
Algebraic Topology (topics course) Spring 2010
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Series 5

Exercise 1. Prove Proposition 1.

Proposition 1. Let G be a finite group, H ⊂ G a subgroup, and {Xα} a set of left
G-spaces. There are isomorphisms

(qXα)H ∼= q (XH
α )

in Top natural in Xα; i.e., the H-fixed points functor (−)H : TopG−→Top commutes
with all small coproducts.

Exercise 2. Prove Proposition 2.

Proposition 2. Let G be a finite group and H ⊂ G a subgroup. If f : A−→B is
a closed injective map in TopG, then the induced map fH : AH−→BH is a closed
injective map in Top; i.e., the H-fixed points functor (−)H : TopG−→Top preserves
closed injective maps.

Recall the following proposition.

Proposition 3. Let X, Y, Z be spaces. If Y is Hausdorff and locally compact, then
there are isomorphisms

homTop(X × Y,Z) ∼= homTop(X, Map(Y,Z))

natural in such X, Y, Z.

Exercise 3. Prove Proposition 4.

Proposition 4. Let G be a finite group and X, Y, Z ∈ TopG. If Y is Hausdorff
and locally compact, then there are isomorphisms

homTopG(X × Y,Z) ∼= homTopG(X, Map(Y, Z))

natural in such X, Y, Z. In particular, the functor −× I : TopG−→TopG is a left
adjoint and hence preserves colimits. Here, I := [0, 1] with trivial left G-action.

Exercise 4. Prove Proposition 5.

Proposition 5. Let G be a finite group, H ⊂ G a subgroup, and {jα : Aα−→Bα}
a set of maps in TopG. Consider the induced map qjα : qAα−→qBα in TopG and
the induced map q(jHα ) : q(AH

α )−→q(BH
α ) in Top.

(a) If each map jα is closed injective with image jα(Aα) a strong deformation
retract of Bα in TopG, then the image of the induced map qjα is a strong
deformation retract of qBα in TopG.

(b) If each map jα is closed injective with image jα(Aα) a strong deformation
retract of Bα in TopG, then the image of the induced map q(jHα ) is a strong
deformation retract of q(BH

α ) in Top.

Recall the following proposition.

Proposition 6. Let X be a space. If X is Hausdorff, then the diagonal X ⊂ X×X
is a closed subspace of X ×X.
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Exercise 5. Prove Proposition 7.

Proposition 7. Let G be a finite group, H ⊂ G a subgroup, and X a left G-space.
If X is Hausdorff, then the H-fixed points XH ⊂ X is a closed subspace of X.

Exercise 6. Prove Proposition 8.

Proposition 8. Let G be a finite group and H ⊂ G a subgroup. Consider any
left-hand pushout diagram of the form

A

i

��

f // C

j

��
B g

// D

AH

iH

��

fH

// CH

jH

��
BH

gH

// DH

in TopG and the corresponding right-hand diagram in Top. If A, B are Hausdorff
and i is a closed injective map, then the right-hand diagram is a pushout diagram
in Top.

Definition 9. Let G be a finite group. The G-equivariant model structure on TopG

is defined by the following three classes of maps: a map f : X−→Y in TopG is
(i) a weak equivalence if the map fH : XH−→Y H is a weak equivalence in Top

for each subgroup H ⊂ G,
(ii) a fibration if the map fH : XH−→Y H is a fibration in Top for each subgroup

H ⊂ G,
(iii) a cofibration if it has the left lifting property with respect to all acyclic

fibrations.

Exercise 7. Prove Proposition 10.

Proposition 10. Let G be a finite group and H ⊂ G a subgroup. Let X be a
non-empty left G-space and consider the diagram of the form

X
i1 //

i∞ ))

G1
i2 //

i1
��

G2
i3 //

i2

uu

G3 //

i3
qq

· · ·

colimk Gk

constructed in the proof of MC5(ii) (factorization axiom) for a map p : X−→Y in
TopG with the G-equivariant model structure.

(a) The map (ik)H : (Gk−1)H−→(Gk)H is a weak equivalence in Top for each
k ≥ 1.

(b) The map (i∞)H : XH−→(colimk Gk)H is a weak equivalence in Top.

