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References for the following include [1, Sections 9-10], [2, Section 2] and [4, 5].

Exercise 1. Prove Proposition 1.

Proposition 1. Let C,D be model categories and consider any adjunction

C
F //

D
G

oo

with left adjoint on top. Then
(a) F preserves cofibrations if and only if G preserves acyclic fibrations, and
(b) F preserves acyclic cofibrations if and only if G preserves fibrations.

Exercise 2. Prove Theorem 2.

Theorem 2. Let C,D be model categories and consider any adjunction

C
F //

D
G

oo

with left adjoint on top. Suppose that
(i) F preserves cofibrations and G preserves fibrations.

Then the total derived functors LF and RG exist and fit into an adjunction

Ho(C)
LF // Ho(D)
RG

oo(1)

with left adjoint on top. If in addition we have
(ii) for each cofibrant object A ∈ C and fibrant object X ∈ D, a map f : A−→G(X)

is a weak equivalence in C if and only if its adjoint F (A)−→X is a weak
equivalence in D,

then the adjunction (1) is an equivalence of categories; i.e., the natural maps

A
ηA

∼=
// RG(LF (A)) LF (RG(X))

εX

∼=
// X

of the adjunction (1) are isomorphisms for each A ∈ C and X ∈ D.

Definition 3. Let C,D be model categories and consider any adjunction

C
F //

D
G

oo(2)

with left adjoint on top. If the conditions in Theorem 2(i) are satisfied, then F is a
left Quillen functor, G is a right Quillen functor, and the adjunction (2) is a Quillen
adjunction. If in addition the conditions in Theorem 2(ii) are satisfied, then the
adjunction (2) is a Quillen equivalence.

Let R be a ring and denote by ChR the category of unbounded chain complexes
over R.

Exercise 3. Use a 5-lemma argument to prove Proposition 4.
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Proposition 4. Consider any commutative diagram of the form

0 // A

f

��

α // B

g

��

β // C

h

��

// 0

0 // A′
α′

// B′
β′

// C ′ // 0

in ChR with exact rows. If any two of the three vertical maps is a homology iso-
morphism, then so is the third.

Recall the following right-exactness property of the tensor product functors.

Proposition 5. If X is a right R-module and A
α−→ B

β−→ C −→ 0 is an exact
sequence of left R-modules, then

X⊗RA
id⊗Rα−−−−→ X⊗RB

id⊗Rβ−−−−→ X⊗RC −→ 0

is an exact sequence of abelian groups.

Definition 6. A right R-module X is flat if the functor X⊗R− preserves monomor-
phisms; i.e., if for any monomorphism α : A−→B of left R-modules, the induced
map id⊗Ri : X⊗RA−→X⊗RB of abelian groups is a monomorphism.

Exercise 4. Prove Proposition 7.

Proposition 7. The following properties of a left R-module X are equivalent.
(a) X is flat.
(b) The functor X⊗R− : ModR−→ModZ preserves short exact sequences.

Exercise 5. Prove Proposition 8.

Proposition 8.
(a) The free right R-module R is flat.
(b) Every free right R-module is flat.
(c) Every projective right R-module is flat.

Exercise 6. Prove Proposition 9.

The following proposition indicates how the TorRn (X,−) functors provide a mea-
sure of the inexactitude of X⊗R−.

Proposition 9. Let X be a right R-module and ε : P−→X in Ch+
Rop a projective

resolution of X. Consider any short exact sequence 0 → A
α−→ B

β−→ C → 0 of left
R-modules. Then there is a short exact sequence

0→ P⊗RA
id⊗Rα−−−−→ P⊗RB

id⊗Rβ−−−−→ P⊗RC → 0

in Ch+
Z , and hence a natural corresponding long exact sequence

· · · → TorRn+1(X,C) ∂−→ TorRn (X,A)→ TorRn (X,B)→ TorRn (X,C)

· · · → TorR1 (X,A)→ TorR1 (X,B)→ TorR1 (X,C)
∂−→ X⊗RA→ X⊗RB → X⊗RC → 0

of abelian groups.
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Exercise 7. Prove Propositions 10 and 11.

Proposition 10. Let X be a right R-module. A map ε : P−→X in Ch+
Rop is a

projective resolution of X if and only if it is a cofibrant replacement of X in Ch+
Rop .

