Algebraic Topology (topics course) John E. Harper

Spring 2010

Series 8 & 9

References for the following include [1, Sections 10-11], [3], [4, Sections 1.5 and 4.1-4.4], [5, Sections 1-3] and [6].

Homotopy colimits and limits. Let C be a model category and let D be the category $\{0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots\}$ with objects the non-negative integers and a single morphism $i \rightarrow j$ for each $i \leq j$. Then a morphism $f: X \longrightarrow Y$ in C^{D} is a collection of maps $f_0, f_1, f_2, f_3, \ldots$ which makes the diagram

in C commute. Define a map $f: X \longrightarrow Y$ in C^{D} to be

- (i) a weak equivalence if it is an objectwise weak equivalence; i.e., if the map f_n is a weak equivalence in C for each $n \ge 0$,
- (ii) a fibration if it is an objectwise fibration; i.e., if the map f_n is a fibration in C for each $n \ge 0$,
- (iii) a *cofibration* if the induced maps

$$X_0 \longrightarrow Y_0, \qquad Y_n \amalg_{X_n} X_{n+1} \longrightarrow Y_{n+1} \qquad (n \ge 0)$$

are cofibrations in C.

Exercise 1. Prove Proposition 1.

Proposition 1. These three classes of maps give C^D the structure of a model category.

(a) The total left derived functor

of the colimit functor $C^{\mathsf{D}} \longrightarrow \mathsf{D}$ exists.

(b) A diagram $Y \in C^{\mathsf{D}}$ is cofibrant if and only if the maps

$$\emptyset \longrightarrow Y_0, \qquad Y_n \longrightarrow Y_{n+1} \qquad (n \ge 0)$$

are cofibrations in C.

- (c) If $Y \in \mathsf{C}^{\mathsf{D}}$ is a diagram and $\emptyset \to Y^c \to Y$ is a cofibration followed by a weak equivalence in C^{D} , then hocolim_{D} $(Y) \simeq \operatorname{colim}_{\mathsf{D}}(Y^c)$.
- (d) If $f: X \longrightarrow Y$ is a weak equivalence between cofibrant diagrams, then the induced map $\operatorname{colim}_{\mathsf{D}} X \longrightarrow \operatorname{colim}_{\mathsf{D}} Y$ is a weak equivalence.

Exercise 2. Use duality in model categories to obtain a corresponding proposition involving the total right derived functor of the limit functor $\lim_{D^{op}} : \mathbb{C}^{D^{op}} \longrightarrow \mathbb{C}$; note that D^{op} is the category $\{0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow \cdots\}$. Describe the corresponding model structure on $\mathbb{C}^{D^{op}}$.

Exercise 3. Prove Proposition 2.

Proposition 2. Let C be a category with all small limits and colimits.

(a) If X is a simplicial object in C, then its colimit is naturally isomorphic to a coequalizer of the form

$$\operatorname{colim}_{\Delta^{\operatorname{op}}} X \cong \operatorname{colim}\left(X_0 \rightleftharpoons_{d_1}^{d_0} X_1\right)$$

in C, with d_0 and d_1 the indicated face maps of X.

(b) If X is a cosimplicial object in C, then its limit is naturally isomorphic to an equalizer of the form

$$\lim_{\Delta} X \cong \lim \left(X^0 \xrightarrow[d^1]{d^1} X^1 \right)$$

in C, with d^0 and d^1 the indicated coface maps of X.

Coends and ends.

Definition 3. Let D be a category and $Y: D^{op} \times D \longrightarrow C$ a diagram. A *coend* of Y, denoted coend_D Y or Y_D, is an object in C with the following mapping properties: (i) there is a collection $\{i_d\}$ of maps

$$Y(d,d) \xrightarrow{\iota_d} \operatorname{coend}_{\mathsf{D}} Y, \qquad d \in \mathsf{D}$$

in ${\sf C}$ which make the middle diagram

commute for each arrow ξ in D (such a collection $\{i_d\}$ is sometimes called a *wedge* out of Y) and (ii) (universal property): the wedge $\{i_d\}$ is *initial* with respect to all such wedges out of Y; i.e., for any object $A \in \mathsf{C}$ and collection $\{f_d\}$ of maps

$$Y(d,d) \xrightarrow{f_d} A, \qquad d \in \mathsf{D}$$

in C which make the right-hand outer diagram in (1) commute for each arrow ξ in D, there exists a unique map \overline{f} which makes the diagram commute; i.e., $\overline{f}i_d = f_d$ for each $d \in D$.

