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References for the following include [1, Sections 10-11], [3], [4, Sections 1.5 and
4.1-4.4], [5, Sections 1-3] and [6].

Homotopy colimits and limits. Let C be a model category and let D be the
category {0 — 1 — 2 — 3 — ..} with objects the non-negative integers and a
single morphism i — j for each i < j. Then a morphism f: X—Y in CP is a

collection of maps fo, f1, f2, f3, ... which makes the diagram
Xo X1 Xs X3
I A
Yo Y, Y Y3

in C commute. Define a map f: X—Y in CP to be

(i) a weak equivalence if it is an objectwise weak equivalence; i.e., if the map
fn is a weak equivalence in C for each n > 0,
(ii) a fibration if it is an objectwise fibration; i.e., if the map f,, is a fibration
in C for each n > 0,
(iii) a cofibration if the induced maps

X0—>YQ, Yn HX” Xn+1 —>Yn+1 (n > O)
are cofibrations in C.
Exercise 1. Prove Proposition 1.

Proposition 1. These three classes of maps give CP the structure of a model
category.

(a) The total left derived functor

CD colimp HO(C)
HO(CD) hocolimp HO(C)

total left derived functor

of the colimit functor C°—D exists.
(b) A diagram Y € CP is cofibrant if and only if the maps

0—Yo, Yo—Yo1 (TL 2 0)

are coftbrations in C.

(c) If Y € CP is a diagram and ) — Y° — Y is a cofibration followed by a
weak equivalence in CP, then hocolimp(Y) ~ colimp(Y).

(d) If f: X—Y is a weak equivalence between cofibrant diagrams, then the
induced map colimp X — colimp Y is a weak equivalence.



Exercise 2. Use duality in model categories to obtain a corresponding proposition
involving the total right derived functor of the limit functor limpes: CP” —C;
note that D°P is the category {0 « 1 « 2 « 3 « ---}. Describe the corresponding
model structure on CP™.

Exercise 3. Prove Proposition 2.

Proposition 2. Let C be a category with all small limits and colimits.

(a) If X is a simplicial object in C, then its colimit is naturally isomorphic to
a coequalizer of the form

d
colimpop X = colim( Xo <<:0 X1 )
dy

in C, with dy and dy the indicated face maps of X.
(b) If X is a cosimplicial object in C, then its limit is naturally isomorphic to
an equalizer of the form
dO
lima X = lim( X0 :;1)(1 )
d

in C, with d° and d*' the indicated coface maps of X.
Coends and ends.

Definition 3. Let D be a category and Y : D°? x D—C a diagram. A coend of Y,
denoted coendp Y or Yp, is an object in C with the following mapping properties:
(i) there is a collection {ig} of maps

Y (d, d) —*> coendp Y, deD
in C which make the middle diagram
1) d Y(d,d) , Y (d, d)
td i fa
(&id)T \ (5,id)T \
£ Y(d',d) coendp Y’ Y(d',d) coendp Y ; v A
(id,f)l (id@)i ‘
Gy tal [
d Y(d,d) ¢ Y(d,d) ,

commute for each arrow £ in D (such a collection {ig} is sometimes called a wedge
out of Y') and (ii) (universal property): the wedge {i4} is initial with respect to all
such wedges out of Y7; i.e., for any object A € C and collection {f;} of maps

Y(d,d) > A, deD

in C which make the right-hand outer diagram in (1) commute for each arrow ¢ in
D, there exists a unique map f which makes the diagram commute; i.e., fiq = f4
for each d € D.

Remark 4. Property (ii) states that every wedge {fs} out of Y factors uniquely
through the wedge {iq}. Note that properties (i)-(ii) define the coend coendp Y up
to isomorphism, provided that it exists.



Reversing the arrows in (i)-(ii) above gives the definition of an end.

