Exercise 1. Prove Proposition 1.

Proposition 1. Let G be a finite group, $H \subset G$ a subgroup, and $\{X_\alpha\}$ a set of left G-spaces. There are isomorphisms

$$(\amalg X_\alpha)^H \cong \amalg (X_\alpha^H)$$

in Top natural in X_α; i.e., the H-fixed points functor $(-)^H : \text{Top}^G \to \text{Top}$ commutes with all small coproducts.

Proposition 2. Let G be a finite group and $H \subset G$ a subgroup. If $f : A \to B$ is a closed injective map in Top^G, then the induced map $f^H : A^H \to B^H$ is a closed injective map in Top; i.e., the H-fixed points functor $(-)^H : \text{Top}^G \to \text{Top}$ preserves closed injective maps.

Recall the following proposition.

Proposition 3. Let X, Y, Z be spaces. If Y is Hausdorff and locally compact, then there are isomorphisms

$$\text{hom}_{\text{Top}}(X \times Y, Z) \cong \text{hom}_{\text{Top}}(X, \text{Map}(Y, Z))$$

natural in such X, Y, Z.

Proposition 4. Let G be a finite group and $X, Y, Z \in \text{Top}^G$. If Y is Hausdorff and locally compact, then there are isomorphisms

$$\text{hom}_{\text{Top}^G}(X \times Y, Z) \cong \text{hom}_{\text{Top}^G}(X, \text{Map}(Y, Z))$$

natural in such X, Y, Z. In particular, the functor $- \times I : \text{Top}^G \to \text{Top}^G$ is a left adjoint and hence preserves colimits. Here, $I := [0, 1]$ with trivial left G-action.

Proposition 5. Let G be a finite group, $H \subset G$ a subgroup, and $\{j_\alpha : A_\alpha \to B_\alpha\}$ a set of maps in Top^G. Consider the induced map $\amalg j_\alpha : \amalg A_\alpha \to \amalg B_\alpha$ in Top^G and the induced map $\amalg (j_\alpha^H) : \amalg (A_\alpha^H) \to \amalg (B_\alpha^H)$ in Top.

(a) If each map j_α is closed injective with image $j_\alpha(A_\alpha)$ a strong deformation retract of B_α in Top^G, then the image of the induced map $\amalg j_\alpha$ is a strong deformation retract of $\amalg B_\alpha$ in Top^G.

(b) If each map j_α is closed injective with image $j_\alpha(A_\alpha)$ a strong deformation retract of B_α in Top^G, then the image of the induced map $\amalg (j_\alpha^H)$ is a strong deformation retract of $\amalg (B_\alpha^H)$ in Top.

Recall the following proposition.

Proposition 6. Let X be a space. If X is Hausdorff, then the diagonal $X \subset X \times X$ is a closed subspace of $X \times X$.

1

Proposition 7. Let G be a finite group, $H \subset G$ a subgroup, and X a left G-space. If X is Hausdorff, then the H-fixed points $X^H \subset X$ is a closed subspace of X.

Proposition 8. Let G be a finite group and $H \subset G$ a subgroup. Consider any left-hand pushout diagram of the form

\[
\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow i & & \downarrow j \\
B & \xrightarrow{g} & D \\
\end{array}
\]

\[
\begin{array}{ccc}
A^H & \xrightarrow{f^H} & C^H \\
\downarrow i^H & & \downarrow j^H \\
B^H & \xrightarrow{g^H} & D^H \\
\end{array}
\]

in Top^G and the corresponding right-hand diagram in Top. If A, B are Hausdorff and i is a closed injective map, then the right-hand diagram is a pushout diagram in Top.

Definition 9. Let G be a finite group. The G-equivariant model structure on Top^G is defined by the following three classes of maps: a map $f: X \to Y$ in Top^G is

(i) a weak equivalence if the map $f^H: X^H \to Y^H$ is a weak equivalence in Top for each subgroup $H \subset G$,

(ii) a fibration if the map $f^H: X^H \to Y^H$ is a fibration in Top for each subgroup $H \subset G$,

(iii) a cofibration if it has the left lifting property with respect to all acyclic fibrations.

Proposition 10. Let G be a finite group and $H \subset G$ a subgroup. Let X be a non-empty left G-space and consider the diagram of the form

\[
\begin{array}{ccc}
X & \xrightarrow{i_1} & G^1 \\
\downarrow i_\infty & & \downarrow i_1 \\
colim_k G^k & \xrightarrow{i_3} & G^3 \\
\end{array}
\]

constructed in the proof of MC5(ii) (factorization axiom) for a map $p: X \to Y$ in Top^G with the G-equivariant model structure.

(a) The map $(i_k)^H: (G^{k-1})^H \to (G^k)^H$ is a weak equivalence in Top for each $k \geq 1$.

(b) The map $(i_\infty)^H: X^H \to (\colim_k G^k)^H$ is a weak equivalence in Top.