Proposition 11. Let Y be a left R-module. Then the total left derived functor

Ch+
Rop

��

−⊗RY // Ch+
Z

// Ho(Ch+
Z )

Ho(Ch+
Rop)

−⊗L
RY

total left derived functor
// Ho(Ch+

Z )

of the tensor product functor Ch+
Rop−→Ch+

Z exists, and there are natural isomor-
phisms

Hn(X⊗L
RY ) ∼= TorRn (X,Y ) (n ∈ Z)

of abelian groups for each X ∈ ModRop ⊂ Ch+
Rop .

Exercise 8. Prove Proposition 12.

Proposition 12. The total left derived functor

Ch+
Rop × Ch+

R

��

−⊗R− // Ch+
Z

// Ho(Ch+
Z )

Ho(Ch+
Rop)× Ho(Ch+

R)
−⊗L

R−

total left derived functor
// Ho(Ch+

Z )

of the tensor product functor Ch+
Rop × Ch+

R−→Ch+
Z exists, and there are natural

isomorphisms

Hn(X⊗L
RY ) ∼= TorRn (X,Y ) (n ∈ Z)

of abelian groups for each X ∈ ModRop ⊂ Ch+
Rop and Y ∈ ModR ⊂ Ch+

R.

Recall the following left-exactness property of the hom object functors.

Proposition 13. If X is a right R-module and 0 → A
α−→ B

β−→ C is an exact
sequence of right R-modules, then

0→ HomR(X,A) α∗−−→ HomR(X,B)
β∗−→ HomR(X,C)

is an exact sequence of abelian groups.

Exercise 9. Prove Proposition 14.

Proposition 14. The following properties of a right R-module X are equivalent.
(a) X is projective.
(b) The functor HomR(X,−) : ModRop−→ModZ preserves short exact sequences.

Exercise 10. Prove Proposition 15.

The following proposition indicates how the ExtnR(X,−) functors provide a mea-
sure of the inexactitude of HomR(X,−).
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Proposition 15. Let X be a right R-module and ε : P−→X in Ch+
Rop a projective

resolution of X. Consider any short exact sequence 0→ A
α−→ B

β−→ C → 0 of right
R-modules. Then there is a short exact sequence

0→ HomR(P,A) α∗−−→ HomR(P,B)
β∗−→ HomR(P,C)→ 0

of cochain complexes, and hence a natural corresponding long exact sequence

0→ HomR(X,A)→ HomR(X,B)→ HomR(X,C)
δ−→ Ext1R(X,A)→ Ext1R(X,B)→ Ext1R(X,C)

· · · → ExtnR(X,A)→ ExtnR(X,B)→ ExtnR(X,C) δ−→ Extn+1
R (X,A)→ · · ·

of abelian groups.

Define a map f : M−→N in ChR to be
(i) a weak equivalence if it is a homology isomorphism,

(ii) a fibration if the map fk : Mk−→Nk is an epimorphism for each k ∈ Z,
(iii) a cofibration if it has the left lifting property with respect to all acyclic

fibrations.
The following proposition can be proved using similar arguments as in the case

of non-negative chain complexes Ch+
R.

Proposition 16. These three classes of maps give ChR the structure of a model
category.

(a) A map i : A−→B in ChR between bounded below chain complexes is a
cofibration if and only if the map ik : Ak−→Bk is a monomorphism with
coker(ik) a projective R-module for each k ∈ Z.

(b) A bounded below chain complex B ∈ ChR is cofibrant if and only if Bk is a
projective R-module for each k ≥ 0.

(c) Every chain complex B ∈ ChR is fibrant.

Proof. A proof is given in [3, 2.3]. �

Exercise 11. Prove Proposition 17.

Proposition 17. Let Y be a right R-module. Then the total right derived functor

(Ch+
Rop)op

��

HomR(−,Y ) // ChZ // Ho(ChZ)

Ho(Ch+
Rop)op

R HomR(−,Y )

total right derived functor
// Ho(ChZ)

of the hom object functor (Ch+
Rop)op−→ChZ exists, and there are natural isomor-

phisms

Hn(R HomR(X,Y )) ∼= ExtnR(X,Y ) (n ∈ Z)

of abelian groups for each X ∈ ModRop ⊂ Ch+
Rop .

Definition 18. Let l ∈ Z. Denote by Ch≥lR ⊂ ChR the full subcategory of chain
complexes M such that Mk = 0 for each k < l; for instance, Ch≥0

R = Ch+
R.

Exercise 12. Prove Propositions 19 and 20.
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Proposition 19. Let l ∈ Z. There is an isomorphism of categories Ch≥lR
∼= Ch+

R.