Remark 4. Property (ii) states that every wedge $\{f_d\}$ out of Y factors uniquely through the wedge $\{i_d\}$. Note that properties (i)-(ii) define the coend coend_D Y up to isomorphism, provided that it exists.

Reversing the arrows in (i)-(ii) above gives the definition of an end.

Definition 5. Let D be a category and $Y: D^{op} \times D \longrightarrow C$ a diagram. An *end* of Y, denoted end_D Y or Y^{D} , is an object in C with the following mapping properties: (i) there is a collection $\{t_d\}$ of maps

$$\operatorname{end}_{\mathsf{D}} Y \xrightarrow{t_d} Y(d,d), \qquad d \in \mathsf{D}$$

in ${\sf C}$ which make the middle diagram

(2)

$$f_{d} \qquad f_{d} \qquad$$

commute for each arrow ξ in D (such a collection $\{t_d\}$ is sometimes called a *wedge* into Y) and (ii) (universal property): the wedge $\{t_d\}$ is *terminal* with respect to all such wedges into Y; i.e., for any object $A \in \mathsf{C}$ and collection $\{f_d\}$ of maps

$$A \xrightarrow{J_d} Y(d,d), \qquad d \in \mathsf{D}$$

in C which make the left-hand outer diagram in (2) commute for each arrow ξ in D, there exists a unique map \overline{f} which makes the diagram commute; i.e., $t_d\overline{f} = f_d$ for each $d \in D$.

Remark 6. Property (ii) states that every wedge $\{f_d\}$ into Y factors uniquely through the wedge $\{t_d\}$. Note that properties (i)-(ii) define the end end_D Y up to isomorphism, provided that it exists.

Exercise 4. Prove Proposition 7.

Proposition 7. Let C be a category with all small limits and colimits. Let D be a small category and $Y: D^{op} \times D \longrightarrow C$ a diagram.

(a) The coend Y_D exists and is naturally isomorphic to a coequalizer of the form

$$Y_{\mathsf{D}} \cong \operatorname{colim}\left(\coprod_{d \in \mathsf{D}} Y(d, d) \stackrel{\leq}{=} \coprod_{(\xi \colon d \to d') \in \mathsf{D}} Y(d', d)\right)$$

(b) The end Y^{D} exists and is naturally isomorphic to an equalizer of the form

$$Y^{\mathsf{D}} \cong \lim \left(\prod_{d \in \mathsf{D}} Y(d, d) \xrightarrow{\longrightarrow} \prod_{(\xi \colon d \to d') \in \mathsf{D}} Y(d, d') \right).$$

Exercise 5. Prove Proposition 8.

Proposition 8. Let G be a finite group, $X \in \mathsf{Top}^{G^{op}}$ and $Y, Z \in \mathsf{Top}^{G}$. Consider the associated diagrams

$$X \times Y \colon G^{\mathrm{op}} \times G \longrightarrow \mathsf{Top},$$

 $\hom_{\mathsf{Top}}(Y, Z) \colon G^{\mathrm{op}} \times G \longrightarrow \mathsf{Set},$
 $\operatorname{Map}(Y, Z) \colon G^{\mathrm{op}} \times G \longrightarrow \mathsf{Top}.$

(a) The coend $X \times_G Y$ and ends $\hom_{\mathsf{Top}}(Y, Z)^G$ and $\operatorname{Map}(Y, Z)^G$ fit into natural isomorphisms

$$\begin{aligned} X \times_G Y &\cong (X \times Y)/(xg, y) \sim (x, gy), \\ \hom_{\mathsf{Top}}(Y, Z)^G &\cong \hom_{\mathsf{Top}^G}(Y, Z), \\ \operatorname{Map}(Y, Z)^G &\cong \operatorname{Map}_G(Y, Z). \end{aligned}$$

Here, $\operatorname{Map}_G(Y, Z) \subset \operatorname{Map}(Y, Z)$ is the subspace of *G*-equivariant maps $Y \longrightarrow Z$. (b) The coend $* \times_G Y$ and end $\operatorname{Map}(*, Z)^G$ fit into natural isomorphisms

 $* \times_G Y \cong Y/G, \qquad \operatorname{Map}(*, Z)^G \cong Z^G.$

Here, Y/G is the orbit space of Y and Z^G is the fixed points space of Z.

