
Algebraic Topology (topics course) Spring 2010
John E. Harper

Series 8 & 9

References for the following include [1, Sections 10-11], [3], [4, Sections 1.5 and
4.1-4.4], [5, Sections 1-3] and [6].

Homotopy colimits and limits. Let C be a model category and let D be the
category {0 → 1 → 2 → 3 → · · · } with objects the non-negative integers and a
single morphism i → j for each i ≤ j. Then a morphism f : X−→Y in CD is a
collection of maps f0, f1, f2, f3, . . . which makes the diagram

X0

f0

��

// X1

f1

��

// X2

f2

��

// X3

f3

��

// · · ·

Y0
// Y1

// Y2
// Y3

// · · ·

in C commute. Define a map f : X−→Y in CD to be

(i) a weak equivalence if it is an objectwise weak equivalence; i.e., if the map
fn is a weak equivalence in C for each n ≥ 0,

(ii) a fibration if it is an objectwise fibration; i.e., if the map fn is a fibration
in C for each n ≥ 0,

(iii) a cofibration if the induced maps

X0−→Y0, Yn qXn Xn+1−→Yn+1 (n ≥ 0)

are cofibrations in C.

Exercise 1. Prove Proposition 1.

Proposition 1. These three classes of maps give CD the structure of a model
category.

(a) The total left derived functor

CD

��

colimD // C // Ho(C)

Ho(CD)
hocolimD

total left derived functor
// Ho(C)

of the colimit functor CD−→D exists.
(b) A diagram Y ∈ CD is cofibrant if and only if the maps

∅−→Y0, Yn−→Yn+1 (n ≥ 0)

are cofibrations in C.
(c) If Y ∈ CD is a diagram and ∅ → Y c → Y is a cofibration followed by a

weak equivalence in CD, then hocolimD(Y ) ' colimD(Y c).
(d) If f : X−→Y is a weak equivalence between cofibrant diagrams, then the

induced map colimDX−→ colimD Y is a weak equivalence.
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Exercise 2. Use duality in model categories to obtain a corresponding proposition
involving the total right derived functor of the limit functor limDop : CDop−→C;
note that Dop is the category {0← 1← 2← 3← · · · }. Describe the corresponding
model structure on CDop

.

Exercise 3. Prove Proposition 2.

Proposition 2. Let C be a category with all small limits and colimits.
(a) If X is a simplicial object in C, then its colimit is naturally isomorphic to

a coequalizer of the form

colim∆op X ∼= colim
(
X0 X1

d0oo
d1

oo
)

in C, with d0 and d1 the indicated face maps of X.
(b) If X is a cosimplicial object in C, then its limit is naturally isomorphic to

an equalizer of the form

lim∆X ∼= lim
(
X0

d0 //
d1
// X1

)
in C, with d0 and d1 the indicated coface maps of X.

Coends and ends.

Definition 3. Let D be a category and Y : Dop × D−→C a diagram. A coend of Y ,
denoted coendD Y or YD, is an object in C with the following mapping properties:
(i) there is a collection {id} of maps

Y (d, d)
id // coendD Y, d ∈ D

in C which make the middle diagram

d

ξ

��

Y (d, d)
id

��
Y (d′, d)

(ξ,id)

OO

(id,ξ)

��

coendD Y

d′ Y (d′, d′)
id′

DD

Y (d, d)
id

��

fd

  
Y (d′, d)

(ξ,id)

OO

(id,ξ)

��

coendD Y ∃!
f // A

Y (d′, d′)
id′

DD

fd′

>>

(1)

commute for each arrow ξ in D (such a collection {id} is sometimes called a wedge
out of Y ) and (ii) (universal property): the wedge {id} is initial with respect to all
such wedges out of Y ; i.e., for any object A ∈ C and collection {fd} of maps

Y (d, d)
fd // A, d ∈ D

in C which make the right-hand outer diagram in (1) commute for each arrow ξ in
D, there exists a unique map f which makes the diagram commute; i.e., fid = fd
for each d ∈ D.

Remark 4. Property (ii) states that every wedge {fd} out of Y factors uniquely
through the wedge {id}. Note that properties (i)-(ii) define the coend coendD Y up
to isomorphism, provided that it exists.
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Reversing the arrows in (i)-(ii) above gives the definition of an end.