Definition 5. Let D be a category and Y: D°? x D—C a diagram. An end of
Y, denoted endp Y or YP, is an object in C with the following mapping properties:
(i) there is a collection {t4} of maps

endp Y —4> Y (d, d), deD
in C which make the middle diagram
(2) Y (d,d) Y (d,d) d
fa tq
ta
/ l(id,&) / \L(id,&)
- /
A = endpy Y(d,d) endp Y Y(d,d) ¢
) \ \
\ T(am T(am
tyr
far tyr
Y(d,d) Y(d',d) d

commute for each arrow £ in D (such a collection {t4} is sometimes called a wedge
into Y') and (ii) (universal property): the wedge {t4} is terminal with respect to
all such wedges into Y i.e., for any object A € C and collection {f4} of maps

in C which make the left-hand outer diagram in (2) commute for each arrow § in

D, there exists a unique map f which makes the diagram commute; i.e., t4f = f4
for each d € D.

Remark 6. Property (ii) states that every wedge {fq} into Y factors uniquely
through the wedge {t4}. Note that properties (i)-(ii) define the end endpY up
to isomorphism, provided that it exists.

Exercise 4. Prove Proposition 7.

Proposition 7. Let C be a category with all small limits and colimits. Let D be a
small category and Y : D°P x D—C a diagram.

(a) The coend Yp exists and is naturally isomorphic to a coequalizer of the form

~ ; Y(d,d) =— 11 Y(d,d)
Yp = cohm(dIEID (d,d) (€: d=d)eD .

(b) The end Y exists and is naturally isomorphic to an equalizer of the form

D~ 1 Y(d,d — H Y (d, d’)
Yo = hm(dlgo ( ) (¢: d—d’)eD .

Exercise 5. Prove Proposition 8.

Proposition 8. Let G be a finite group, X € TopGop and Y, 7 € TopG. Consider
the associated diagrams
X xY: G°®° x G—Top,
homrep(Y, Z): GP x G—Set,
Map(Y, Z): G°° x G—Top.



(a) The coend X XY and ends homtop(Y, Z)¢ and Map(Y, Z)% fit into natural
isomorphisms

X xagY = (X xY)/(zg,y) ~ (x,9y),
homep (Y, Z)G hom,,e (Y, Z),
Map(Y7 Z)G MapG (Y7 Z)

Il

1%

Here, Map (Y, Z) C Map(Y, Z) is the subspace of G-equivariant mapsY —Z.

(b) The coend * x¢'Y and end Map(*, Z)€ fit into natural isomorphisms
*xqY 2Y/G,  Map(x2)% = ZC.
Here, Y/G is the orbit space of Y and ZC is the fired points space of Z.
Exercise 6. Prove Proposition 9.

Proposition 9. Let C be a category. Let D be a small category and Y,Z: D—C
diagrams. Consider the associated diagram

homc(Y, Z): D°P? x D—Set.
The end homc (Y, Z)P fits into a natural isomorphism
homc (Y, Z)P = homeo (Y, Z).

Exercise 7. Prove Proposition 10.

Proposition 10. Let D be a small category, Y: D—Top a diagram and *: D°P—Top

the constant diagram with value the point x; i.e., x(d) = x for each d € D. Consider
the associated diagram

x* X X: D°P x D—Top.
The coend * xp X and end (x x X)P fit into natural isomorphisms
* xp X = colimp X, (* x X)P = limp X.
Realization and singular complex functors. Recall from lecture the following.
Definition 11. Let X be a simplicial set and Y a space. Consider the diagram
A% x A—Top,  ([n],[n]) — X, x A™ .

The realization |X| of X is the coend |X| := X xa A7) and the singular complex
Sing(Y') of Y is the simplicial set

Sing(Y) (- := homep (A7), V).
Exercise 8. Prove Propositions 12 and 13.

Proposition 12. The realization and singular complex constructions define func-
tors | — |: sSet—Top and Sing: Top——sSet, respectively.

Proposition 13. Let X be a simplicial set. The realization |X| of X is naturally
isomorphic to a coequalizer of the form

I X, xAr=—— 11 Xn/xA”)

| X| = cohm( mea (&: [n]—=[n]eA

Exercise 9. Prove Proposition 14.



Proposition 14. Let n > 0. There are adjunctions
i —XA" ||
Set ——= Top Top————=Top sSet < Top
U Map(A”™,—) Sing

with left adjoints on top, U the forgetful functor, and i the inclusion functor which
sends a set X to the discrete space X.