Exercise 6. Prove Proposition 9.

4

Proposition 9. Let C be a category. Let D be a small category and $Y, Z: D \longrightarrow C$ diagrams. Consider the associated diagram

 $\hom_{\mathsf{C}}(Y,Z): \mathsf{D}^{\mathrm{op}} \times \mathsf{D} \longrightarrow \mathsf{Set}.$

The end $\hom_{\mathsf{C}}(Y,Z)^{\mathsf{D}}$ fits into a natural isomorphism

 $\hom_{\mathsf{C}}(Y,Z)^{\mathsf{D}} \cong \hom_{\mathsf{C}^{\mathsf{D}}}(Y,Z).$

Exercise 7. Prove Proposition 10.

Proposition 10. Let D be a small category, $Y : D \longrightarrow \mathsf{Top}$ a diagram and $*: D^{\mathsf{op}} \longrightarrow \mathsf{Top}$ the constant diagram with value the point *; i.e., *(d) = * for each $d \in \mathsf{D}$. Consider the associated diagram

$$* \times X \colon \mathsf{D}^{\mathrm{op}} \times \mathsf{D} \longrightarrow \mathsf{Top}.$$

The coend $* \times_{\mathsf{D}} X$ and end $(* \times X)^{\mathsf{D}}$ fit into natural isomorphisms

 $* \times_{\mathsf{D}} X \cong \operatorname{colim}_{\mathsf{D}} X, \qquad (* \times X)^{\mathsf{D}} \cong \lim_{D} X.$

Realization and singular complex functors. Recall from lecture the following.

Definition 11. Let X be a simplicial set and Y a space. Consider the diagram

 $\Delta^{\mathrm{op}} \times \Delta \longrightarrow \mathsf{Top}, \qquad ([n], [n']) \longmapsto X_n \times \Delta^{n'}.$

The realization |X| of X is the coend $|X| := X \times_{\Delta} \Delta^{(-)}$ and the singular complex $\operatorname{Sing}(Y)$ of Y is the simplicial set

$$\operatorname{Sing}(Y)_{(-)} := \operatorname{hom}_{\mathsf{Top}}(\Delta^{(-)}, Y).$$

Exercise 8. Prove Propositions 12 and 13.

Proposition 12. The realization and singular complex constructions define functors |-|: sSet—Top and Sing: Top—sSet, respectively.

Proposition 13. Let X be a simplicial set. The realization |X| of X is naturally isomorphic to a coequalizer of the form

$$|X| \cong \operatorname{colim}\left(\coprod_{[n]\in\Delta} X_n \times \Delta^n \overleftarrow{=} \coprod_{(\xi \colon [n] \to [n'])\in\Delta} X_{n'} \times \Delta^n\right).$$

Exercise 9. Prove Proposition 14.

Proposition 14. Let $n \ge 0$. There are adjunctions

$$\mathsf{Set} \xrightarrow{i}_{U} \mathsf{Top} \qquad \mathsf{Top} \xrightarrow{-\times \Delta^n} \mathsf{Top} \qquad \mathsf{sSet} \xrightarrow{|-|}_{\underbrace{\mathsf{Sing}}} \mathsf{Top}$$

with left adjoints on top, U the forgetful functor, and i the inclusion functor which sends a set X to the discrete space X.

Decomposition of simplicial sets.

Proposition 15. Let X be a simplicial set. For each n-simplex x of X, there is a surjection s: $[n] \rightarrow [k]$ in Δ and a non-degenerate k-simplex y such that x = X(s)(y). Furthermore, the pair (s, y) is unique.

Proof. A short proof is given in [2, II.3].

A consequence is the following decomposition of a simplicial set.

Definition 16. Let X be a simplicial set. For each $k \ge 0$, denote by $NX_k \subset X_k$ the set of non-degenerate k-simplices of X; in particular, $NX_0 = X_0$.

