Algebraic Topology (topics course) John E. Harper Spring 2010

Series 5

Exercise 1. Prove Proposition 1.

Proposition 1. Let G be a finite group, $H \subset G$ a subgroup, and $\{X_{\alpha}\}$ a set of left G-spaces. There are isomorphisms

$$(\amalg X_{\alpha})^{H} \cong \amalg (X_{\alpha}^{H})$$

in Top natural in X_{α} ; i.e., the *H*-fixed points functor $(-)^H$: Top^G \longrightarrow Top commutes with all small coproducts.

Exercise 2. Prove Proposition 2.

Proposition 2. Let G be a finite group and $H \subset G$ a subgroup. If $f: A \longrightarrow B$ is a closed injective map in Top^G , then the induced map $f^H: A^H \longrightarrow B^H$ is a closed injective map in Top ; i.e., the H-fixed points functor $(-)^H: \mathsf{Top}^G \longrightarrow \mathsf{Top}$ preserves closed injective maps.

Recall the following proposition.

Proposition 3. Let X, Y, Z be spaces. If Y is Hausdorff and locally compact, then there are isomorphisms

 $\hom_{\mathsf{Top}}(X \times Y, Z) \cong \hom_{\mathsf{Top}}(X, \operatorname{Map}(Y, Z))$

natural in such X, Y, Z.

Exercise 3. Prove Proposition 4.

Proposition 4. Let G be a finite group and $X, Y, Z \in \mathsf{Top}^G$. If Y is Hausdorff and locally compact, then there are isomorphisms

 $\hom_{\mathsf{Top}^G}(X \times Y, Z) \cong \hom_{\mathsf{Top}^G}(X, \operatorname{Map}(Y, Z))$

natural in such X, Y, Z. In particular, the functor $- \times I$: $\mathsf{Top}^G \longrightarrow \mathsf{Top}^G$ is a left adjoint and hence preserves colimits. Here, I := [0, 1] with trivial left G-action.

Exercise 4. Prove Proposition 5.

Proposition 5. Let G be a finite group, $H \subset G$ a subgroup, and $\{j_{\alpha} \colon A_{\alpha} \longrightarrow B_{\alpha}\}$ a set of maps in Top^{G} . Consider the induced map $\amalg j_{\alpha} \colon \amalg A_{\alpha} \longrightarrow \amalg B_{\alpha}$ in Top^{G} and the induced map $\amalg (j_{\alpha}^{H}) \colon \amalg (A_{\alpha}^{H}) \longrightarrow \amalg (B_{\alpha}^{H})$ in Top .

- (a) If each map j_{α} is closed injective with image $j_{\alpha}(A_{\alpha})$ a strong deformation retract of B_{α} in Top^{G} , then the image of the induced map $\amalg j_{\alpha}$ is a strong deformation retract of $\amalg B_{\alpha}$ in Top^{G} .
- (b) If each map j_α is closed injective with image j_α(A_α) a strong deformation retract of B_α in Top^G, then the image of the induced map II(j^H_α) is a strong deformation retract of II(B^H_α) in Top.

Recall the following proposition.

Proposition 6. Let X be a space. If X is Hausdorff, then the diagonal $X \subset X \times X$ is a closed subspace of $X \times X$.

Exercise 5. Prove Proposition 7.

Proposition 7. Let G be a finite group, $H \subset G$ a subgroup, and X a left G-space. If X is Hausdorff, then the H-fixed points $X^H \subset X$ is a closed subspace of X.

Exercise 6. Prove Proposition 8.

Proposition 8. Let G be a finite group and $H \subset G$ a subgroup. Consider any left-hand pushout diagram of the form

in Top^G and the corresponding right-hand diagram in Top . If A, B are Hausdorff and i is a closed injective map, then the right-hand diagram is a pushout diagram in Top .

Definition 9. Let G be a finite group. The G-equivariant model structure on Top^G is defined by the following three classes of maps: a map $f: X \longrightarrow Y$ in Top^G is

- (i) a weak equivalence if the map $f^H \colon X^H \longrightarrow Y^H$ is a weak equivalence in Top for each subgroup $H \subset G$,
- (ii) a fibration if the map $f^H \colon X^H \longrightarrow Y^H$ is a fibration in Top for each subgroup $H \subset G$,
- (iii) a *cofibration* if it has the left lifting property with respect to all acyclic fibrations.

Exercise 7. Prove Proposition 10.

Proposition 10. Let G be a finite group and $H \subset G$ a subgroup. Let X be a non-empty left G-space and consider the diagram of the form

constructed in the proof of MC5(ii) (factorization axiom) for a map $p: X \longrightarrow Y$ in Top^G with the G-equivariant model structure.

- (a) The map $(i_k)^H : (G^{k-1})^H \longrightarrow (G^k)^H$ is a weak equivalence in Top for each $k \ge 1$.
- (b) The map $(i_{\infty})^H \colon X^H \longrightarrow (\operatorname{colim}_k G^k)^H$ is a weak equivalence in Top.