Definition 11. Let G be a finite group. A map f : A−→X in TopG is a relative
G-CW inclusion if there is a sequence of maps of the form

A = X−1 i0−→ X0 i1−→ X1 i2−→ X2 → · · ·

in TopG such that
(i) X ∼= colimn Xn under A in TopG, and
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(ii) each map in fits into a pushout diagram of the form∐
H

∐
AH

G/H × Sn−1

qqjn
��

// Xn−1

in

��∐
H

∐
AH

G/H ×Dn // Xn

in TopG; in other words, Xn is obtained from Xn−1 by attaching G-cells
G/H×Dn. Here, the outer coproduct is indexed over all subgroups H ⊂ G,
and AH denotes an indexing set (possibly empty).

A left G-space X is a G-CW complex if the map ∅−→X is a relative G-CW inclusion.

Exercise 8. Prove Proposition 12.

Proposition 12. Let G be a finite group and consider TopG with the G-equivariant
model structure.

(a) If f : A−→X in TopG is a relative G-CW inclusion, then f is a cofibration
in TopG.

(b) If X is a G-CW complex, then X is cofibrant in TopG.

Definition 13. Let G be a finite group. A map f : A−→X in TopG is a generalized
relative G-CW inclusion if there is a sequence of maps of the form

A = G0 i1−→ G1 i2−→ G2 i3−→ G3 → · · ·

in TopG such that
(i) X ∼= colimk Gk under A in TopG, and

(ii) each map ik fits into a pushout diagram of the form∐
n,H

∐
An,H

G/H × Sn−1

qqjn
��

// Gk−1

ik

��∐
n,H

∐
An,H

G/H ×Dn
// Gk

in TopG; in other words, Gk is obtained from Gk−1 by attaching G-cells
G/H × Dn. Here, the outer coproduct is indexed over all n ≥ 0 and
subgroups H ⊂ G, and An,H denotes an indexing set (possibly empty).

A left G-space X is a generalized G-CW complex if the map ∅−→X is a generalized
relative G-CW inclusion.

Exercise 9. Prove Proposition 14.

Proposition 14. Let G be a finite group and consider TopG with the G-equivariant
model structure.

(a) Every left G-space is fibrant in TopG.
(b) A map f : A−→X in TopG is a cofibration if and only if f is a retract of a

generalized relative G-CW inclusion in TopG.
(c) A left G-space X is cofibrant in TopG if and only if X is a retract of a

generalized G-CW complex in TopG.
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Exercise 10. Prove Proposition 15.

Proposition 15. Let C be a category with all small limits and colimits. Let D be
a small category. There are adjunctions

C
∆ //

CD

limD

oo
colimD //

C
∆

oo

with left adjoints on top. Here, ∆ is the “diagonal” functor with ∆(X) ∈ CD the
constant diagram with value X.

Exercise 11. Prove Proposition 16.

Proposition 16. Let C be a category with all small limits and colimits. Let I, J
small categories.

(a) The diagram category CJ has all small limits and colimits, and they are
calculated objectwise.

(b) There are natural isomorphisms of diagram categories

(CI)J ∼= CI×J ∼= (CJ)I.

(c) If X ∈ CI×J, there are natural isomorphisms

colimJ(colimI X) ∼= colimI×J X ∼= colimI(colimJ X).

(d) If X ∈ CI×J, there are natural isomorphisms

lim
J

(lim
I

X) ∼= lim
I×J

X ∼= lim
I

(lim
J

X).

Exercise 12. Prove Proposition 17.

Proposition 17. Let J be a small category. Every left-hand adjunction

C
F //

D
G

oo CJ
F //

DJ

G
oo

with left adjoint on top, induces the right-hand adjunction on diagram categories
with left adjoint on top. Here, the induced functors F and G are defined objectwise;
i.e., F (X)(j) := F (X(j)) and G(Y )(j) := G(Y (j)) for each X ∈ CJ and Y ∈ DJ.

Exercise 13. Prove Proposition 18.

Proposition 18. Consider any left-hand pair of adjunctions of the form

C
F //

D
G

oo
F ′ //

E
G′

oo C
F ′F //

E
GG′

oo

with left adjoints on top. Then the right-hand pair of composite functors is an
adjunction with left adjoint on top.

Exercise 14. Prove Proposition 19.

Proposition 19. Consider any adjunctions of the form

C
F //

D
G

oo C
F ′ //

D
G

oo C
F //

D
G′

oo

with left adjoints on top. Then there are isomorphisms of functors F ′ ∼= F and
G′ ∼= G; in other words, left adjoints (resp. right adjoints) are unique up to iso-
morphism.