Proposition 17. Let X be a simplicial set. There is a natural isomorphism Ψ in sSet defined objectwise by

$$\Psi_n \colon \coprod_{\substack{[n] \twoheadrightarrow [k]\\ in \ \Delta}} \mathrm{N} X_k \xrightarrow{\cong} X_n.$$

Here the coproduct is indexed over all surjections in Δ of the form $\xi \colon [n] \longrightarrow [k]$, and Ψ_n is the natural map induced by the corresponding maps $NX_k \subset X_k \xrightarrow{\xi^*} X_n$.

By Proposition 17, each $X \in \mathsf{sSet}$ is naturally isomorphic to a simplicial set of the form

$$NX_0 \stackrel{\longrightarrow}{\longleftarrow} NX_0 \amalg NX_1 \stackrel{\boxtimes}{\longleftarrow} NX_0 \amalg NX_1 \amalg NX_1 \amalg NX_2 \stackrel{\boxtimes}{\longleftarrow} \cdots$$

constructed from the non-degenerate simplices of X.

Skeletal filtrations.

Definition 18. Let X be a simplicial set and $m \ge 0$. The *m*-skeleton of X, denoted $\operatorname{sk}_m X$, is the subcomplex $\operatorname{sk}_m X \subset X$ generated by the k-simplices of X of degree $k \le m$. Define $\operatorname{sk}_{-1} X := \emptyset$.

In other words, $(\mathrm{sk}_m X)_n \subset X_n$ is the image of the restriction of Ψ_n

$$(\mathrm{sk}_m X)_n = \mathrm{image}\Big(\coprod_{\substack{[n] \twoheadrightarrow [k] \\ \mathrm{in} \ \Delta, \ k \le m}} \mathrm{N} X_k \xrightarrow{\subset} \coprod_{\substack{[n] \twoheadrightarrow [k] \\ \mathrm{in} \ \Delta}} \mathrm{N} X_k \xrightarrow{\Psi_n} X_n\Big).$$

It follows that every simplicial set X has a *skeletal filtration* of the form

$$\emptyset = \mathrm{sk}_{-1}X \subset \mathrm{sk}_0X \subset \mathrm{sk}_1X \subset \mathrm{sk}_2X \subset \cdots \subset \bigcup_{m \ge 0} \mathrm{sk}_mX = X,$$

and hence $X \cong \operatorname{colim}_m \operatorname{sk}_m X$. Note that the 0-skeleton $\operatorname{sk}_0 X$ is the constant simplicial set with value X_0 .

Exercise 10. Prove Proposition 19.

Proposition 19. Let X be a simplicial set and $m \ge 0$. There are pushout diagrams of the form

in sSet; i.e., $sk_m X$ is obtained from $sk_{m-1}X$ by attaching m-cells $\Delta[m]$.

Exercise 11. Prove Proposition 20.

The following proposition shows that the realization |X| of a simplicial set X has the structure of a CW complex. In particular, |X| is a compactly generated Hausdorff space.

Proposition 20. Let X be a simplicial set and $m \ge 0$.

(a) There are pushout diagrams of the form

in Top; i.e., $|\mathrm{sk}_m X|$ is obtained from $|\mathrm{sk}_{m-1} X|$ by attaching m-cells Δ^m . (b) There is a sequence of closed inclusions

$$\emptyset = |\mathrm{sk}_{-1}X| \subset |\mathrm{sk}_0X| \subset |\mathrm{sk}_1X| \subset |\mathrm{sk}_2X| \subset \cdots \subset \bigcup_{m \ge 0} |\mathrm{sk}_mX| = |X|,$$

and hence $|X| \cong \operatorname{colim}_m |\operatorname{sk}_m X|$.

