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Exercise 1. Prove Proposition 1.

Proposition 1. Let G be a finite group, H C G a subgroup, and {X,} a set of left
G-spaces. There are isomorphisms

(IXo)" = 1 (X

in Top natural in X, ; i.e., the H-fived points functor (=) TopG—>Top commutes
with all small coproducts.

Exercise 2. Prove Proposition 2.

Proposition 2. Let G be a finite group and H C G a subgroup. If f: A—B is
a closed injective map in TopG, then the induced map f7: A" —BH js a closed
injective map in Top; i.e., the H-fized points functor (—)H : TopG—>Top preserves
closed injective maps.

Recall the following proposition.
Proposition 3. Let X,Y, Z be spaces. If Y is Hausdorff and locally compact, then
there are isomorphisms
homTep (X X Y, Z) = homrey (X, Map(Y, Z))
natural in such X,Y, Z.
Exercise 3. Prove Proposition 4.
Proposition 4. Let G be a finite group and X,Y,Z € TopG. If Y is Hausdorff
and locally compact, then there are isomorphisms
hom,,c (X x Y, Z) = homr,,q (X, Map(Y, Z))

natural in such X,Y,Z. In particular, the functor — x I: TopG—>TopG is a left
adjoint and hence preserves colimits. Here, I := [0, 1] with trivial left G-action.

Exercise 4. Prove Proposition 5.

Proposition 5. Let G be a finite group, H C G a subgroup, and {jo: Aa—>Ba}
a set of maps in TopG. Consider the induced map 1j,: ITA,—I1IB, in TopG and
the induced map 1(52): T(AH)—I1(BX) in Top.

(a) If each map jo is closed injective with image jo(Aa) a strong deformation
retract of By in Top®, then the image of the induced map 11j, is a strong
deformation retract of 11B, in Top®.

(b) If each map jo is closed injective with image jo(As) a strong deformation
retract of B, in TopG, then the image of the induced map () is a strong
deformation retract of II(BH) in Top.

Recall the following proposition.

Proposition 6. Let X be a space. If X is Hausdorff, then the diagonal X C X x X
s a closed subspace of X x X.



Exercise 5. Prove Proposition 7.

Proposition 7. Let G be a finite group, H C G a subgroup, and X a left G-space.
If X is Hausdorff, then the H-fized points X C X is a closed subspace of X .

Exercise 6. Prove Proposition 8.

Proposition 8. Let G be a finite group and H C G a subgroup. Consider any
left-hand pushout diagram of the form

f 1

A——C AH ——CH
N
BT>D BH?DH

g

in Top® and the corresponding right-hand diagram in Top. If A, B are Hausdorff
and 1 s a closed injective map, then the right-hand diagram is a pushout diagram
in Top.

Definition 9. Let G be a finite group. The G-equivariant model structure on TopG
is defined by the following three classes of maps: a map f: X—Y in Top® is

(i) a weak equivalence if the map f7: X7 —Y*H is a weak equivalence in Top
for each subgroup H C G,
(i) a fibration if the map f#: XH —YH is afibration in Top for each subgroup
H C G,
(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.

Exercise 7. Prove Proposition 10.

Proposition 10. Let G be a finite group and H C G a subgroup. Let X be a
non-empty left G-space and consider the diagram of the form
i3

i1 2

X G! G2 G®
i \L Q2
Too i3
colimy, G*

constructed in the proof of MC5(ii) (factorization axiom) for a map p: X—Y in
TopG with the G-equivariant model structure.
(a) The map (ix)™: (GF"Y)H —(G*)H is a weak equivalence in Top for each
k>1.
(b) The map (i)™ : X7 —(colimy GF)H is a weak equivalence in Top.