Definition 5. Let D be a category and Y : Dop × D−→C a diagram. An end of
Y , denoted endD Y or Y D, is an object in C with the following mapping properties:
(i) there is a collection {td} of maps

endD Y
td // Y (d, d), d ∈ D

in C which make the middle diagram

Y (d, d)

(id,ξ)

��
A

fd

..

fd′
00

f

∃!
// endD Y

td

22

td′

++

Y (d, d′)

Y (d′, d′)

(ξ,id)

OO

Y (d, d)

(id,ξ)

��

d

ξ

��

endD Y

td
22

td′ ++

Y (d, d′)

Y (d′, d′)

(ξ,id)

OO

d′

(2)

commute for each arrow ξ in D (such a collection {td} is sometimes called a wedge
into Y ) and (ii) (universal property): the wedge {td} is terminal with respect to
all such wedges into Y ; i.e., for any object A ∈ C and collection {fd} of maps

A
fd // Y (d, d), d ∈ D

in C which make the left-hand outer diagram in (2) commute for each arrow ξ in
D, there exists a unique map f which makes the diagram commute; i.e., tdf = fd
for each d ∈ D.

Remark 6. Property (ii) states that every wedge {fd} into Y factors uniquely
through the wedge {td}. Note that properties (i)-(ii) define the end endD Y up
to isomorphism, provided that it exists.

Exercise 4. Prove Proposition 7.

Proposition 7. Let C be a category with all small limits and colimits. Let D be a
small category and Y : Dop × D−→C a diagram.

(a) The coend YD exists and is naturally isomorphic to a coequalizer of the form

YD
∼= colim

( ∐
d∈D

Y (d, d)
∐

(ξ : d→d′)∈D

Y (d′, d)
oo oo

)
.

(b) The end Y D exists and is naturally isomorphic to an equalizer of the form

Y D ∼= lim
( ∏
d∈D

Y (d, d)
////

∏
(ξ : d→d′)∈D

Y (d, d′)
)
.

Exercise 5. Prove Proposition 8.

Proposition 8. Let G be a finite group, X ∈ TopG
op

and Y,Z ∈ TopG. Consider
the associated diagrams

X × Y : Gop ×G−→Top,

homTop(Y, Z) : Gop ×G−→Set,

Map(Y,Z) : Gop ×G−→Top.
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(a) The coend X×GY and ends homTop(Y,Z)G and Map(Y,Z)G fit into natural
isomorphisms

X ×G Y ∼= (X × Y )/(xg, y) ∼ (x, gy),

homTop(Y, Z)G ∼= homTopG(Y,Z),

Map(Y, Z)G ∼= MapG(Y,Z).

Here, MapG(Y, Z) ⊂ Map(Y, Z) is the subspace of G-equivariant maps Y−→Z.
(b) The coend ∗ ×G Y and end Map(∗, Z)G fit into natural isomorphisms

∗ ×G Y ∼= Y/G, Map(∗, Z)G ∼= ZG.

Here, Y/G is the orbit space of Y and ZG is the fixed points space of Z.

Exercise 6. Prove Proposition 9.

Proposition 9. Let C be a category. Let D be a small category and Y,Z : D−→C
diagrams. Consider the associated diagram

homC(Y,Z) : Dop × D−→Set.

The end homC(Y, Z)D fits into a natural isomorphism

homC(Y,Z)D ∼= homCD(Y,Z).

Exercise 7. Prove Proposition 10.

Proposition 10. Let D be a small category, Y : D−→Top a diagram and ∗ : Dop−→Top
the constant diagram with value the point ∗; i.e., ∗(d) = ∗ for each d ∈ D. Consider
the associated diagram

∗ ×X : Dop × D−→Top.

The coend ∗ ×D X and end (∗ ×X)D fit into natural isomorphisms

∗ ×D X ∼= colimDX, (∗ ×X)D ∼= limDX.

Realization and singular complex functors. Recall from lecture the following.

Definition 11. Let X be a simplicial set and Y a space. Consider the diagram

∆op ×∆−→Top, ([n], [n′]) 7−→ Xn ×∆n′ .

The realization |X| of X is the coend |X| := X ×∆ ∆(−) and the singular complex
Sing(Y ) of Y is the simplicial set

Sing(Y )(−) := homTop(∆(−), Y ).

Exercise 8. Prove Propositions 12 and 13.

Proposition 12. The realization and singular complex constructions define func-
tors | − | : sSet−→Top and Sing : Top−→sSet, respectively.

Proposition 13. Let X be a simplicial set. The realization |X| of X is naturally
isomorphic to a coequalizer of the form

|X| ∼= colim
( ∐

[n]∈∆

Xn ×∆n
∐

(ξ : [n]→[n′])∈∆

Xn′ ×∆noo oo
)
.

Exercise 9. Prove Proposition 14.
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Proposition 14. Let n ≥ 0. There are adjunctions

Set
i // Top
U
oo Top

−×∆n

// Top
Map(∆n,−)
oo sSet

|−| // Top
Sing
oo

with left adjoints on top, U the forgetful functor, and i the inclusion functor which
sends a set X to the discrete space X.