Decomposition of simplicial R-modules and the Dold-Kan theorem. Let R be a ring and denote by $sMod_R$ the category of simplicial left R-modules. If X is a simplicial R-module

$$X: \quad X_0 \underbrace{\stackrel{s_0}{\underset{d_1}{\overset{d_0}{\overset{d_0}{\overset{d_1}}{\overset{d_1}}{\overset{d_1}}{\overset{d_1}{\overset{d_1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

recall from lecture that the *associated complex* of X, also denoted X, is the chain complex in Ch^+_R of the form

$$X: \qquad \dots \leftarrow 0 \leftarrow 0 \leftarrow X_0 \xleftarrow{\partial} X_1 \xleftarrow{\partial} X_2 \xleftarrow{\partial} X_3 \leftarrow \dots$$

defined degreewise by

$$X_k := \begin{cases} X_k, & \text{for } k \ge 0, \\ 0, & \text{otherwise,} \end{cases}$$

and with differential $\partial: X_k \longrightarrow X_{k-1}$ defined by $\partial:=\sum_{i=0}^k d_i(-1)^i$ summing all of the face maps $d_i: X_k \longrightarrow X_{k-1}$ with alternating signs.

Exercise 12. Prove Proposition 21.

Proposition 21. Let X be a simplicial R-module.

- (a) The associated complex of X is a well-defined chain complex; i.e., $\partial^2 = 0$.
- (b) The associated complex construction defines a functor $sMod_R \longrightarrow Ch_R^+$.

Definition 22. Let X be a simplicial R-module and $k \ge 0$. Define the submodule $NX_k \subset X_k$ by

$$\mathbf{N}X_0 := X_0, \qquad \mathbf{N}X_k := \bigcap_{0 \le i \le k-1} \ker(d_i) \subset X_k, \qquad (k \ge 1).$$

Recall from lecture the following decomposition of a simplicial R-module.

Proposition 23. Let X be a simplicial R-module. There is a natural isomorphism Ψ in sMod_R defined objectwise by

$$\Psi_n \colon \prod_{\substack{[n] \twoheadrightarrow [k]\\ in \ \Delta}} \mathrm{N} X_k \xrightarrow{\cong} X_n.$$

Here the coproduct is indexed over all surjections in Δ of the form $\xi \colon [n] \longrightarrow [k]$, and Ψ_n is the natural map induced by the corresponding maps $NX_k \subset X_k \xrightarrow{\xi^*} X_n$.

By Proposition 23, each $X \in \mathsf{sMod}_R$ is naturally isomorphic to a simplicial R-module of the form

$$NX_0 \rightleftharpoons NX_0 \amalg NX_1 \rightleftharpoons NX_1 \amalg NX_1 \amalg NX_2 \rightleftharpoons \cdots$$

Let Y be a chain complex in Ch^+_R

$$Y: \qquad \dots \leftarrow 0 \leftarrow 0 \leftarrow Y_0 \xleftarrow{\partial} Y_1 \xleftarrow{\partial} Y_2 \xleftarrow{\partial} Y_3 \leftarrow \dots$$

and recall from lecture that the *denormalization* of Y, denoted $\Gamma(Y)$, is the simplicial R-module of the form

$$\Gamma(Y): \quad Y_0 \stackrel{\longrightarrow}{\longleftarrow} Y_0 \amalg Y_1 \stackrel{\longrightarrow}{\longleftarrow} Y_0 \amalg Y_1 \amalg Y_1 \amalg Y_2 \stackrel{\longrightarrow}{\longleftarrow} \cdots$$

defined levelwise by

$$\Gamma(Y)_n := \coprod_{\substack{[n] \twoheadrightarrow [k] \\ \text{in } \Delta}} Y_k.$$

Exercise 13. Prove Theorem 24.

Theorem 24 (Dold-Kan). The normalization N and denormalization Γ functors fit into the following

$$sMod_R \xrightarrow[\Gamma]{N} Ch_R^+$$

equivalence of categories; i.e., there exist natural isomorphisms

$$\operatorname{id} \xrightarrow{\cong} \Gamma N, \qquad N\Gamma \xrightarrow{\cong} \operatorname{id}.$$

Exercise 14. Prove Proposition 25.

Proposition 25. The adjunction

$$\mathsf{Ch}_R^+ \xrightarrow[]{\Gamma}{\swarrow_N} \mathsf{sMod}_R$$

with left adjoint on top is a Quillen equivalence.

Homotopy theory of simplicial *R***-modules.** Recall from lecture the following lifting characterization of (acyclic) fibrations in sSet.

Proposition 26. Let $f: X \longrightarrow Y$ be a map in sSet.