Definition 11. Let G be a finite group. A map f: A—X in Top® is a relative
G-CW inclusion if there is a sequence of maps of the form

A=Xx"110, x01, x1 2, x2 ..
in TopG such that
(i) X 2 colim, X" under A in Top®, and



(ii) each map i, fits into a pushout diagram of the form

H H G/HXSn_lﬂanl
H Ag

HHjnl in

NG/ D"

in Top®; in other words, X™ is obtained from X"~! by attaching G-cells
G/H x D™. Here, the outer coproduct is indexed over all subgroups H C G,
and Ay denotes an indexing set (possibly empty).

A left G-space X is a G-CW complez if the map )— X is a relative G-CW inclusion.
Exercise 8. Prove Proposition 12.

Proposition 12. Let G be a finite group and consider TopG with the G-equivariant
model structure.
(a) If f: A—X in Top® is a relative G-CW inclusion, then f is a cofibration
m TopG.
(b) If X is a G-CW complex, then X is cofibrant in Top®©.

Definition 13. Let G be a finite group. A map f: A—X in Top® is a generalized
relative G-CW inclusion if there is a sequence of maps of the form

A=GO L Gl 2, G2 5,68 ...
in Top® such that

(i) X = colimy, G* under A in TopG7 and
(ii) each map iy, fits into a pushout diagram of the form

H H G/H X Sn_l _— Gk*l

n,H A, ug
HHjnl in
n]_}[q A];,IH G/H x D ok

in Top®; in other words, G* is obtained from G*~! by attaching G-cells
G/H x D™. Here, the outer coproduct is indexed over all n > 0 and
subgroups H C G, and A, g denotes an indexing set (possibly empty).
A left G-space X is a generalized G-CW complex if the map )— X is a generalized
relative G-CW inclusion.

Exercise 9. Prove Proposition 14.

Proposition 14. Let G be a finite group and consider TopG with the G-equivariant
model structure.
(a) Every left G-space is fibrant in Top®.
(b) Amap f: A—X in Top® is a cofibration if and only if f is a retract of a
generalized relative G-CW inclusion in Top®.
(c) A left G-space X is cofibrant in TopG if and only if X is a retract of a
generalized G-CW complez in TopG.



Exercise 10. Prove Proposition 15.

Proposition 15. Let C be a category with all small limits and colimits. Let D be
a small category. There are adjunctions

A colimp
—> D —
—= (P —=

limD A

with left adjoints on top. Here, A is the “diagonal” functor with A(X) € CP the
constant diagram with value X.

Exercise 11. Prove Proposition 16.

Proposition 16. Let C be a category with all small limits and colimits. Let 1)
small categories.

(a) The diagram category C’ has all small limits and colimits, and they are
calculated objectwise.
(b) There are natural isomorphisms of diagram categories

(€ = X = (),
(c) If X € C"™J, there are natural isomorphisms
colimy(colim; X) 2 colimjyxj X = colim(colim; X).
(d) If X € C"™J| there are natural isomorphisms
liﬁn(lillan) = llleJlX = lilrn(li}nX).
Exercise 12. Prove Proposition 17.
Proposition 17. Let J be a small category. Every left-hand adjunction
Ly oo

with left adjoint on top, induces the right-hand adjunction on diagram categories
with left adjoint on top. Here, the induced functors F and G are defined objectwise;
i.e., F(X)(j) == F(X(j)) and G(Y)(j) := G(Y(5)) for each X € C? and Y € D’.

Exercise 13. Prove Proposition 18.

Proposition 18. Consider any left-hand pair of adjunctions of the form

F F’ F'F
€] G’ GG’

with left adjoints on top. Then the right-hand pair of composite functors is an
adjunction with left adjoint on top.

Exercise 14. Prove Proposition 19.

Proposition 19. Consider any adjunctions of the form

F F’ F

C=—2=D C=—=D C=—=D
G G G’

with left adjoints on top. Then there are isomorphisms of functors F' = F and
G' = G; in other words, left adjoints (resp. right adjoints) are unique up to iso-
morphism.



