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References for the following include [1, Sections 9-10], [2, Section 2] and [4, 5].
Exercise 1. Prove Proposition 1.

Proposition 1. Let C,D be model categories and consider any adjunction
F
——D

with left adjoint on top. Then
(a) F preserves cofibrations if and only if G preserves acyclic fibrations, and
(b) F preserves acyclic cofibrations if and only if G preserves fibrations.

Exercise 2. Prove Theorem 2.

Theorem 2. Let C,D be model categories and consider any adjunction
F
—D

with left adjoint on top. Suppose that
(i) F preserves cofibrations and G preserves fibrations.
Then the total derived functors LF and RG exist and fit into an adjunction
LF

(1) Ho(C) S Ho(D)

with left adjoint on top. If in addition we have

(ii) for each cofibrant object A € C and fibrant object X € D, a map f: A—G(X)
is a weak equivalence in C if and only if its adjoint F(A)—X is a weak
equivalence in D,

then the adjunction (1) is an equivalence of categories; i.e., the natural maps
A—2>RG(LF(4)) LF(RG(X)) —= X

of the adjunction (1) are isomorphisms for each A € C and X € D.

Definition 3. Let C,D be model categories and consider any adjunction

(2) C=—=D

G
with left adjoint on top. If the conditions in Theorem 2(i) are satisfied, then F is a
left Quillen functor, G is a right Quillen functor, and the adjunction (2) is a Quillen
adjunction. If in addition the conditions in Theorem 2(ii) are satisfied, then the
adjunction (2) is a Quillen equivalence.

Let R be a ring and denote by Chg the category of unbounded chain complexes
over R.

Exercise 3. Use a 5-lemma argument to prove Proposition 4.



Proposition 4. Consider any commutative diagram of the form

a B

0 A B c 0
i / /
0 A—>B —>C 0

in Chgr with exact rows. If any two of the three vertical maps is a homology iso-
morphism, then so is the third.

Recall the following right-exactness property of the tensor product functors.

Proposition 5. If X is a right R-module and A % B 2, ¢ = 0 is an eact
sequence of left R-modules, then

Xopd 98r2, xo B8 xo .00

is an exact sequence of abelian groups.

Definition 6. A right R-module X is flat if the functor X ® g— preserves monomor-
phisms; i.e., if for any monomorphism «: A— B of left R-modules, the induced
map id®pri: X®rA— X®gB of abelian groups is a monomorphism.

Exercise 4. Prove Proposition 7.

Proposition 7. The following properties of a left R-module X are equivalent.
(a) X is flat.
(b) The functor X®@g—: Modr—Mody, preserves short exact sequences.

Exercise 5. Prove Proposition 8.

Proposition 8.

(a) The free right R-module R is flat.
(b) Every free right R-module is flat.
(¢) Every projective right R-module is flat.

Exercise 6. Prove Proposition 9.

The following proposition indicates how the Torf(X, —) functors provide a mea-
sure of the inexactitude of X®pr—.

Proposition 9. Let X be a right R-module and e: P—X in Ch;gop a projective

resolution of X. Consider any short exact sequence 0 — A = B Zo=o of left
R-modules. Then there is a short exact sequence

0 — PorA 228 pgyp X908, pg a0 — o
m Ch%‘, and hence a natural corresponding long exact sequence
. — Torf [ (X,C) L Tor®(X, A) — Tor®(X, B) — Tor®(X, C)
- — Torf (X, A) — Torf (X, B) — Torf (X, 0)
LN XRrA — X®rB — X®QrC — 0

of abelian groups.



Exercise 7. Prove Propositions 10 and 11.

Proposition 10. Let X be a right R-module. A map ¢: P—X in Ch;op s a
projective resolution of X if and only if it is a cofibrant replacement of X in Ch},p,

Proposition 11. Let Y be a left R-module. Then the total left derived functor

—Q®RY

Chhop Ch} Ho(Ch})
l .
Ho(Chhuy) - Ho(Ch?)

total left derived functor

of the tensor product functor Ch}@op—{hg exists, and there are natural isomor-
phisms

H,(X®RY) = Torf(X,Y) (ne)
of abelian groups for each X € Modgor C Chfzop.
Exercise 8. Prove Proposition 12.

Proposition 12. The total left derived functor

—Qr—

Cht.. x Ch Chif Ho(Ch)
Ho(Cht..) x Ho(Ch%) - Ho(Ch}})

total left derived functor

of the tensor product functor ChEOp X ChEHCh%— exists, and there are natural
isomorphisms

H,(X®LY) = Tor(X,Y) (n€Z)
of abelian groups for each X € Modger C Chhop and Y € Modg C Ch},.

Recall the following left-exactness property of the hom object functors.

Proposition 13. If X is a right R-module and 0 — A % B B, ¢ is an exact
sequence of right R-modules, then

0 — Homp(X, A) 2= Homp(X, B) 25 Homp(X, C)
is an exact sequence of abelian groups.
Exercise 9. Prove Proposition 14.

Proposition 14. The following properties of a right R-module X are equivalent.
(a) X is projective.
(b) The functor Homg(X, —): Modgor —Mody, preserves short exact sequences.

Exercise 10. Prove Proposition 15.

The following proposition indicates how the Ext’s (X, —) functors provide a mea-
sure of the inexactitude of Homp (X, —).
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Proposition 15. Let X be a right R-module and e: P—X in Ch},p a projective

resolution of X. Consider any short ezact sequence 0 — A = B LNy of right
R-modules. Then there is a short exact sequence

0 — Homp(P, A) 2% Homp(P, B) 2 Homp(P,C) — 0
of cochain complexes, and hence a natural corresponding long exact sequence
0 — Hompg(X, A) — Homg(X, B) — Hompg(X,C)
2 Exth(X, A) — Exth(X, B) — Exth(X,C)
- = BExt}(X, A) — Ext}y(X, B) — Ext(X,C) 2 Ext (X, A) — - --
of abelian groups.