(a) f is an acyclic fibration if and only if it has the right lifting property with respect to the set of maps

$$j_n: \partial \Delta[n] \longrightarrow \Delta[n], \qquad n \ge 0$$

(b) f is a fibration if and only if it has the right lifting property with respect to the set of maps

$$j_{n,k}: \Lambda[n,k] \longrightarrow \Delta[n], \qquad n \ge 1, \qquad 0 \le k \le n.$$

Consider the adjunction

$$sSet \xrightarrow{R}_{U} sMod_R$$

with left adjoint on top and U the forgetful functor. Define a map $f: X \longrightarrow Y$ in $sMod_R$ to be

- (i) a weak equivalence if $Uf: UX \longrightarrow UY$ is a weak equivalence in sSet,
- (ii) a *fibration* if $Uf: UX \longrightarrow UY$ is a fibration in sSet,
- (iii) a *cofibration* if it has the left lifting property with respect to all acyclic fibrations.

Exercise 15. Prove Proposition 27.

Proposition 27. Let $f: X \longrightarrow Y$ be a map in sMod_R .

(a) f is a fibration if and only if it has the right lifting property with respect to the set of maps

$$Rj_{n,k}: R\Lambda[n,k] \longrightarrow R\Delta[n], \quad n \ge 1, \quad 0 \le k \le n,$$

(b) f is an acyclic fibration if and only if it has the right lifting property with respect to the set of maps

$$Rj_n: R\partial\Delta[n] \longrightarrow R\Delta[n], \qquad n \ge 0.$$

Exercise 16. Use small object arguments to prove Proposition 28.

Proposition 28. These three classes of maps give $sMod_R$ the structure of a model category.

Homotopy theory of simplicial commutative rings. Denote by sCRng the category of simplicial commutative rings. Consider the adjunctions

$$sSet \xrightarrow{\mathbb{Z}} sMod_{\mathbb{Z}} \xrightarrow{Sym} sCRng$$
, $sSet \xrightarrow{Sym\mathbb{Z}} sCRng$

with left adjoints on top and U the forgetful functor; here, the right-hand adjunction is the composition of the left-hand adjunctions. Define a map $f: X \longrightarrow Y$ in sCRng to be

- (i) a weak equivalence if $Uf: UX \longrightarrow UY$ is a weak equivalence in sSet,
- (ii) a *fibration* if $Uf: UX \longrightarrow UY$ is a fibration in sSet,
- (iii) a *cofibration* if it has the left lifting property with respect to all acyclic fibrations.

Exercise 17. Prove Proposition 29.

Proposition 29. Let $f: X \longrightarrow Y$ be a map in sCRng.

(a) f is a fibration if and only if it has the right lifting property with respect to the set of maps

 $\operatorname{Sym}\mathbb{Z}(j_{n,k}): \operatorname{Sym}\mathbb{Z}\Lambda[n,k] \longrightarrow \operatorname{Sym}\mathbb{Z}\Delta[n], \qquad n \ge 1, \qquad 0 \le k \le n,$

(b) f is an acyclic fibration if and only if it has the right lifting property with respect to the set of maps

 $\operatorname{Sym}\mathbb{Z}(j_n)\colon \operatorname{Sym}\mathbb{Z}\partial\Delta[n] \longrightarrow \operatorname{Sym}\mathbb{Z}\Delta[n], \qquad n \ge 0.$

Exercise 18. Use small object arguments to prove Proposition 30.

Proposition 30. These three classes of maps give sCRng the structure of a model category.

Exercise 19. Please read [1, Sections 10-11], [4, Sections 1.5 and 4.1-4.4], and [5, Sections 1-3].

References

- W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73–126. North-Holland, Amsterdam, 1995.
- [2] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.
- [3] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
- [4] P. G. Goerss and K. Schemmerhorn. Model categories and simplicial methods. In Interactions between homotopy theory and algebra, volume 436 of Contemp. Math., pages 3–49. Amer. Math. Soc., Providence, RI, 2007.
- [5] S. Iyengar. André-Quillen homology of commutative algebras. In Interactions between homotopy theory and algebra, volume 436 of Contemp. Math., pages 203–234. Amer. Math. Soc., Providence, RI, 2007.
- [6] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.