizers and small (resp. finite) coproducts, then F
preserves all small (resp. finite) colimits.

(d) If F preserves all pushouts and small (resp. finite) coproducts, then F
preserves all small (resp. finite) colimits.

Exercise 14. Prove Proposition 11.

Proposition 11. Let C be a category with all small limits and colimits. If A, B,C
are objects in C and X: D—C is a small diagram, then there are natural isomor-
phisms of sets:

(a) hom(A, B x C') 2 hom(A, B) x hom(A,C)

(b) hom(A4,limp X) = limp hom(4, X)

(¢) hom(AIl B,C) = hom(A, B) x hom(A4,C)

(d) hom(colimp X, B) 2 limpor hom (X, B)

Exercise 15. Please read [1, Sections 1-2] and review the notions of category,
subcategory, functor, and natural transformation (2, 1], [3, 2.1-2.3, 2.6]; adjunctions
will be introduced in lecture.
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