Define a map f: M—N in Chg to be
(i) a weak equivalence if it is a homology isomorphism,
(ii) a fibration if the map fi: My—— Ny is an epimorphism for each k € Z,
(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.
The following proposition can be proved using similar arguments as in the case
of non-negative chain complexes Ch;.

Proposition 16. These three classes of maps give Chg the structure of a model
category.

(a) A map i: A—B in Chg between bounded below chain complexes is a
cofibration if and only if the map iy: Apy— By is a monomorphism with
coker(ix) a projective R-module for each k € Z.

(b) A bounded below chain complex B € Chg is cofibrant if and only if By is a
projective R-module for each k > 0.

(¢) Every chain complex B € Chg is fibrant.

Proof. A proof is given in [3, 2.3]. O
Exercise 11. Prove Proposition 17.

Proposition 17. Let Y be a right R-module. Then the total right derived functor

(Chbop)or —2mm 1)y Ho(Chz)
\L RHompg(—,Y
Ho(Chh..)oP w21 Ho(Chz)

total right derived functor

of the hom object functor (Ch})p)"p—{hz exists, and there are natural isomor-
phisms

H"(RHomp(X,Y)) = Extgh(X,Y) (neZ)
of abelian groups for each X € Modger C ChEop.

Definition 18. Let [ € Z. Denote by Ch}%l C Chg the full subcategory of chain
complexes M such that M, = 0 for each k < [; for instance, Ch=" = Ch;g.

Exercise 12. Prove Propositions 19 and 20.
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Proposition 19. Letl € Z. There is an isomorphism of categories Ch%l = Ch;.

For each [ € Z, define a map f: M—N in Ch%l to be
(i) a weak equivalence if it is a homology isomorphism,
(ii) a fibration if the map fi: Mp— Ny is an epimorphism for each k > 1+ 1,
(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.
Proposition 20. These three classes of maps give Chlz%l the structure of a model
category.
(a) Amapi: A—DBin Ch%l is a cofibration if and only if the map iy : Ar— By
is a monomorphism with coker(ix) a projective R-module for each k > 1.
(b) A chain complex B € Ch%l is cofibrant if and only if By is a projective
R-module for each k > 1.
(¢) Every chain complex B € Ch}%l is fibrant.

Definition 21. Let n € Z. A chain complex M in Chp is n-connected if Hi,(M) =0
for each k <n, and is connective if it is —1-connected.

Definition 22. Let | € Z and X € Chg. The chain complex 7>;(X) in Ch%l, called
a good truncation of X, has the form

T>1(X) : = 00— kerg) « Xpypq — Xjpo — Xjag -+
and is defined degreewise by

X, fork>1+41,
7’21()()]C = ker@l, fOI‘kZl,
0, otherwise.

Exercise 13. Prove Propositions 23 and 24.
Proposition 23. Letl € Z. The good truncation functor T> fits into an adjunction

>i_ b

with left adjoint on top and i the inclusion functor. The natural inclusion of chain
complezxes j: 7>1(X)—X in Chg induces isomorphisms

Hy(rsi(X)) =2 H(X) (k> 1),

Proposition 24. Letl,m,n € Z and X,Y € Ch%l. The total left derived functor

_®R_

Chzl, x Chz!

|

Ho(Chz!,) x Ho(Chz)

ChZ HO(Chz)

—ok,—

total left derived functor

HO(Chz)

of the tensor product functor Chl%,/(l,p X Ch%l—{hz exists.

(a) If X is m-connected and Y is n-connected, then the derived tensor product
X®LY is (m +n + 1)-connected.

(b) If X is m-connected and cofibrant and Y is n-connected, then XQRgY s
(m + n + 1)-connected.



Let C be a model category and let D = {a «— b — ¢}. Then a morphism
f: X—Y in CP is a collection of maps f,, f3, f. which makes the diagram

Xy<~— X, — X,

A

Yo<—Y, —>Y.

in C commute. Define a map f: X—Y in CP to be

(i) a weak equivalence if it is an objectwise weak equivalence; i.e., if the maps
fa, Ib, fc are weak equivalences in C,
(ii) a fibration if it is an objectwise fibration; i.e., if the maps f,, fp, fc are
fibrations in C,
(iii) a cofibration if the induced maps

Xa HXb Yb_>Ya7 Xb—)va XC HXb }/b—>Y;
are cofibrations in C.
Exercise 14. Prove Proposition 25.

Proposition 25. These three classes of maps give CP the structure of a model
category.

(a) The total left derived functor

CD colimp C HO(C)
HO(CD) hocolimp HO(C)

total left derived functor

of the colimit functor C°——D exists.
(b) A diagram Y € CP is cofibrant if and only if the maps

}/17—>Ya7 @—>Y2)7 %—)YC

are cofibrations in C.

(c) If Y € CP is a diagram and ) — Y° — Y is a cofibration followed by a
weak equivalence in CP, then hocolimp(Y) ~ colimp(Y®).

(d) If f: X—Y is a weak equivalence between cofibrant diagrams, then the
induced map colimp X — colimp Y is a weak equivalence.

Sometimes hocolimp(X) is called the homotopy pushout of the diagram X.

Exercise 15. Use duality in model categories to obtain a corresponding proposition
involving the total right derived functor of the limit functor limpes : CP”" —C; note
that D°P is the category {a — b < c}. Describe the corresponding model structure
on CP™".

Exercise 16. Please read [1, Sections 9-10] and [2, Section 2.
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