Algebraic Topology (topics course) John E. Harper

Spring 2010

Series 3

In the exercises and propositions below, we are working in a fixed model category C. References for the following include [1, Sections 5-6] and [2, Chapter 7].

Exercise 1. Prove Proposition 1.

Proposition 1. Given a map $f: X \longrightarrow Y$ in C, there exists a map Qf which makes the diagram

commute. Furthermore:

- (a) The map Qf is a weak equivalence if and only if the map f is a weak equivalence.
- (b) If a map $\hat{f}: QX \longrightarrow QY$ also makes the diagram commute (i.e., $p_Y \hat{f} = f n_Y$), then $\hat{f} \stackrel{l}{\sim} Qf$ and $\hat{f} \stackrel{r}{\sim} Qf$.
- (c) If Y is fibrant and [f'] = [f] in $\pi^l(X,Y)$ for some map $f' \colon X \longrightarrow Y$, then $Qf' \stackrel{l}{\sim} Qf$ and $Qf' \stackrel{r}{\sim} Qf$.

Exercise 2. Use duality in model categories to obtain a corresponding proposition involving existence of a map Rf which makes the diagram

$$\begin{array}{c} X \xrightarrow{f} Y \\ i_X \downarrow \sim & \sim \downarrow i_Y \\ RX \xrightarrow{Rf} RY \end{array}$$

commute.

Exercise 3. Prove Proposition 2.

Proposition 2. The restriction of the functor $Q: \subset \to \pi C_c$ to C_f induces a functor $Q': \pi C_f \to \pi C_{cf}$. The restriction of the functor $R: \subset \to \pi C_f$ to C_c induces a functor $R': \pi C_c \to \pi C_{cf}$.

Exercise 4. Prove Proposition 3.

Proposition 3. If $F, G: \operatorname{Ho}(C) \longrightarrow D$ is a pair of functors and $t: F\gamma \longrightarrow G\gamma$ is a natural transformation, then t also gives a natural transformation from F to G.

Exercise 5. Prove Proposition 4.

Proposition 4. Let C be a model category and $F: C \longrightarrow D$ a functor which sends weak equivalences in C to isomorphisms in D. If $f \stackrel{l}{\sim} g: A \longrightarrow X$ or $f \stackrel{r}{\sim} g: A \longrightarrow X$, then F(f) = F(g) in D.

Exercise 6. Prove Proposition 5.

Proposition 5. Suppose that A is a cofibrant object of C and X is a fibrant object of C. Then the map γ : hom_C(A, X)—hom_{Ho(C)}(A, X) is surjective, and induces a bijection γ : $\pi(A, X) \xrightarrow{\cong} \text{hom}_{Ho(C)}(A, X)$.

Exercise 7. Prove Theorem 7.

Definition 6. Let C be a category and $W \subset C$ a class of morphisms. A *localization* of C with respect to W is a category $C[W^{-1}]$ with the following mapping properties: (1) there is a functor $\gamma: C \longrightarrow C[W^{-1}]$ such that $\gamma(f)$ is an isomorphism for each $f \in W$, (2) (universal property) the functor γ is initial with respect to all such functors; i.e., for any category D and functor $G: C \longrightarrow D$ such that G(f) is an isomorphism for each $f \in W$, then there exists a unique functor \overline{G} which makes the diagram

commute.

Theorem 7. Let C be a model category and $W \subset C$ the class of weak equivalences. Then the functor $\gamma: C \longrightarrow Ho(C)$ is a localization of C with respect to W.

References for the following include [1, Section 9] and [2, Chapter 7].

Exercise 8. Prove Proposition 8.

Proposition 8. Let C be a model category and $F: C_c \longrightarrow D$ a functor such that F(f) is an isomorphism whenever f is an acyclic cofibration between objects of C_c . Suppose that $f, g: A \longrightarrow B$ are maps in C_c such that f is right homotopic to g in C. Then F(f) = F(g).

Exercise 9. Use duality in model categories to obtain a corresponding proposition involving acyclic fibrations between objects of C_f .

Exercise 10. Prove Proposition 9

Proposition 9 (K. Brown's lemma). Let $F: C \longrightarrow D$ be a functor between model categories. If F sends acyclic cofibrations between cofibrant objects to weak equivalences, then F preserves all weak equivalences between cofibrant objects.

Exercise 11. Use duality in model categories to obtain a corresponding proposition involving acyclic fibrations between fibrant objects.

Exercise 12. Please read [1, Sections 5-6].

References

- W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73–126. North-Holland, Amsterdam, 1995.
- P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

 2