Definition 11. Let G be a finite group. A map $f: A \to X$ in Top^G is a relative G-CW inclusion if there is a sequence of maps of the form

\[
A = X^{-1} \xrightarrow{i_0} X^0 \xrightarrow{i_1} X^1 \xrightarrow{i_2} X^2 \to \cdots
\]

in Top^G such that

(i) $X \cong \colim_n X^n$ under A in Top^G, and
(ii) each map i_n fits into a pushout diagram of the form
\[
\bigsqcup_{H} \bigsqcup_{A_H} G/H \times S^{n-1} \rightarrow X^{n-1}
\]
\[
\bigsqcup_{H} \bigsqcup_{A_H} G/H \times D^n \rightarrow X^n
\]

in Top^G; in other words, X^n is obtained from X^{n-1} by attaching G-cells $G/H \times D^n$. Here, the outer coproduct is indexed over all subgroups $H \subset G$, and A_H denotes an indexing set (possibly empty).

A left G-space X is a G-CW complex if the map $\emptyset \rightarrow X$ is a relative G-CW inclusion.

Exercise 8. Prove Proposition 12.

Proposition 12. Let G be a finite group and consider Top^G with the G-equivariant model structure.

(a) If $f: A \rightarrow X$ in Top^G is a relative G-CW inclusion, then f is a cofibration in Top^G.

(b) If X is a G-CW complex, then X is cofibrant in Top^G.

Definition 13. Let G be a finite group. A map $f: A \rightarrow X$ in Top^G is a generalized relative G-CW inclusion if there is a sequence of maps of the form
\[
A = G^0 \rightarrow^i G^1 \rightarrow^i G^2 \rightarrow^i G^3 \rightarrow \ldots
\]
in Top^G such that

(i) $X \cong \text{colim}_k G^k$ under A in Top^G, and

(ii) each map i_k fits into a pushout diagram of the form
\[
\bigsqcup_{n, H} \bigsqcup_{A_{n, H}} G/H \times S^{n-1} \rightarrow G^{k-1}
\]
\[
\bigsqcup_{n, H} \bigsqcup_{A_{n, H}} G/H \times D^n \rightarrow G^k
\]
in Top^G; in other words, G^k is obtained from G^{k-1} by attaching G-cells $G/H \times D^n$. Here, the outer coproduct is indexed over all $n \geq 0$ and subgroups $H \subset G$, and $A_{n, H}$ denotes an indexing set (possibly empty).

A left G-space X is a generalized G-CW complex if the map $\emptyset \rightarrow X$ is a generalized relative G-CW inclusion.

Exercise 9. Prove Proposition 14.

Proposition 14. Let G be a finite group and consider Top^G with the G-equivariant model structure.

(a) Every left G-space is fibrant in Top^G.

(b) A map $f: A \rightarrow X$ in Top^G is a cofibration if and only if f is a retract of a generalized relative G-CW inclusion in Top^G.

(c) A left G-space X is cofibrant in Top^G if and only if X is a retract of a generalized G-CW complex in Top^G.

Proposition 15. Let C be a category with all small limits and colimits. Let D be a small category. There are adjunctions

$$
\begin{array}{c}
C & \xrightarrow{\Delta} & \text{colim}_D \\
\text{lim}_D & \xleftarrow{\Delta} & C
\end{array}
$$

with left adjoints on top. Here, Δ is the “diagonal” functor with $\Delta(X) \in \text{C}^D$ the constant diagram with value X.

Exercise 11. Prove Proposition 16.

Proposition 16. Let C be a category with all small limits and colimits. Let I, J small categories.

(a) The diagram category C^J has all small limits and colimits, and they are calculated objectwise.

(b) There are natural isomorphisms of diagram categories

$$(C^I)^J \cong C^{I \times J} \cong (C^J)^I.$$

(c) If $X \in C^{I \times J}$, there are natural isomorphisms

$$\text{colim}_J(\text{colim}_I X) \cong \text{colim}_{I \times J} X \cong \text{colim}(\text{colim}_J X).$$

(d) If $X \in C^{I \times J}$, there are natural isomorphisms

$$\text{lim}_I(\text{lim}_J X) \cong \text{lim}_{I \times J} X \cong \text{lim}(\text{lim}_J X).$$

Proposition 17. Let J be a small category. Every left-hand adjunction

$$
\begin{array}{c}
C & \xrightarrow{F} & D \\
G & \xleftarrow{_} & \text{C}^J
\end{array}
$$

with left adjoint on top, induces the right-hand adjunction on diagram categories with left adjoint on top. Here, the induced functors F and G are defined objectwise; i.e., $F(X)(j) := F(X(j))$ and $G(Y)(j) := G(Y(j))$ for each $X \in C^J$ and $Y \in D^J$.

Proposition 18. Consider any left-hand pair of adjunctions of the form

$$
\begin{array}{c}
C & \xrightarrow{F} & D \\
G & \xleftarrow{_} & \text{C}^J
\end{array}
\quad \quad
\begin{array}{c}
D & \xrightarrow{F'} & E \\
G' & \xleftarrow{_} & \text{C}^J
\end{array}
$$

with left adjoints on top. Then the right-hand pair of composite functors is an adjunction with left adjoint on top.

Proposition 19. Consider any adjunctions of the form

$$
\begin{array}{c}
C & \xrightarrow{F} & D \\
G & \xleftarrow{_} & \text{C}^J \\
\end{array}
\quad \quad
\begin{array}{c}
C & \xrightarrow{F'} & D \\
G' & \xleftarrow{_} & \text{C}^J
\end{array}
$$

with left adjoints on top. Then there are isomorphisms of functors $F' \cong F$ and $G' \cong G$; in other words, left adjoints (resp. right adjoints) are unique up to isomorphism.