Decomposition of simplicial sets.

Proposition 15. Let X be a simplicial set. For each n-simplex x of X, there
is a surjection s: [n] — [k] in A and a non-degenerate k-simplex y such that
x = X(s)(y). Furthermore, the pair (s,y) is unique.

Proof. A short proof is given in [2, I1.3]. O
A consequence is the following decomposition of a simplicial set.

Definition 16. Let X be a simplicial set. For each k > 0, denote by NX;, C X,
the set of non-degenerate k-simplices of X; in particular, NXy = Xj.

Proposition 17. Let X be a simplicial set. There is a natural isomorphism ¥ in
sSet defined objectwise by

v, ] NX, — X,,.
[n]—[K]

Here the coproduct is indexed over all surjections in A of the form &: [n]—Ik],

and U, is the natural map induced by the corresponding maps NXy C Xy, <, X

By Proposition 17, each X € sSet is naturally isomorphic to a simplicial set of
the form

R
_— _—
_— _—

I >
NXO%NX()HNAX& <;1\1,)(0]—_11\]')(1 HNX1 HNX2 <;
-
constructed from the non-degenerate simplices of X.
Skeletal filtrations.

Definition 18. Let X be a simplicial set and m > 0. The m-skeleton of X, denoted
sk, X, is the subcomplex sk,, X C X generated by the k-simplices of X of degree
k < m. Define sk_; X := 0.

In other words, (sk,,X), C X, is the image of the restriction of ¥,,

(ska)n:image( T ~a-< I NXk“;—%Xn).

=k ) K]
in A, k<m in A

It follows that every simplicial set X has a skeletal filtration of the form
0 =sk 1 X CskoX CskiX CskoX C -+ C [ J sk X = X,
m>0
and hence X = colim,, sk,,X. Note that the 0-skeleton sk¢X is the constant sim-
plicial set with value Xj.

Exercise 10. Prove Proposition 19.
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Proposition 19. Let X be a simplicial set and m > 0. There are pushout diagrams
of the form

Il 9A[m]

zeENX,,

IeNUX Alml g x

— sk, 1 X

in sSet; i.e., sk, X is obtained from sk,,—1X by attaching m-cells A[m].
Exercise 11. Prove Proposition 20.

The following proposition shows that the realization |X| of a simplicial set X
has the structure of a CW complex. In particular, |X| is a compactly generated
Hausdorff space.

Proposition 20. Let X be a simplicial set and m > 0.
(a) There are pushout diagrams of the form

ek IR sk X
Am
i sk X |

in Top; i.e., |sky, X| is obtained from |sk,,—1X| by attaching m-cells A™.
(b) There is a sequence of closed inclusions
0= |sk_1X| C |skoX| C [ski X | C [skoX| C -+ C | ] [skm X[ =|X],
m>0
and hence | X| 2 colim,, |sk,, X|.
Decomposition of simplicial R-modules and the Dold-Kan theorem. Let

R be a ring and denote by sModg the category of simplicial left R-modules. If X
is a simplicial R-module

S
S0 —_—
N - > J—
do -
-
X : Xo=—/—Xi1=—Xo=——X3---

dy

recall from lecture that the associated complex of X, also denoted X, is the chain
complex in Ch; of the form

X: e 0e0-Xo 2 X1 & X0 L Xy

defined degreewise by

X, Xy, for k>0,
ko= 0, otherwise,

and with differential 9: X, —— X} _1 defined by 0 := Zf:o d;(—1)* summing all of

the face maps d;: Xy— X;_1 with alternating signs.

Exercise 12. Prove Proposition 21.



Proposition 21. Let X be a simplicial R-module.
(a) The associated complex of X is a well-defined chain complex; i.e., 0% = 0.
(b) The associated complex construction defines a functor sModRHChE.

Definition 22. Let X be a simplicial R-module and k& > 0. Define the submodule
NX, C X by

NXo:=Xo, NXg:= [ ker(d)C Xi,  (k=>1).
0<i<k—1
Recall from lecture the following decomposition of a simplicial R-module.