Definition 11. Let G be a finite group. A map $f: A \longrightarrow X$ in Top^G is a *relative* G-CW inclusion if there is a sequence of maps of the form

$$A = X^{-1} \xrightarrow{i_0} X^0 \xrightarrow{i_1} X^1 \xrightarrow{i_2} X^2 \to \cdots$$

in Top^G such that

(i) $X \cong \operatorname{colim}_n X^n$ under A in Top^G , and

(ii) each map i_n fits into a pushout diagram of the form

in Top^{G} ; in other words, X^{n} is obtained from X^{n-1} by attaching *G*-cells $G/H \times D^{n}$. Here, the outer coproduct is indexed over all subgroups $H \subset G$, and \mathcal{A}_{H} denotes an indexing set (possibly empty).

A left G-space X is a G-CW complex if the map $\emptyset \longrightarrow X$ is a relative G-CW inclusion.

Exercise 8. Prove Proposition 12.

Proposition 12. Let G be a finite group and consider Top^G with the G-equivariant model structure.

- (a) If $f: A \longrightarrow X$ in Top^G is a relative G-CW inclusion, then f is a cofibration in Top^G .
- (b) If X is a G-CW complex, then X is cofibrant in Top^G .

Definition 13. Let G be a finite group. A map $f: A \longrightarrow X$ in Top^G is a generalized relative G-CW inclusion if there is a sequence of maps of the form

$$A = G^0 \xrightarrow{i_1} G^1 \xrightarrow{i_2} G^2 \xrightarrow{i_3} G^3 \to \cdots$$

in Top^G such that

- (i) $X \cong \operatorname{colim}_k G^k$ under A in Top^G , and
- (ii) each map i_k fits into a pushout diagram of the form

in Top^{G} ; in other words, G^{k} is obtained from G^{k-1} by attaching G-cells $G/H \times D^{n}$. Here, the outer coproduct is indexed over all $n \geq 0$ and subgroups $H \subset G$, and $\mathcal{A}_{n,H}$ denotes an indexing set (possibly empty).

A left G-space X is a generalized G-CW complex if the map $\emptyset \longrightarrow X$ is a generalized relative G-CW inclusion.

Exercise 9. Prove Proposition 14.

Proposition 14. Let G be a finite group and consider Top^G with the G-equivariant model structure.

- (a) Every left G-space is fibrant in Top^G .
- (b) A map $f: A \longrightarrow X$ in Top^G is a cofibration if and only if f is a retract of a generalized relative G-CW inclusion in Top^G .
- (c) A left G-space X is cofibrant in Top^G if and only if X is a retract of a generalized G-CW complex in Top^G .

Exercise 10. Prove Proposition 15.

Proposition 15. Let C be a category with all small limits and colimits. Let D be a small category. There are adjunctions

$$\mathsf{C} \xrightarrow{\Delta}_{{\stackrel{\longrightarrow}{\leftarrow}}} \mathsf{C}^{\mathsf{D}} \xrightarrow{\operatorname{colim}_{\mathsf{D}}} \mathsf{C}$$

with left adjoints on top. Here, Δ is the "diagonal" functor with $\Delta(X) \in \mathsf{C}^{\mathsf{D}}$ the constant diagram with value X.

Exercise 11. Prove Proposition 16.

Proposition 16. Let C be a category with all small limits and colimits. Let I, J small categories.

- (a) The diagram category C^J has all small limits and colimits, and they are calculated objectwise.
- (b) There are natural isomorphisms of diagram categories

$$(C^{I})^{J} \cong C^{I \times J} \cong (C^{J})^{I}.$$

(c) If $X \in C^{I \times J}$, there are natural isomorphisms

 $\operatorname{colim}_{\mathsf{I}}(\operatorname{colim}_{\mathsf{I}} X) \cong \operatorname{colim}_{\mathsf{I} \times \mathsf{J}} X \cong \operatorname{colim}_{\mathsf{I}}(\operatorname{colim}_{\mathsf{I}} X).$

(d) If $X \in C^{I \times J}$, there are natural isomorphisms

$$\lim_{\mathbf{J}} (\lim_{\mathbf{I}} X) \cong \lim_{\mathbf{I} \times \mathbf{J}} X \cong \lim_{\mathbf{I}} (\lim_{\mathbf{J}} X).$$

Exercise 12. Prove Proposition 17.

Proposition 17. Let J be a small category. Every left-hand adjunction

$$C \xrightarrow{F} D \qquad C^{J} \xrightarrow{F} D^{J}$$

with left adjoint on top, induces the right-hand adjunction on diagram categories with left adjoint on top. Here, the induced functors F and G are defined objectwise; i.e., F(X)(j) := F(X(j)) and G(Y)(j) := G(Y(j)) for each $X \in \mathsf{C}^{\mathsf{J}}$ and $Y \in \mathsf{D}^{\mathsf{J}}$.

Exercise 13. Prove Proposition 18.

Proposition 18. Consider any left-hand pair of adjunctions of the form

$$\mathsf{C} \xleftarrow{F}_{G} \mathsf{D} \xleftarrow{F'}_{G'} \mathsf{E} \qquad \mathsf{C} \xleftarrow{F'F}_{GG'} \mathsf{E}$$

with left adjoints on top. Then the right-hand pair of composite functors is an adjunction with left adjoint on top.

Exercise 14. Prove Proposition 19.

Proposition 19. Consider any adjunctions of the form

$$C \xrightarrow{F} D$$
 $C \xrightarrow{F'} G$ $C \xrightarrow{F'} G$ $C \xrightarrow{F} G'$

with left adjoints on top. Then there are isomorphisms of functors $F' \cong F$ and $G' \cong G$; in other words, left adjoints (resp. right adjoints) are unique up to isomorphism.