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Let R be a ring and denote by Ch% (resp. Modg) the category of non-negative
chain complexes over R (resp. the category of left R-modules). Define a map
f: M—N in Ch}, to be

(i) a weak equivalence if it is a homology isomorphism,
(ii) a fibration if the map fj: My—— Ny is an epimorphism for each k > 1,
(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.

The purpose of this series is to give a proof of the following proposition.

Proposition 1. These three classes of maps give Chg the structure of a model
category.

Exercise 1. Prove Proposition 2.

Proposition 2. The left-hand solid commutative diagram

A—=X Ay 2> X, By <2— B,
BEGE
i p ik L Pk fr—1 fr
B?Y Bka>Yk Xk—1<TXk (kJZO)

n Ch; has a lift if and only if the right-hand sequence of lifting problems in Modg
has a solution, if and only if the sequence of lifting problems

9k
A, ———— s X
k =~ k

By, — Cyp_1(X) Xy, ) Ye (k=0)
in Modgr has a solution.
Exercise 2. Prove Proposition 3.
Proposition 3. Let p: X—Y be a map in Ch}
(a) The map p is an acyclic fibration if and only if the induced map
X—Cyp1(X) Xcy,_,(v) Vi

is an epimorphism for each k > 0.
(b) If p is an acyclic fibration, then the induced map

(pr)+: Cyp(X)—Cyp(Y)
is an epimorphism for each k > 0.
(c) If the induced map Xp——Cy,_1(X) Xcy, ,(v) Y is an epimorphism for
each k > 0, then the induced map (pi)«: Cyrp(X)—Cy,(Y) is an epimor-
phism for each k > 0.

Exercise 3. Prove Proposition 4.



2

Proposition 4. Let i: A—B be a map in Ch'};. If the map iy: Apr— By is a
monomorphism with coker(iy) a projective R-module for each k > 0, then i is a
cofibration.

Definition 5. Let A be a left R-module and n > 1. The chain complex D, (A) in
Ch}; has the form

D, (A): e 00— AL A 00—
and is defined degreewise by

A, fork=n,n—1,
Dn(A)y = { 0, otherwise.

The n-disk chain complex D™ in Ch}; is defined by D™ := D,,(R).

Note that the map 0— D™ is a weak equivalence for each n > 1; i.e., the n-disk
chain complex D" is acyclic.

Exercise 4. Prove Proposition 6.

Proposition 6. Let n > 1. There is an adjunction

Dy,
Modr — Ch}

Vin

with left adjoint on top and Ev,, the evaluation functor defined objectwise by Ev,,(B) :=
B,,; i.e., there are isomorphisms

homCh;(Dn(ALB) >~ hompmedy (4, Evy,(B))
natural in A, B.
Exercise 5. Prove Proposition 7.

Proposition 7. Let n > 1. A solid commutative diagram of the form

0—X

7

DM ——Y

n Ch; is equivalent to an element y € Y,. A lift in such a solid commutative
diagram is equivalent to an element x € X,, such that p,x = y.

Exercise 6. Prove Proposition 8.

Proposition 8. A map p: X—Y in Ch; is a fibration if and only if it has the
right lifting property with respect to the set of maps

Jn: 0— D™, n>1.
Definition 9. Let A be a left R-module and n > 0. The chain complex S, (A4) in
Ch} has the form
Sn(A4) : = 0= 0+—A—0—0«---
and is defined degreewise by

S = { G

0, otherwise.
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The n-sphere chain complex S™ in Ch}, is defined by S™ := S,,(R). For notational
convenience, define the chain complexes S~! := 0, DY := Sy(R), and denote by
gn: S""1—=D™ the natural inclusion map in Ch.

Exercise 7. Prove Proposition 10.

Proposition 10. Let n > 0. There is an adjunction

Sn
Modr ——= Ch;
y’IL

with left adjoint on top and Cy,, the ‘n-dimensional cycles” functor defined object-
wise by Cy,,(B) := ker(0: B,—By_1); i.e., there are isomorphisms

homCh;(Sn(A), B) 2 hompmoedy (4, Cy,,(B))
natural in A, B.
Exercise 8. Prove Proposition 11.

Proposition 11. Let n > 1. A solid commutative diagram of the form
Sn—l — X
7
jnl T lp
D" ——Y

in Ch}, is equivalent to an element (y,z) € Y, @ Cy,,_1(X) such that p,_1z = Jy.
A lift in such a solid commutative diagram is equivalent to an element x € X,, such
that ppx =y and Oz = 2.

Exercise 9. Prove Proposition 12.

Proposition 12. A map p: X—Y in Ch; is an acyclic fibration if and only if it
has the right lifting property with respect to the set of maps

In: S”*l—>D”7 n > 0.

Recall the following proposition which is a special case of the property that
homology commutes with filtered colimits.

Proposition 13. Let n > 0 and consider any diagram of the form

(el el Ne R N e
mn Ch;. Then the natural map colimy, H,, (G*) =, H, (colimy, G¥) in Modp is an
isomorphism.

Exercise 10. Use Proposition 8 together with a small object argument to prove
Proposition 14.

Proposition 14. Let p: X—Y be a map in Ch;. Then p has a factorization
xLx Ly
mn ChE as an acyclic cofibration j followed by a fibration q; i.e., MC5(ii) is satisfied.

Exercise 11. Prove Proposition 15 using the factorizations constructed in the
proof of Proposition 14.



Proposition 15. Consider any solid commutative diagram of the form
A—2tsx
Es
z‘i J{p
B T> Y
n Ch;. If i is an acyclic cofibration and p is a fibration, then the diagram has a
lift; i.e., MCA(ii) is satisfied.

Exercise 12. Use Proposition 12 together with a small object argument to prove
Proposition 16.

Proposition 16. Let p: X—Y be a map in Ch} Then p has a factorization
xLy Ly

n Ch; as a cofibration j followed by an acyclic fibration q; i.e., MC5(i) is satisfied.

Exercise 13. Prove Proposition 17.

Proposition 17. Every identity map in Ch; is a fibration, cofibration, and weak
equivalence.

Exercise 14. Prove Proposition 18.

Proposition 18. The three classes of maps in Ch;—weak equivalences, fibrations,
and cofibrations—are each closed under composition.

Exercise 15. Prove Proposition 19.

Proposition 19. The category ChE has all small limits and colimits, and they are
calculated degreewise. In particular, MC1 is satisfied.

Exercise 16. Prove Proposition 20.

Proposition 20. The class of weak equivalences in Ch; satisfies the “two out of
three axiom” MC2.

Exercise 17. Prove Proposition 21.

Proposition 21. The three classes of maps in Ch;—weak equivalences, fibrations,
and cofibrations—are each closed under retracts; i.e., MC3 is satisfied.

Exercise 18. Prove Proposition 1.

Exercise 19. Use the factorizations constructed in the proof of Proposition 16
together with Proposition 4 to prove Proposition 22.

Proposition 22.
(a) Amapi: A—Bin Ch; is a cofibration if and only if the map iy : Ap— By
is a monomorphism with coker(iy) a projective R-module for each k > 0.
(b) A chain complex B € Ch; is cofibrant if and only if By is a projective
R-module for each k > 0.
(c) Every chain complex B € Ch}; is fibrant.

Exercise 20. Please read [1, Sections 7-8] and [2, 1.1-1.4]; see also [3, 2.3].
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