Decomposition of simplicial sets.

Proposition 15. Let X be a simplicial set. For each n-simplex x of X, there
is a surjection s : [n] � [k] in ∆ and a non-degenerate k-simplex y such that
x = X(s)(y). Furthermore, the pair (s, y) is unique.

Proof. A short proof is given in [2, II.3]. �

A consequence is the following decomposition of a simplicial set.

Definition 16. Let X be a simplicial set. For each k ≥ 0, denote by NXk ⊂ Xk

the set of non-degenerate k-simplices of X; in particular, NX0 = X0.

Proposition 17. Let X be a simplicial set. There is a natural isomorphism Ψ in
sSet defined objectwise by

Ψn :
∐

[n]�[k]
in ∆

NXk

∼=−−→ Xn.

Here the coproduct is indexed over all surjections in ∆ of the form ξ : [n]−→[k],

and Ψn is the natural map induced by the corresponding maps NXk ⊂ Xk
ξ∗−→ Xn.

By Proposition 17, each X ∈ sSet is naturally isomorphic to a simplicial set of
the form

NX0

//
NX0 qNX1

oooo

////

NX0 qNX1 qNX1 qNX2
oooooo

////
//

· · ·
oooooooo

constructed from the non-degenerate simplices of X.

Skeletal filtrations.

Definition 18. Let X be a simplicial set and m ≥ 0. The m-skeleton of X, denoted
skmX, is the subcomplex skmX ⊂ X generated by the k-simplices of X of degree
k ≤ m. Define sk−1X := ∅.

In other words, (skmX)n ⊂ Xn is the image of the restriction of Ψn

(skmX)n = image
( ∐

[n]�[k]
in ∆, k≤m

NXk
⊂−−→

∐
[n]�[k]

in ∆

NXk
Ψn−−→∼= Xn

)
.

It follows that every simplicial set X has a skeletal filtration of the form

∅ = sk−1X ⊂ sk0X ⊂ sk1X ⊂ sk2X ⊂ · · · ⊂
⋃
m≥0

skmX = X,

and hence X ∼= colimm skmX. Note that the 0-skeleton sk0X is the constant sim-
plicial set with value X0.

Exercise 10. Prove Proposition 19.



6

Proposition 19. Let X be a simplicial set and m ≥ 0. There are pushout diagrams
of the form ∐

x∈NXm

∂∆[m]

qjm
��

// skm−1X

⊂

��∐
x∈NXm

∆[m] // skmX

in sSet; i.e., skmX is obtained from skm−1X by attaching m-cells ∆[m].

Exercise 11. Prove Proposition 20.

The following proposition shows that the realization |X| of a simplicial set X
has the structure of a CW complex. In particular, |X| is a compactly generated
Hausdorff space.

Proposition 20. Let X be a simplicial set and m ≥ 0.
(a) There are pushout diagrams of the form∐

x∈NXm

∂∆m

qjm
��

// |skm−1X|

⊂

��∐
x∈NXm

∆m // |skmX|

in Top; i.e., |skmX| is obtained from |skm−1X| by attaching m-cells ∆m.
(b) There is a sequence of closed inclusions

∅ = |sk−1X| ⊂ |sk0X| ⊂ |sk1X| ⊂ |sk2X| ⊂ · · · ⊂
⋃
m≥0

|skmX| = |X|,

and hence |X| ∼= colimm |skmX|.

Decomposition of simplicial R-modules and the Dold-Kan theorem. Let
R be a ring and denote by sModR the category of simplicial left R-modules. If X
is a simplicial R-module

X : X0

s0 //

X1

d0oo
d1

oo

////

X2
oo oooo

////
//

X3 · · ·
oooooooo

recall from lecture that the associated complex of X, also denoted X, is the chain
complex in Ch+

R of the form

X : · · · ← 0← 0← X0
∂←− X1

∂←− X2
∂←− X3 ← · · ·

defined degreewise by

Xk :=
{
Xk, for k ≥ 0,

0, otherwise,

and with differential ∂ : Xk−→Xk−1 defined by ∂ :=
∑k
i=0 di(−1)i summing all of

the face maps di : Xk−→Xk−1 with alternating signs.

Exercise 12. Prove Proposition 21.
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Proposition 21. Let X be a simplicial R-module.
(a) The associated complex of X is a well-defined chain complex; i.e., ∂2 = 0.
(b) The associated complex construction defines a functor sModR−→Ch+

R.

Definition 22. Let X be a simplicial R-module and k ≥ 0. Define the submodule
NXk ⊂ Xk by

NX0 := X0, NXk :=
⋂

0≤i≤k−1

ker(di) ⊂ Xk, (k ≥ 1).