Proposition 23. Let X be a simplicial R-module. There is a natural isomorphism
U in sModpg defined objectwise by

U, J] NXp— X,
[n]— k]
in A
Here the coproduct is indexed over all surjections in A of the form &: [n]—][k],

and V,, is the natural map induced by the corresponding maps NX C X £, X,.

By Proposition 23, each X € sModpg is naturally isomorphic to a simplicial

R-module of the form
—_—

—_— —_—
> —_— _—

R, -
NXg=——NXgINX;=——NX IINX; IINX; INXg=——"--
-
Let Y be a chain complex in Ch;
o 17} o
Y: = 00— Yy = Yo = Yy e

and recall from lecture that the denormalization of Y, denoted I'(Y), is the simpli-
cial R-module of the form

_— —_—
> —_— —_—
<
NY): Yo=Y, IV, =—Y IV IV IYs=—=""-
e

defined levelwise by

DY), := H Y.
[n]—[k]

Exercise 13. Prove Theorem 24.

Theorem 24 (Dold-Kan). The normalization N and denormalization T' functors
fit into the following

N
sModr ——= Ch;
r

equivalence of categories; i.e., there exist natural isomorphisms
id =>TN, NI —=-id.

Exercise 14. Prove Proposition 25.



Proposition 25. The adjunction
r
Ch; ——=sModg
N

with left adjoint on top is a Quillen equivalence.

Homotopy theory of simplicial R-modules. Recall from lecture the following
lifting characterization of (acyclic) fibrations in sSet.
Proposition 26. Let f: X—Y be a map in sSet.
(a) f is an acyclic fibration if and only if it has the right lifting property with
respect to the set of maps
Jn: OA[n]—Aln], n >0,
(b) f is a fibration if and only if it has the right lifting property with respect to
the set of maps
Jnk: Aln, k]—A[n], n>1, 0<k<n.

Consider the adjunction

R
sSet <T> sModg

with left adjoint on top and U the forgetful functor. Define a map f: X—Y in
sModg to be

(i) a weak equivalence if Uf: UX—UY is a weak equivalence in sSet,
(i) a fibration it Uf: UX—UY is a fibration in sSet,
(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.

Exercise 15. Prove Proposition 27.
Proposition 27. Let f: X—Y be a map in sModg.

(a) f is a fibration if and only if it has the right lifting property with respect to
the set of maps

Rjn i RA[n, k]—RAIn], n>1, 0<k<mn,

(b) f is an acyclic fibration if and only if it has the right lifting property with
respect to the set of maps

Rj,: ROA[n|—RAIn], n > 0.
Exercise 16. Use small object arguments to prove Proposition 28.

Proposition 28. These three classes of maps give sModg the structure of a model
category.

Homotopy theory of simplicial commutative rings. Denote by sCRng the
category of simplicial commutative rings. Consider the adjunctions

7 Sym SymZ
sSet = sModz ——sCRng , sSet ——=sCRng
U U U

with left adjoints on top and U the forgetful functor; here, the right-hand adjunction
is the composition of the left-hand adjunctions. Define a map f: X—Y in sCRng
to be



(i) a weak equivalence if Uf: UX—UY is a weak equivalence in sSet,
(ii) a fibration if Uf: UX—UY is a fibration in sSet,
(iii) a cofibration if it has the left lifting property with respect to all acyclic
fibrations.

Exercise 17. Prove Proposition 29.

Proposition 29. Let f: X—Y be a map in sCRng.

(a) f is a fibration if and only if it has the right lifting property with respect to
the set of maps

SymZ(jn.k): SymZA[n, k]—SymZA[n], n>1, 0<k<n,

(b) f is an acyclic fibration if and only if it has the right lifting property with
respect to the set of maps

SymZ(j,): SymZoA[n]—SymZA[n], n > 0.

Exercise 18. Use small object arguments to prove Proposition 30.

Proposition 30. These three classes of maps give sCRng the structure of a model
category.

Exercise 19. Please read [1, Sections 10-11], [4, Sections 1.5 and 4.1-4.4], and [5,
Sections 1-3].
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