For each l ∈ Z, define a map f : M−→N in Ch≥lR to be
(i) a weak equivalence if it is a homology isomorphism,

(ii) a fibration if the map fk : Mk−→Nk is an epimorphism for each k ≥ l+ 1,
(iii) a cofibration if it has the left lifting property with respect to all acyclic

fibrations.

Proposition 20. These three classes of maps give Ch≥lR the structure of a model
category.

(a) A map i : A−→B in Ch≥lR is a cofibration if and only if the map ik : Ak−→Bk
is a monomorphism with coker(ik) a projective R-module for each k ≥ l.

(b) A chain complex B ∈ Ch≥lR is cofibrant if and only if Bk is a projective
R-module for each k ≥ l.

(c) Every chain complex B ∈ Ch≥lR is fibrant.

Definition 21. Let n ∈ Z. A chain complex M in ChR is n-connected if Hk(M) = 0
for each k ≤ n, and is connective if it is −1-connected.

Definition 22. Let l ∈ Z and X ∈ ChR. The chain complex τ≥l(X) in Ch≥lR , called
a good truncation of X, has the form

τ≥l(X) : · · · ← 0← 0← ker ∂l ← Xl+1 ← Xl+2 ← Xl+3 ← · · ·
and is defined degreewise by

τ≥l(X)k :=

 Xk, for k ≥ l + 1,
ker ∂l, for k = l,

0, otherwise.

Exercise 13. Prove Propositions 23 and 24.

Proposition 23. Let l ∈ Z. The good truncation functor τ≥l fits into an adjunction

Ch≥lR
i // ChR
τ≥l

oo

with left adjoint on top and i the inclusion functor. The natural inclusion of chain
complexes j : τ≥l(X)−→X in ChR induces isomorphisms

Hk(τ≥l(X))
j∗

∼=
// Hk(X) (k ≥ l).

Proposition 24. Let l,m, n ∈ Z and X,Y ∈ Ch≥lR . The total left derived functor

Ch≥lRop × Ch≥lR

��

−⊗R− // ChZ // Ho(ChZ)

Ho(Ch≥lRop)× Ho(Ch≥lR )
−⊗L

R−

total left derived functor
// Ho(ChZ)

of the tensor product functor Ch≥lRop × Ch≥lR −→ChZ exists.
(a) If X is m-connected and Y is n-connected, then the derived tensor product

X⊗L
RY is (m+ n+ 1)-connected.

(b) If X is m-connected and cofibrant and Y is n-connected, then X⊗RY is
(m+ n+ 1)-connected.
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Let C be a model category and let D = {a ← b → c}. Then a morphism
f : X−→Y in CD is a collection of maps fa, fb, fc which makes the diagram

Xa

fa

��

Xb

fb

��

oo // Xc

fc

��
Ya Yboo // Yc

in C commute. Define a map f : X−→Y in CD to be

(i) a weak equivalence if it is an objectwise weak equivalence; i.e., if the maps
fa, fb, fc are weak equivalences in C,

(ii) a fibration if it is an objectwise fibration; i.e., if the maps fa, fb, fc are
fibrations in C,

(iii) a cofibration if the induced maps

Xa qXb
Yb−→Ya, Xb−→Yb, Xc qXb

Yb−→Yc

are cofibrations in C.

Exercise 14. Prove Proposition 25.

Proposition 25. These three classes of maps give CD the structure of a model
category.

(a) The total left derived functor

CD

��

colimD // C // Ho(C)

Ho(CD)
hocolimD

total left derived functor
// Ho(C)

of the colimit functor CD−→D exists.
(b) A diagram Y ∈ CD is cofibrant if and only if the maps

Yb−→Ya, ∅−→Yb, Yb−→Yc

are cofibrations in C.
(c) If Y ∈ CD is a diagram and ∅ → Y c → Y is a cofibration followed by a

weak equivalence in CD, then hocolimD(Y ) ' colimD(Y c).
(d) If f : X−→Y is a weak equivalence between cofibrant diagrams, then the

induced map colimDX−→ colimD Y is a weak equivalence.

Sometimes hocolimD(X) is called the homotopy pushout of the diagram X.

Exercise 15. Use duality in model categories to obtain a corresponding proposition
involving the total right derived functor of the limit functor limDop : CDop−→C; note
that Dop is the category {a→ b← c}. Describe the corresponding model structure
on CDop

.

Exercise 16. Please read [1, Sections 9-10] and [2, Section 2].
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