Recall from lecture the following decomposition of a simplicial R-module.

Proposition 23. Let X be a simplicial R-module. There is a natural isomorphism
Ψ in sModR defined objectwise by

Ψn :
∐

[n]�[k]
in ∆

NXk

∼=−−→ Xn.

Here the coproduct is indexed over all surjections in ∆ of the form ξ : [n]−→[k],

and Ψn is the natural map induced by the corresponding maps NXk ⊂ Xk
ξ∗−→ Xn.

By Proposition 23, each X ∈ sModR is naturally isomorphic to a simplicial
R-module of the form

NX0

//
NX0 qNX1

oooo

////

NX0 qNX1 qNX1 qNX2
oooooo

////
//

· · ·
oooooooo

Let Y be a chain complex in Ch+
R

Y : · · · ← 0← 0← Y0
∂←− Y1

∂←− Y2
∂←− Y3 ← · · ·

and recall from lecture that the denormalization of Y , denoted Γ(Y ), is the simpli-
cial R-module of the form

Γ(Y ) : Y0

//
Y0 q Y1

oooo

////

Y0 q Y1 q Y1 q Y2
oooooo

////
//

· · ·
oooooooo

defined levelwise by

Γ(Y )n :=
∐

[n]�[k]
in ∆

Yk.

Exercise 13. Prove Theorem 24.

Theorem 24 (Dold-Kan). The normalization N and denormalization Γ functors
fit into the following

sModR
N //

Ch+
R

Γ
oo

equivalence of categories; i.e., there exist natural isomorphisms

id
∼=−−→ ΓN, NΓ

∼=−−→ id.

Exercise 14. Prove Proposition 25.
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Proposition 25. The adjunction

Ch+
R

Γ // sModR
N
oo

with left adjoint on top is a Quillen equivalence.

Homotopy theory of simplicial R-modules. Recall from lecture the following
lifting characterization of (acyclic) fibrations in sSet.

Proposition 26. Let f : X−→Y be a map in sSet.
(a) f is an acyclic fibration if and only if it has the right lifting property with

respect to the set of maps

jn : ∂∆[n]−→∆[n], n ≥ 0,

(b) f is a fibration if and only if it has the right lifting property with respect to
the set of maps

jn,k : Λ[n, k]−→∆[n], n ≥ 1, 0 ≤ k ≤ n.

Consider the adjunction

sSet
R // sModR
U
oo

with left adjoint on top and U the forgetful functor. Define a map f : X−→Y in
sModR to be

(i) a weak equivalence if Uf : UX−→UY is a weak equivalence in sSet,
(ii) a fibration if Uf : UX−→UY is a fibration in sSet,
(iii) a cofibration if it has the left lifting property with respect to all acyclic

fibrations.

Exercise 15. Prove Proposition 27.

Proposition 27. Let f : X−→Y be a map in sModR.
(a) f is a fibration if and only if it has the right lifting property with respect to

the set of maps

Rjn,k : RΛ[n, k]−→R∆[n], n ≥ 1, 0 ≤ k ≤ n,
(b) f is an acyclic fibration if and only if it has the right lifting property with

respect to the set of maps

Rjn : R∂∆[n]−→R∆[n], n ≥ 0.

Exercise 16. Use small object arguments to prove Proposition 28.

Proposition 28. These three classes of maps give sModR the structure of a model
category.

Homotopy theory of simplicial commutative rings. Denote by sCRng the
category of simplicial commutative rings. Consider the adjunctions

sSet
Z // sModZ
U
oo

Sym // sCRng
U
oo , sSet

SymZ // sCRng
U
oo

with left adjoints on top and U the forgetful functor; here, the right-hand adjunction
is the composition of the left-hand adjunctions. Define a map f : X−→Y in sCRng
to be
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(i) a weak equivalence if Uf : UX−→UY is a weak equivalence in sSet,
(ii) a fibration if Uf : UX−→UY is a fibration in sSet,

(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.

Exercise 17. Prove Proposition 29.

Proposition 29. Let f : X−→Y be a map in sCRng.
(a) f is a fibration if and only if it has the right lifting property with respect to

the set of maps

SymZ(jn,k) : SymZΛ[n, k]−→SymZ∆[n], n ≥ 1, 0 ≤ k ≤ n,
(b) f is an acyclic fibration if and only if it has the right lifting property with

respect to the set of maps

SymZ(jn) : SymZ∂∆[n]−→SymZ∆[n], n ≥ 0.

Exercise 18. Use small object arguments to prove Proposition 30.

Proposition 30. These three classes of maps give sCRng the structure of a model
category.

Exercise 19. Please read [1, Sections 10-11], [4, Sections 1.5 and 4.1-4.4], and [5,
Sections 1-3].
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